Chapter 5. Confidence Interval

Let Z be the r.v. with standard normal distribution $N(0, 1)$ We can find z_{α} and $z_{\frac{\alpha}{2}}$ that satisfy

$$
\alpha = P(Z \le -z_\alpha) = P(Z \ge z_\alpha)
$$
 and $1 - \alpha = P(-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}})$.

A table of $z_{\frac{\alpha}{2}}$ is the following :

$1-\alpha$	$z_{\frac{\alpha}{2}}$
0.8	$1.28(z_{0.1})$
0.9	1.645 $(z_{0.05})$
0.95	1.96 $(z_{0.025})$
0.99	$2.58(z_{0.005})$
0.9973	$3(z_{0.00135})$

Def. Suppose that we have a random sample from $f(x, \theta)$. For $0 < \alpha < 1$, if there exists two statistics $T_1 = t_1(X_1, \ldots, X_n)$ and $T_2 = t_2(X_1, \ldots, X_n)$ satisfying

$$
1 - \alpha = P(T_1 \le \theta \le T_2)
$$

We call the random interval (T_1, T_2) a $100(1-\alpha)\%$ confidence interval of parameter θ . If $X_1 = x_1, \ldots, X_n = x_n$ is observed, we also call $(t_1(X_1, \ldots, X_n), t_2(X_1, \ldots, X_n))$ a $100(1-\alpha)\%$ confidence interval(C.I.) for θ

Constructing C.I. by pivotal quantity:

Def. A function of random sample and parameter, $Q = q(X_1, \ldots, X_n, \theta)$, is called a pivotal quantity if its distribution is independent of θ

With a pivotal quantity $q(X_1, \ldots, X_n, \theta)$, there exists a, b such that

 $1 - \alpha = P(a \leq q(X_1, \ldots, X_n, \theta) \leq b), \forall \theta \in \Theta.$

The interest of pivotal quantity is that there exists statistics $T_1 = t_1(X_1, \ldots, X_n)$ and $T_2 = t_2(X_1, \ldots, X_n)$ with the following 1-1 transformation

$$
a \le q(X_1, \dots, X_n, \theta) \le b \text{ iff } T_1 \le \theta \le T_2
$$

Then we have $1 - \alpha = P(T_1 \le \theta \le T_2)$ and (T_1, T_2) is a $100(1 - \alpha)\%$ C.I. for θ

Confidence Interval for Normal mean:

Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. We consider the C.I. of

parameter μ . (I) $\sigma = \sigma_0$ is known

$$
\overline{X} \sim N(\mu,\frac{\sigma_0^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \sim N(0,1)
$$

$$
1 - \alpha = P(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}), Z \sim N(0, 1)
$$

= $P(-z_{\frac{\alpha}{2}} \leq \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \leq z_{\frac{\alpha}{2}})$
= $P(-z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \leq \overline{X} - \mu \leq z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}})$
= $P(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \leq \mu \leq \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}})$

 $\Rightarrow (\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}})$ is a $100(1 - \alpha)\%$ C.I. for μ . ex: $n = 40, \sigma_0 =$ √ $\overline{10}, \overline{x} = 7.164 \ (X_1, \ldots, X_{40} \stackrel{iid}{\sim} N(\mu, 10).)$ Want a 80% C.I. for μ . sol: A 80% C.I. for μ . is

$$
(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) = (7.164 - 1.28 \frac{\sqrt{10}}{\sqrt{40}}, 7.164 + 1.28 \frac{\sqrt{10}}{\sqrt{40}})
$$

$$
= (6.523, 7.805)
$$

$$
P(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \le \mu \le \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) = 1 - \alpha = 0.8
$$

$$
P(6.523 \le \mu \le 7.805) = 1 \text{ or } 0
$$

 $(II)\sigma$ is unknown.

Def. If $Z \sim N(0, 1)$ and $\chi^2(r)$ are independent, we call the distribution of the r.v. \overline{a}

$$
T = \frac{Z}{\sqrt{\frac{\chi^2(r)}{r}}}
$$

a t-distribution with r degrees of freedom.

The p.d.f of t-distribution is

$$
f_T(t)=\frac{\Gamma(\frac{r+1}{2})}{\Gamma(\frac{r}{2})}\frac{1}{\sqrt{r\pi}(1+\frac{t^2}{r})^{\frac{r+1}{2}}},-\infty
$$

 $\therefore f_T(-t) = f_T(t)$ ∴ t-distribution is symmetric at 0. Now $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. We have

$$
\begin{cases} \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \end{cases} indep. \Rightarrow \begin{cases} \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1) \\ \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \end{cases} indep. \nT = \frac{\overline{X}-\mu}{\frac{\sigma/\sqrt{n}}{\sigma^2(n-1)}} = \frac{\overline{X}-\mu}{s/\sqrt{n}} \sim t(n-1) \n\sqrt{\frac{(n-1)s^2}{\sigma^2(n-1)}} = \frac{\overline{X}-\mu}{s/\sqrt{n}} \sim t(n-1)
$$

Let $t_{\frac{\alpha}{2}}$ satisfies

$$
1 - \alpha = P(-t_{\frac{\alpha}{2}} \le \frac{\overline{X} - \mu}{s/\sqrt{n}} \le t_{\frac{\alpha}{2}})
$$

=
$$
P(-t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \overline{X} - \mu \le t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}})
$$

=
$$
P(\overline{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \overline{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}})
$$

$$
\Rightarrow (\overline{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}) \text{ is a } 100(1 - \alpha)\% \text{ C.I. for } \mu.
$$

ex: Suppose that we have $n = 10, \bar{x} = 3.22$ and $s = 1.17$. We also have $t_{0.025} = 2.262$. Want a 95% C.I. for μ . sol: A 95% C.I. for μ is

$$
(3.22 - 2.262 \frac{1.17}{\sqrt{10}}, 3.22 + 2.262 \frac{1.17}{\sqrt{10}}) = (2.34, 4.10)
$$