Chapter 4. Continue to Point Estimation-UMVUE

Sufficient Statistic:

A,B are two events. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, A \subset S.$$

 $P(\cdot|B)$ is a probability set function with domain of subsets of sample space S.

Let X,Y be two r.v's with joint p.d.f f(x,y) and marginal p.d.f's $f_X(x)$ and $f_Y(y)$. The conditional p.d.f of Y given X = x is

$$f(y|x) = \frac{f(x,y)}{f_X(x)}, y \in R$$

Function f(y|x) is a p.d.f satisfying $\int_{-\infty}^{\infty} f(y|x)dy = 1$

In estimation of parameter θ , we have a random sample X_1, \ldots, X_n from p.d.f $f(x, \theta)$. The information we have about θ is contained in X_1, \ldots, X_n .

Let $U = u(X_1, ..., X_n)$ be a statistic having p.d.f $f_U(u, \theta)$ The conditional p.d.f $X_1, ..., X_n$ given U = u is

$$f(x_1, \dots, x_n | u) = \frac{f(x_1, \dots, x_n, \theta)}{f_U(u, \theta)}, \{(x_1, \dots, x_n) : u(x_1, \dots, x_n) = u\}$$

Function $f(x_1, ..., x_n | u)$ is a joint p.d.f with $\int_{u(x_1, ..., x_n) = u} \cdots \int f(x_1, ..., x_n | u) dx_1 \cdots dx_n = 1$

Let X be r.v. and U = u(X)

$$f(x|U=u) = \frac{f(x,u)}{f_U(u)} = \begin{cases} \frac{f_X(x)}{f_U(u)} & \text{if } u(X) = u\\ \frac{0}{f_U(u)} = 0 & \text{if } u(X) \neq u \end{cases}$$

If, for any u, conditional p.d.f $f(x_1, \ldots, x_n, \theta|u)$ is unrelated to parameter θ , then the random sample X_1, \ldots, X_n contains no information about θ when U = u is observed. This says that U contains exactly the same amount of information about θ as X_1, \ldots, X_n .

Def. Let X_1, \ldots, X_n be a random sample from a distribution with $p.d.f f(x, \theta), \theta \in \Theta$. We call a statistic $U = u(X_1, \ldots, X_n)$ a **sufficient statistic** if, for any value U = u, the conditional $p.d.f f(x_1, \ldots, x_n|u)$ and its domain all not

depend on parameter θ .

Let $U = (X_1, \dots, X_n)$. Then

$$f(x_1, \dots, x_n, \theta | u = (x_1^*, x_2^*, \dots, x_n^*)) = \begin{cases} \frac{f(x_1, \dots, x_n, \theta)}{f(x_1^*, x_2^*, \dots, x_n^*, \theta)} & \text{if } x_1 = x_1^*, x_2 = x_2^*, \dots, x_n = x_n^* \\ 0 & \text{if } x_i \neq x_i^* \text{ for some } i's. \end{cases}$$

Then (X_1, \ldots, X_n) itself is a sufficient statistic of θ .

Q: Why sufficiency?

A: We want a statistic with dimension as small as possible and contains information about θ the same amount as X_1, \ldots, X_n does.

Def. If $U = u(X_1, ..., X_n)$ is a sufficient statistic with smallest dimension, it is called the **minimal sufficient statistic**.

Example:

(a) Let (X_1, \ldots, X_n) be a random sample from a continuous distribution with p.d.f $f(x, \theta)$. Consider the order statistic $Y_1 = \min\{X_1, \ldots, X_n\}, \ldots, Y_n = \max\{X_1, \ldots, X_n\}$. If $Y_1 = y_1, \ldots, Y_n = y_n$ are observed, sample X_1, \ldots, X_n have equal chance to have values in

$$\{(x_1,\ldots,x_n):(x_1,\ldots,x_n) \text{ is a permutation of } (y_1,\ldots,y_n)\}.$$

Then the conditional joint p.d.f of X_1, \ldots, X_n given $Y_1 = y_1, \ldots, Y_n = y_n$ is

$$f(x_1, \dots, x_n, \theta | y_1, \dots, y_n) = \begin{cases} \frac{1}{n!} & \text{if } x_1, \dots, x_n \text{ is a permutation of } y_1, \dots, y_n. \\ 0 & \text{otherwise.} \end{cases}$$

Then order statistic (Y_1, \ldots, Y_n) is also a sufficient statistic of θ . Order statistic is not a good sufficient statistic since it has dimension n.

(b)Let X_1, \ldots, X_n be a random sample from Bernoulli distribution. The joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}, x_i = 0, 1, i = 1, \dots, n.$$

Consider the statistic $Y = \sum_{i=1}^{n} X_i$ which has binomial distribution b(n, p) with p.d.f

$$f_Y(y,p) = \binom{n}{y} p^y (1-p)^{n-y}, y = 0, 1, \dots, n$$

If Y = y, the space of (X_1, \ldots, X_n) is $\{(x_1, \ldots, x_n) : \sum_{i=1}^n x_i = y\}$ The conditional p.d.f of X_1, \ldots, X_n given Y = y is

$$f(x_1, \dots, x_n, p|y) = \begin{cases} \frac{\sum_{i=1}^{n} x_i (1-p)^{n-\sum_{i=1}^{n} x_i}}{\binom{n}{y} p^y (1-p)^{n-y}} = \frac{p^y (1-p)^{n-y}}{\binom{n}{y} p^y (1-p)^{n-y}} = \frac{1}{\binom{n}{y}} = \frac{1}{\binom{n}{y}} = \frac{1}{\binom{n}{y}} & \text{if } \sum_{i=1}^{n} x_i = y \\ 0 & \text{if } \sum_{i=1}^{n} x_i \neq y \end{cases}$$

which is independent of p.

Hence, $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic of p and is a minimal sufficient statistic.

(c)Let X_1, \ldots, X_n be a random sample from uniform distribution $U(0, \theta)$. Want to show that the largest order statistic $Y_n = \max\{X_1, \ldots, X_n\}$ is a sufficient statistic.

The joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} I(0 < x_i < \theta) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 < x_i < \theta)$$
$$= \begin{cases} \frac{1}{\theta^n} & \text{if } 0 < x_i < \theta, i = 1, \dots, n \\ 0 & \text{otherwise.} \end{cases}$$

The p.d.f of Y_n is

$$f_{Y_n}(y,\theta) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta} = n \frac{y^{n-1}}{\theta^n}, 0 < y < \theta$$

When $Y_n = y$ is given, X_1, \ldots, X_n be values with $0 < x_i \le y, i = 1, \ldots, n$

The conditional p.d.f of X_1, \ldots, X_n given $Y_n = y$ is

$$f(x_1, \dots, x_n | y) = \frac{f(x_1, \dots, x_n, \theta)}{f_{Y_n}(y, \theta)} = \begin{cases} \frac{\frac{1}{\theta^n}}{n^{\frac{y^{n-1}}{\theta^n}}} = \frac{1}{ny^{n-1}} & 0 < x_i \le y, i = 1, \dots, n \\ 0 & \text{otherwise.} \end{cases}$$

 \Rightarrow independent of θ .

So, $Y_n = \max\{X_1, \dots, X_n\}$ is a sufficient statistic of θ .

Q:

- (a) If U is a sufficient statistic, are U+5, U^2 , $\cos(U)$ all sufficient for θ ?
- (b) Is there easier way in finding sufficient statistic?

 $T = t(X_1, \ldots, X_n)$ is sufficient for θ if conditional p.d.f $f(x_1, \ldots, x_n, \theta | t)$ is indep. of θ .

Independence:

1.function $f(x_1, \ldots, x_n, \theta|t)$ not depend on θ .

2.domain of X_1, \ldots, X_n not depend on θ .

Thm. Factorization Theorem.

Let X_1, \ldots, X_n be a random sample from a distribution with p.d.f $f(x, \theta)$. A statistic $U = u(X_1, \ldots, X_n)$ is sufficient for θ iff there exists functions $K_1, K_2 \geq 0$ such that the joint p.d.f of X_1, \ldots, X_n may be formulated as $f(x_1, \ldots, x_n, \theta) = K_1(u(X_1, \ldots, X_n), \theta) K_2(x_1, \ldots, x_n)$ where K_2 is not a function of θ .

Proof. Consider only the continuous r.v's.

 \Rightarrow) If U is sufficient for θ , then

$$f(x_1, \dots, x_n, \theta | u) = \frac{f(x_1, \dots, x_n, \theta)}{f_U(u, \theta)} \text{ is not a function of } \theta$$

$$\Rightarrow f(x_1, \dots, x_n, \theta) = f_U(u(X_1, \dots, X_n), \theta) f(x_1, \dots, x_n | u)$$

$$= K_1(u(X_1, \dots, X_n), \theta) K_2(x_1, \dots, x_n)$$

 \Leftarrow) Suppose that $f(x_1,\ldots,x_n,\theta)=K_1(u(X_1,\ldots,X_n),\theta)K_2(x_1,\ldots,x_n)$ Let $Y_1=u_1(X_1,\ldots,X_n), Y_2=u_2(X_1,\ldots,X_n),\ldots,Y_n=u_n(X_1,\ldots,X_n)$ be a 1-1 function with inverse functions $x_1=w_1(y_1,\ldots,y_n),x_2=w_2(y_1,\ldots,y_n),\ldots,x_n=w_n(y_1,\ldots,y_n)$ and Jacobian

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$
 (not depend on θ .)

The joint p.d.f of Y_1, \ldots, Y_n is

$$f_{Y_1,\dots,Y_n}(y_1,\dots,y_n,\theta) = f(w_1(y_1,\dots,y_n),\dots,w_n(y_1,\dots,y_n),\theta)|J|$$

= $K_1(y_1,\theta)K_2(w_1(y_1,\dots,y_n),\dots,w_n(y_1,\dots,y_n),\theta)|J|$

The marginal p.d.f of $U = Y_1$ is

$$f_U(y_1, \theta) = K_1(y_1, \theta) \underbrace{\int \cdots \int K_2(w_1(y_1, \dots, y_n), \dots, w_n(y_1, \dots, y_n)) |J| dy_2 \cdots dy_n}_{\text{not depend on } \theta.}$$

Then the conditional p.d.f of X_1, \ldots, X_n given U = u is

$$f(x_1, ..., x_n, \theta | u) = \frac{f(x_1, ..., x_n, \theta)}{f_U(u, \theta)}$$

$$= \frac{K_2(x_1, ..., x_n)}{\int ... \int K_2(w_1(y_1, ..., y_n), ..., w_n(y_1, ..., y_n), \theta) |J| dy_2 ... dy_n}$$

which is independent of θ .

This indicates that U is sufficient for θ .

Example:

(a) X_1, \ldots, X_n is a random sample from Poisson(λ). Want sufficient statistic for λ .

Joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, \lambda) = \prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda^{\sum x_i} e^{-n\lambda}}{\prod_{i=1}^n x_i!} = \lambda^{\sum x_i} e^{-n\lambda} \frac{1}{\prod_{i=1}^n x_i!}$$
$$= K_1(\sum_{i=1}^n x_i, \lambda) K_2(x_1, \dots, x_n)$$

 $\Rightarrow \sum_{i=1}^{n} X_i$ is sufficient for λ .

We also have

$$f(x_1, \dots, x_n, \lambda) = \lambda^{n\overline{x}} e^{-n\lambda} \frac{1}{\prod_{i=1}^n x_i!} = K_1(\overline{x}, \lambda) K_2(x_1, \dots, x_n)$$

$$\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 is sufficient for λ .

We also have

$$f(x_1, \dots, x_n, \lambda) = \lambda^{n(\overline{x}^2)^{\frac{1}{2}}} e^{-n\lambda} \frac{1}{\prod_{i=1}^n x_i!} = K_1(\overline{x}^2, \lambda) K_2(x_1, \dots, x_n)$$

 $\Rightarrow \overline{X}^2$ is sufficient for λ .

(b)Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Want sufficient statistic for (μ, σ^2) .

Joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^{\frac{n}{2}} (\sigma^2)^{\frac{n}{2}}} e^{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}}$$

$$\sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n (x_i - \overline{x} + \overline{x} - \mu)^2 = \sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2 = (n-1)s^2 + n(\overline{x} - \mu)^2$$

$$(s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2)$$

$$f(x_1, \dots, x_n, \mu, \sigma^2) = \frac{1}{(2\pi)^{\frac{n}{2}} (\sigma^2)^{\frac{n}{2}}} e^{-\frac{(n-1)s^2 + n(\overline{x} - \mu)^2}{2\sigma^2}} \cdot 1 = K_1(\overline{x}, s^2, \mu, \sigma^2) K_2(x_1, \dots, x_n)$$

$$\Rightarrow (\overline{X}, s^2) \text{ is sufficient for } (\mu, \sigma^2).$$

What is useful with a sufficient statistic for point estimation? Review: X, Y r.v.'s with join p.d.f f(x, y). Conditional p.d.f

$$f(y|x) = \frac{f(x,y)}{f_X(x)} \Rightarrow f(x,y) = f(y|x)f_X(x)$$
$$f(x|y) = \frac{f(x,y)}{f_Y(y)} \Rightarrow f(x,y) = f(x|y)f_Y(y)$$

Conditional expectation of Y given X = x is

$$E(Y|x) = \int_{-\infty}^{\infty} y f(y|x) dy$$

The random conditional expectation E(Y|X) is function E(Y|x) with x replaced by X.

Conditional variance of Y given X = x is

$$Var(Y|x) = E[(Y - E(Y|x))^{2}|x] = E(Y^{2}|x) - (E(Y|x))^{2}$$

The conditional variance Var(Y|X) is Var(Y|x) replacing x by X.

Thm. Let Y and X be two r.v.'s.

(a) E[E(Y|x)] = E(Y)

(b)
$$Var(Y) = E(Var(Y|x)) + Var(E(Y|x))$$

Proof. (a)

$$E[E(Y|x)] = \int_{-\infty}^{\infty} E(Y|x) f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(y|x) dy f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} y (\int_{-\infty}^{\infty} f(x, y) dx) dy$$

$$= \int_{-\infty}^{\infty} y f_Y(y) dy$$

$$= E(Y)$$

(b)

$$\begin{aligned} \operatorname{Var}(Y|x) &= \operatorname{E}(Y^{2}|x) - (\operatorname{E}(Y|x))^{2} \\ \Rightarrow \operatorname{E}(\operatorname{Var}(Y|x)) &= \operatorname{E}[\operatorname{E}(Y^{2}|x)] - \operatorname{E}[(\operatorname{E}(Y|x))^{2}] = \operatorname{E}(Y^{2}) - \operatorname{E}[(\operatorname{E}(Y|x))^{2}] \\ \operatorname{Also,} \operatorname{Var}(\operatorname{E}(Y|x) &= \operatorname{E}[(\operatorname{E}(Y|x))^{2}] - \operatorname{E}[(\operatorname{E}(Y|x))]^{2} \\ &= \operatorname{E}[(\operatorname{E}(Y|x))^{2}] - (\operatorname{E}(Y))^{2} \\ \Rightarrow \operatorname{E}(\operatorname{Var}(Y|x)) + \operatorname{Var}(\operatorname{E}(Y|x) = \operatorname{E}(Y^{2}) - (\operatorname{E}(Y))^{2} = \operatorname{Var}(Y) \end{aligned}$$

Now, we comeback to the estimation of parameter function $\tau(\theta)$. We have a random sample X_1, \ldots, X_n from $f(x, \theta)$.

Lemma. Let $\hat{\tau}(X_1, \dots, X_n)$ be an unbiased estimator of $\tau(\theta)$ and $U = u(X_1, \dots, X_n)$ is a statistic. Then

$$(a)E_{\theta}[\hat{\tau}(X_1,\ldots,X_n)|U]$$
 is unbiased for $\tau(\theta)$
 $(b)Var_{\theta}(E[\hat{\tau}(X_1,\ldots,X_n)|U]) \leq Var_{\theta}(\hat{\tau}(X_1,\ldots,X_n))$

Proof. (a)

$$E_{\theta}[E(\hat{\tau}(X_1,\ldots,X_n)|U)] = E_{\theta}(\hat{\tau}(X_1,\ldots,X_n)) = \tau(\theta), \forall \theta \in \Theta.$$

Then $E_{\theta}[\hat{\tau}(X_1,\ldots,X_n)|U]$ is unbiased for $\tau(\theta)$. (b)

$$\operatorname{Var}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)) = \operatorname{E}_{\theta}[\operatorname{Var}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)|U)] + \operatorname{Var}_{\theta}[\operatorname{E}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)|U)]$$

$$\geq \operatorname{Var}_{\theta}[\operatorname{E}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)|U)], \forall \theta \in \Theta.$$

Conclusions:

- (a) For any estimator $\hat{\tau}(X_1, \ldots, X_n)$ which is unbiased for $\tau(\theta)$, and any statistic U, $E_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|U]$ is unbiased for $\tau(\theta)$ and with variance smaller than or equal to $\hat{\tau}(X_1, \ldots, X_n)$.
- (b) However, $E_{\theta}[\hat{\tau}(X_1,\ldots,X_n)|U]$ may not be a statistic. If it is not, it cannot be an estimator of $\tau(\theta)$.
- (c) If U is a sufficient statistic, $f(x_1, \ldots, x_n, \theta|u)$ is independent of θ , then $\mathrm{E}_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|u]$ is independent of θ . So, $\mathrm{E}_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|U]$ is an unbiased estimator.

If U is not a sufficient statistic, $f(x_1, \ldots, x_n, \theta|u)$ is not only a function of u but also a function of θ , then $E_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|u]$ is a function of u and θ . And $E_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|u]$ is not a statistic.

Thm. Rao-Blackwell

If $\hat{\tau}(X_1, \dots, X_n)$ is unbiased for $\tau(\theta)$ and U is a sufficient statistic, then $(a)E_{\theta}[\hat{\tau}(X_1, \dots, X_n)|U]$ is a statistic. $(b)E_{\theta}[\hat{\tau}(X_1, \dots, X_n)|U]$ is unbiased for $\tau(\theta)$. $(c)Var_{\theta}(E[\hat{\tau}(X_1, \dots, X_n)|U]) \leq Var_{\theta}(\hat{\tau}(X_1, \dots, X_n)), \forall \theta \in \Theta$.

If $\hat{\tau}(\theta)$ is an unbiased estimator for $\tau(\theta)$ and U_1, U_2, \ldots are sufficient statistics, then we can improve $\hat{\tau}(\theta)$ with the following fact:

$$\operatorname{Var}_{\theta}(\operatorname{E}[\hat{\tau}(\theta)|U_{1}]) \leq \operatorname{Var}_{\theta}\hat{\tau}(\theta)$$

$$\operatorname{Var}_{\theta}\operatorname{E}(\operatorname{E}(\hat{\tau}(\theta)|U_{1})|U_{2}) \leq \operatorname{Var}_{\theta}\operatorname{E}(\hat{\tau}(\theta)|U_{1})$$

$$\operatorname{Var}_{\theta}\operatorname{E}[\operatorname{E}(\operatorname{E}(\hat{\tau}(\theta)|U_{1})|U_{2})|U_{3}] \leq \operatorname{Var}_{\theta}\operatorname{E}(\operatorname{E}(\hat{\tau}(\theta)|U_{1})|U_{2})$$

$$\vdots$$

Will this process ends with Cramer-Rao lower bound? This can be solved with "complete statistic".

Note: Let U be a statistic and h is a function.

(a) If
$$h(U) = 0$$
 then $E_{\theta}(h(U)) = E_{\theta}(0) = 0, \forall \theta \in \Theta$.

(b) If $P_{\theta}(h(U) = 0) = 1, \forall \theta \in \Theta.h(U)$ has a p.d.f

$$f_{h(U)}(h) = \begin{cases} 1, & \text{if } h = 0 \\ 0, & \text{otherwise.} \end{cases}$$
 Then $E_{\theta}(h(U)) = \sum_{\text{all } h} h f_{h(U)}(h) = 0$

Def. X_1, \ldots, X_n is random sample from $f(x, \theta)$. A statistic $U = u(X_1, \ldots, X_n)$ is a complete statistic if for any function h(U) such that $E_{\theta}(h(U)) = 0, \forall \theta \in \Theta$, then $P_{\theta}(h(U) = 0) = 1$, for $\theta \in \Theta$.

Q : For any statistic U, how can we verify if it is complete or not complete ? A :

- (1) To prove completeness, you need to show that for any function h(U) with $0 = E_{\theta}(h(U)), \forall \theta \in \Theta$.the following $1 = P_{\theta}(h(U) = 0), \forall \theta \in \Theta$ hold.
- (2) To prove in-completeness, you need only to find one function h(U) that satisfies $E_{\theta}(h(U)) = 0, \forall \theta \in \Theta$ and $P_{\theta}(h(U) = 0) < 1$, for some $\theta \in \Theta$.

Examples:

(a) $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$ Find a complete statistic and in-complete statistic ? sol: (a.1) We show that $Y = \sum_{i=1}^n X_i$ is a complete statistic. $Y \sim b(n,p)$. Suppose that function h(Y) satisfies $0 = \mathbf{E}_p h(Y), \forall 0$ Now,

$$0 = \mathcal{E}_{p}h(Y) = \sum_{y=0}^{n} h(y) \binom{n}{y} p^{y} (1-p)^{n-y}$$

$$= (1-p)^{n} \sum_{y=0}^{n} h(y) \binom{n}{y} (\frac{p}{1-p})^{y}, \forall 0
$$\Leftrightarrow 0 = \sum_{y=0}^{n} h(y) \binom{n}{y} (\frac{p}{1-p})^{y}, \forall 0
$$(\text{Let } \theta = \frac{p}{1-p}, 0
$$\Leftrightarrow 0 = \sum_{y=0}^{n} h(y) \binom{n}{y} \theta^{y}, 0 < \theta < \infty$$$$$$$$

An order n+1 polynomial equation cannot have infinite solutions except that coefficients are zero's.

$$\Rightarrow h(y) \binom{n}{y} = 0, y = 0, \dots, n \text{ for } 0 < \theta < \infty$$

$$\Rightarrow h(y) = 0, y = 0, \dots, n \text{ for } 0
$$\Rightarrow 1 \ge P_p(h(Y) = 0) \ge P_p(Y = 0, \dots, n) = 1$$

$$\Rightarrow Y = \sum_{i=1}^n X_i \text{ is complete}$$$$

(a.2) We show that $Z = X_1 - X_2$ is not complete.

$$E_p Z = E_p (X_1 - X_2) = E_p X_1 - E_p X_2 = p - p = 0, \forall 0$$

$$P_p(Z = 0) = P_p(X_1 - X_2 = 0) = P_p(X_1 = X_2 = 0 \text{ or } X_1 = X_2 = 1)$$

= $P_p(X_1 = X_2 = 0) + P_p(X_1 = X_2 = 1)$
= $(1 - p)^2 + p^2 < 1 \text{ for } 0 < p < 1.$

 $\Rightarrow Z = X_1 - X_2$ is not complete.

(b)Let $(X_1, ..., X_n)$ be a random sample from $U(0, \theta)$. We have to show that $Y_n = \max\{X_1, ..., X_n\}$ is a sufficient statistic. Here we use Factorization theorem to prove it again.

$$f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} I(0 < x_i < \theta) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 < x_i < \theta, i = 1, \dots, n)$$
$$= \frac{1}{\theta^n} I(0 < y_n < \theta) \cdot 1$$

 $\Rightarrow Y_n$ is sufficient for θ

Now, we prove it complete.

The p.d.f of Y_n is

$$f_{Y_n}(y) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta} = \frac{n}{\theta^n} y^{n-1}, 0 < y < \theta$$

Suppose that $h(Y_n)$ satisfies $0 = \mathbb{E}_{\theta} h(Y_n), \forall 0 < \theta < \infty$

$$0 = \mathcal{E}_{\theta} h(Y_n) = \int_0^{\theta} h(y) \frac{n}{\theta^n} y^{n-1} dy = \frac{n}{\theta^n} \int_0^{\theta} h(y) y^{n-1} dy$$
$$\Leftrightarrow 0 = \int_0^{\theta} h(y) y^{n-1} dy, \forall \theta > 0$$

Taking differentiation both sides with θ .

$$\Leftrightarrow 0 = h(\theta)\theta^{n-1}, \forall \theta > 0$$

$$\Leftrightarrow 0 = h(y), 0 < y < \theta, \forall \theta > 0$$

$$\Leftrightarrow P_{\theta}(h(Y_n) = 0) = P_{\theta}(0 < Y_n < \theta) = 1, \forall \theta > 0$$

$$\Rightarrow Y_n = \max\{X_1, \dots, X_n\}$$
 is complete.

Def. If the p.d.f of r.v. X can be formulated as

$$f(x,\theta) = e^{a(x)b(\theta) + c(\theta) + d(x)}, l < x < q$$

where l and q do not depend on θ , then we say that f belongs to an exponential family.

Thm. Let X_1, \ldots, X_n be a random sample from $f(x, \theta)$ which belongs to an exponential family as

$$f(x,\theta) = e^{a(x)b(\theta) + c(\theta) + d(x)}, l < x < q$$

Then $\sum_{i=1}^{n} a(X_i)$ is a complete and sufficient statistic.

Note: We say that X = Y if P(X = Y) = 1.

Thm. Lehmann-Scheffe

Let X_1, \ldots, X_n be a random sample from $f(x, \theta)$. Suppose that $U = u(X_1, \ldots, X_n)$ is a complete and sufficient statistic. If $\hat{\tau} = t(U)$ is unbiased for $\tau(\theta)$, then $\hat{\tau}$ is the unique function of U unbiased for $\tau(\theta)$ and is a UMVUE of $\tau(\theta)$. (Unbiased function of complete and sufficient statistic is UMVUE.)

Proof. If $\hat{\tau}^* = t^*(U)$ is also unbiased for $\tau(\theta)$, then

$$E_{\theta}(\hat{\tau} - \hat{\tau}^*) = E_{\theta}(\hat{\tau}) - E_{\theta}(\hat{\tau}^*) = \tau(\theta) - \tau(\theta) = 0, \forall \theta \in \Theta.$$

$$\Rightarrow 1 = P_{\theta}(\hat{\tau} - \hat{\tau}^*) = 0 = P(\hat{\tau} = \hat{\tau}^*), \forall \theta \in \Theta.$$

 $\Rightarrow \hat{\tau}^* = \hat{\tau}$, unbiased function of *U* is unique.

If T is any unbiased estimator of $\tau(\theta)$ then Rao-Blackwell theorem gives:

(a) E(T|U) is unbiased estimator of $\tau(\theta)$.

By uniqueness, $E(T|U) = \hat{\tau}$ with probability 1.

(b) $\operatorname{Var}_{\theta}(\hat{\tau}) = \operatorname{Var}_{\theta}(E(T|U)) \leq \operatorname{Var}_{\theta}(T), \forall \theta \in \Theta.$

This holds for every unbiased estimator T.

Then $\hat{\tau}$ is UMVUE of $\tau(\theta)$

Two ways in constructing UMVUE based on a complete and sufficient statistic U:

- (a) If T is unbiased for $\tau(\theta)$, then E(T|U) is the UMVUE of $\tau(\theta)$. This is easy to define but difficult to transform it in a simple form.
- (b) If there is a constant such that $E(U) = c \cdot \theta$, then $T = \frac{1}{c}U$ is the UMVUE of θ .

Example:

(a) Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$.

Want UMVUE of θ .

sol: $Y_n = \max\{X_1, \dots, X_n\}$ is a complete and sufficient statistic.

The p.d.f of Y_n is

$$f_{Y_n}(y,\theta) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta} = n \frac{y^{n-1}}{\theta^n}, 0 < y < \theta$$

$$E(Y_n) = \int_0^\theta y n \frac{y^{n-1}}{\theta^n} dy = \frac{n}{n+1} \theta.$$

We then have $E(\frac{n+1}{n}Y_n) = \frac{n+1}{n}E(Y_n) = \theta$. So, $\frac{n+1}{n}Y_n$ is the UMVUE of θ .

(b) Let X_1, \ldots, X_n be a random sample from Bernoulli(p).

Want UMVUE of θ .

sol: The p.d.f is

$$f(x,p) = p^x (1-p)^{1-x} = (1-p)(\frac{p}{1-p})^x = e^{x \ln(\frac{p}{1-p}) + \ln(1-p)}$$

 $\Rightarrow \sum_{i=1}^{n} X_i$ is complete and sufficient.

$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = np$$

$$\Rightarrow \hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$
 is UMVUE of p .

(c)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1)$$
.
Want UMVUE of μ .

sol: The p.d.f of X is

$$f(x,\mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x^2-2\mu x + \mu^2)}{2}} = e^{\mu x - \frac{x^2}{2} - \frac{\mu^2}{2} - \ln\sqrt{2\pi}}$$

$$\Rightarrow \sum_{i=1}^{n} X_i$$
 is complete and sufficient.

$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = n\mu$$

$$\Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} \text{ is UMVUE of } \mu.$$

Since X_1 is unbiased, we see that $\mathrm{E}(X_1|\sum_{i=1}^n X_i) = \overline{X}$

(d)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Possion}(\lambda)$$
.
Want UMVUE of $e^{-\lambda}$.

sol: The p.d.f of X is

$$f(x,\lambda) = \frac{1}{x!} \lambda^x e^{-\lambda} = e^{x \ln \lambda - \lambda - \ln x!}$$

$$\Rightarrow \sum_{i=1}^{n} X_i$$
 is complete and sufficient.

$$E(I(X_1 = 0)) = P(X_1 = 0) = f(0, \lambda) = e^{-\lambda}$$
 where $I(X_1 = 0)$ is an indicator function.

$$\Rightarrow I(X_1 = 0)$$
 is unbiased for $e^{-\lambda}$

$$\Rightarrow$$
 E $(I(X_1 = 0) | \sum_{i=1}^{n} X_i)$ is UMVUE of $e^{-\lambda}$.