Chapter 4. Continue to Point Estimation-UMVUE

Sufficient Statistic:
A B are two events. The conditional probability of A given B is

P(AN B)

JACS.

P(-|B) is a probability set function with domain of subsets of sample space S.

Let X,Y be two r.v’s with joint p.d.f f(x,y) and marginal p.d.f’s fx(z) and
fy(y). The conditional p.d.f of Y given X = z is

_ [z y)
f(y|517) - fX(x) 7y € R

Function f(y|z) is a p.d.f satisfying [*°_ f(y|z)dy =1

In estimation of parameter 6, we have a random sample Xi,..., X, from
p.d.f f(x,0). The information we have about 6 is contained in Xi, ..., X,.

Let U = u(Xy,...,X,) be a statistic having p.d.f fi(u,0)
The conditional p.d.f Xy,..., X, given U = u is

- f(xl,...,xn,e) . o
flzy, ... xp|u) = T, 0) Az, ) rul(x, . w,) = ul
Function f(xq,...,z,|u) is a joint p.d.f with

~~~~~~

Let X be r.v. and U = u(X)

=)
=
>
S~—
|

Ix(z
u
f(x|U =u) = flz,u) — { fUO(“)
fu(u) 7oy = 0 if w(X) #u
If, for any u, conditional p.d.f f(z1,...,x,,0|u) is unrelated to parameter 6,
then the random sample X7,...,X,, contains no information about # when

U = u is observed. This says that U contains exactly the same amount of
information about 6 as X, ..., X,.

Def. Let X1, ..., X, be a random sample from a distribution with p.d.f f(x,0),0 €
O. We call a statistic U = u(Xy,...,X,) a sufficient statistic if, for any
value U = wu, the conditional p.d.f f(xy,...,z,|u) and its domain all not
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depend on parameter 6.
Let U = (X1,...,X,). Then

f($f@3,--~:$:u€)

flxe, ..,z 0lu=(27,25,...,2))) =
o b 0 if x; # xf for some i's.

Then (X1, ...,X,) itself is a sufficient statistic of 6.

Q: Why sufficiency?
A: We want a statistic with dimension as small as possible and contains
information about € the same amount as X, ..., X, does.

Def. If U = u(Xy,...,X,) is a sufficient statistic with smallest dimension,
it 1s called the manimal sufficient statistic.

Example:
(a) Let (Xi,...,X,) be a random sample from a continuous distribution
with p.d.f f(x, ). Consider the order statistic Y; = min{Xy,..., X,,},..., Y, =
max{Xy,..., X, }. IfY; =u,...,Y, =y, are observed, sample X1, ..., X,

have equal chance to have values in

{(z1,...,2,) : (x1,...,2,) is a permutation of (yi,...,yn)}
Then the conditional joint p.d.f of Xy,..., X, given Y] =y,...,Y, =
Yn 18

flxy, ...z, 0y, ...
(1 2 0 otherwise.

Then order statistic (Y1,...,Y,) is also a sufficient statistic of 6.
Order statistic is not a good sufficient statistic since it has dimension n.

(b)Let X7, ..., X, be a random sample from Bernoulli distribution.
The joint p.d.f of Xy,..., X, is

n

f(xla cee 7xn7p) = Hpml(l_p>17xz = pzml(l_pylilewrz = 07 17?‘ = 17 ceey T
i=1
Consider the statistic Y = ) X; which has binomial distribution b(n, p)

i=1
with p.d.f

fr(y,p) = (Z)py(l —-p)"Yy=0,1,...,n
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If Y =y, the space of (Xy,...,X,) is {(z1,...,2,) : Dz, =y}
i=1
The conditional p.d.f of Xy,..., X, given Y =y is

n n

> oz n— 3 x; L
p=l _(I—p) =L pv(lep)™Y 1 1 if Y x;=
= = — = 7o\ = T (2 y
pY(1—p)—¥ pY(l—p)¥ > '
flx1,.. .z, ply) = G) G) G (El”) .
i=1

which is independent of p.

Hence, Y = > X is a sufficient statistic of p and is a minimal sufficient
i=1
statistic.

(c)Let X3,..., X, be a random sample from uniform distribution U (0, 6).
Want to show that the largest order statistic Y,, = max{Xy,..., X, } is
a sufficient statistic.
The joint p.d.f of X;,..., X, is

flz1,...,x,,0) :ﬁ% 0<z <) = f[ (0 <z <0)
:{ a f0<z;<0i=1,....n
0 otherwise.
The p.d.f of Y, is
o, 6) = ()12 = n%l,o <y<8
When Y,, = y is given, Xy,..., X, be values with 0 < z; < y,i =

1,....n
The conditional p.d.f of Xy,..., X, given Y,, =y is

f(l’l,...,xn,e)_ %:ﬁ O<z; <y,i=1,....n
fYn(y76) 0

f('rla o ,$n|y) =
otherwise.

= independent of 6.
So, Y, = max{Xj,..., X, } is a sufficient statistic of 6.
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(a) If U is a sufficient statistic, are U+5, U?, cos(U) all sufficient for 6 ?
(b) Is there easier way in finding sufficient statistic 7

T = t(Xy,...,X,) is sufficient for 6 if conditional p.d.f f(xy,...,z,,0|t) is
indep. of 6.

Independence:

1.function f(z1,...,x,,0|t) not depend on 6.

2.domain of Xi,..., X, not depend on 6.

Thm. Factorization Theorem.

Let X1,..., X, be a random sample from a distribution with p.d.f f(x,0).
A statistic U = u(Xy,...,X,) is sufficient for 0 iff there exists functions
Ky, Ky > 0 such that the joint p.d.f of X1,...,X, may be formulated as
flz,. . x,,0) = Ky(u(Xy, ..., X,),0)Ka(xy, ..., x,) where Ky is not a func-
tion of 6.

Proof. Consider only the continuous r.v’s.
=) If U is sufficient for 0, then

~ fzy, 2, 0)
flz,. .. 2, 0lu) = o 0)

= f(x1, ..., 20, 0) = fu(u(Xy,..., X0),0)f(z1,...,2,|u)
:Kl(u(Xl,...,Xn),H)KQ(xl,...,:Un)

is not a function of 0

<) Suppose that f(z1,...,2,,0) = Ki(u(Xy, ..., X,),0)Ka(xq,. .., 2,)
Let Y1 = u1(Xq,..., X)), Yo =ua(Xq,. .., X0), oo, Yo = up(Xy, ..., X,,) bea

1-1 function with inverse functions x1 = w1 (Y1, -+, Yn), T2 = W2 (Y1, -+ -, Yn)s - - Tp =
Wy (Y1, ..., yn) and Jacobian
Oz, Om
oY1 OYn
J=1 (not depend on 6.)
Ozn Oz
oY1 Oyn

The joint p.d.f of Y7i,...,Y,, is

le ..... Yn(yla s >yn70) = f(wl(y17 s ayn)’ s 7wn(y1’ s 7y7l)78)|‘]|
= Kl(ylae)KQ(wl<y17 s ,yn)7 s an(ylv s 7y7l>76)“]|
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The marginal p.d.f of U =Y} is

fU(yla‘g):Kl(yhe)/"'/K2(w1<y17~~->yn)>'"7wn(y17---

.

s yn)) TN dys - - dyn

not depend on .

Then the conditional p.d.f of Xy,..., X, given U = u is

T, 0
flan,. s an, Olu) = f(xlng(u’g) )

Kg([l)h PN ,l’n)

- [ S Ka(wi(ys, - yn), - wn(yn, - -

which is independent of 6.
This indicates that U is sufficient for 6.

O
Example :
(a) X1, ..., X, is a random sample from Poisson(\).Want sufficient statistic
for A.

Joint p.d.f of X7,..., X, is

n

N\ -\ )\Z:cz —n\ 1
flan oz d) = [[ o = S = AT e
x;!
=1 I] ! ;!
i=1 i=1
= Kl(z Xy, )\)KQ(.I'l, e ,l’n)
i=1
= Y X is sufficient for A.
i=1
We also have
- 1
flzy, .., A) = NTe™™ ——— = K\(T, \)Ky(1, ..., 2,)

n
i=1

3

=X =
1

% X, is sufficient for .
We also have

o\ 1 1
Flan, . g, A) = A e

n
=1

= 72 is sufficient for \.
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(b)Let X1, ..., X, be arandom sample from N (u,c?).Want sufficient statis-
tic for (u,o?).
Joint p.d.f of Xy,..., X, is

2 @imn?

_(ei=w)? 1 _
202 = — 202

1
e n n
2o (2m)2(02)2

f(xla"'axn7u702> = H
i=1

n n n

Z(Ii—,u)2 = Z(xi—f—i—f—,u)Z = Z(xi—E)Q—i—n(f—,u)Z = (n—1)s*+n(T—pu)?

i=1 i=1 i=1
IS _
(2= =3 (0= 7))
i=1
1 _ (n=1)s’4n@-pn)? _
f(.Tl,...,JJn,/l,,O'2) :We 202 '1:K1<I,82,,LL,0'2)K2(1‘1,...

= (X, s?) is sufficient for (u,o?).

What is useful with a sufficient statistic for point estimation 7
Review : XY r.v.’s with join p.d.f f(z,y).
Conditional p.d.f

~ flz,y) o) = Flule) ez
flylr) = () = f(z,y) = f(ylz) fx(x)
faly) = ’;ff(’yy)) = flavy) = faly) fr (9)

Conditional expectation of Y given X = z is

B(Y|r) = / "y la)dy

o0

The random conditional expectation E(Y|X) is function E(Y |x) with x re-
placed by X.
Conditional variance of Y given X = x is

Var(Yz) = E[(Y — E(Y|2))*|z] = E(Y?|2) — (B(Y|2))*
The conditional variance Var(Y|X) is Var(Y|z) replacing x by X.
Thm. Let Y and X be two r.v.’s.

(a) E[E(Y|z)] = E(Y)
(b) Var(Y') = E(Var(Y|x)) + Var(E(Y|z)

33

, Tn)



Proof. (a)

BlE(Y]) = [ T E(V]2) fx (2)de

=[] vttty
_/_Z /:yf(x,y)dxdy
[ tanindy

— [ utvtuiy

= E(Y)

(b)
Var(Y|z)
= E(Var(Y|x))

E(Y?|z) — (E(Y]x))?

E[E(Y?|z)] - E[(E(Y]x))’] = E(Y?) - E[(E(Y]x))’]
[

[

Also, Var(E(Y |z) = E[(E(Y|2))?] — E[(E(Y]z))]?
= E[(E(Y|2))?] — (E(Y))’
= E(Var(Y|z)) + Var(E(Y|z) = E(Y?) — (E(Y))? = Var(Y)

O

Now, we comeback to the estimation of parameter function 7(6). We have a
random sample X, ..., X, from f(x,¥@).

Lemma. Let7(Xq,..., X,) be an unbiased estimator of T7(0) and U = u(X;
s a statistic. Then

(a)Epl7 (X1, ..., X)|U] is unbiased for 7(6)

(b) Varg(E[T(X1, ..., X,)|U]) < Varg(7(Xy,...,X,))

Proof. (a)

Eo[E(+(X1, ..., X)|U)] = Eo(F(X1,...,X,)) = 7(0),V0 € ©.

Then Ey[7(X1,. .., X,,)|U] is unbiased for 7(0).
(b)
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Conclusions:

(a) For any estimator 7(Xj,...,X,) which is unbiased for 7(#), and any
statistic U, Eg[7(X7, ..., X,,)|U] is unbiased for 7(#) and with variance
smaller than or equal to 7(Xi,..., X,).

(b) However, Eg[7(X1,...,X,)|U] may not be a statistic. If it is not, it
cannot be an estimator of 7(#).

(c)If U is a sufficient statistic, f(x1,...,2,,0Ju) is independent of €, then

Eg[7(X1, ..., X,)|u] is independent of 6. So, Eg[7(X1, ..., X,)|U] is an
unbiased estimator.
If U is not a sufficient statistic, f(z1,...,2,,0lu) is not only a function of u
but also a function of , then Eg[ (Xl, ..., Xp)|u] is a function of u and 6.

And Ey[7(Xq,. .., n)|u] is not a statistic.

Thm. Rao-Blackwell

If 7(Xyq, ..., X,) is unbiased for 7(0) and U is a sufficient statistic, then
(a)Ep|7T(X1, ..., X,)|U] is a statistic.

(b)Eg|7 (X1, ..., X,)|U] is unbiased for 7(0).

(c)Varg(E[T(X1, ..., Xn)|U]) < Varg(7(X4, ..., X,)), V0 € ©.

If 7(0) is an unbiased estimator for 7(0) and Uy, U, ... are sufficient statis-
tics, then we can improve 7(0) with the following fact:

Varg(E[#(0)|U1]) < Varg?(6)
VargB(E(7(0)|U))|Uz) < VarE(7(6)|U7)
VargE[E(E(7(0)|U1)|U2)|Us] < VargE(E(7(6)[U1)|U2)

Will this process ends with Cramer-Rao lower bound 7
This can be solved with “complete statistic”.

Note: Let U be a statistic and h is a function.

(a) If A(U) = 0 then Eg(h(U)) = E4(0) = 0, V0 € O.
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(b) If Py(h(U) = 0) = 1,¥0 € ©.h(U) has a p.d.f

1 ,ifh=0

0 ,otherwise.

Then Eo(h(U)) = Z h fuwn(h) =0
all n

Jran(h) = {

Def. Xi,..., X, is random sample from f(x,0). A statisticU = u(Xq,...,X,)
is a complete statistic if for any function h(U) such that Eo(h(U)) = 0,V0 €
O, then Py(h(U) =0) =1, for 6 € ©.

Q : For any statistic U, how can we verify if it is complete or not complete ?

A

(1) To prove completeness, you need to show that for any function h(U)
with 0 = Ey(h(U)),V0 € O.the following 1 = Pp(h(U) = 0),V8 € ©
hold.

(2)To prove in-completeness, you need only to find one function A(U) that
satisfies Eg(h(U)) = 0,V0 € © and Py(h(U) = 0) < 1, for some 6 € O.

Examples:

(a)X1,..., X, P Bernoulli(p)
Find a complete statistic and in-complete statistic ?

sol: (a.1) We show that Y = >~ X is a complete statistic. Y ~ b(n,p).

i=1
Suppose that function h(Y') satisfies 0 = E,h(Y),V0 < p <1
Now,

OZJ%MY)ZﬁzMw(Z)ﬂﬂ—pW”

== o) (1) 2o <<

@O—EZMQCDHfWWNO<p<1

(Let@—%,0<p<1<:>0<9<oo)
@0:Zh(y)<n)0y,0<9<oo
Yy
y=0
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An order n+1 polynomial equation cannot have infinite solutions except
that coefficients are zero’s.

:h(y)(Z) =0,y=0,...,nfor 0 < < oo

= h(y) =0,y=0,...,nfor 0 < p< 1.
=1>P,(h(Y)=0)>P,(Y =0,....,n)=1

=Y = Z X, is complete

=1

(a.2) We show that Z = X; — X5 is not complete.

E,Z =E,(X; - X5) =E,X; —E,X, =p—p=0,Y0<p<1

P

p

(Z=0)=Py)(X,—Xs=0)= P(X; = X =0 or X; = X5 = 1)
= Py(X1 =Xy =0)+ Py(X;, = Xp = 1)
=(1—-pP+p’<lfor0<p<l.

= Z = X1 — X5 is not complete.

(b)Let (X3,...,X,) be a random sample from U(0, ).
We have to show that Y,, = max{Xy,..., X,,} is a sufficient statistic.
Here we use Factorization theorem to prove it again.

n

ol 1
f(xl,...,xn,Q):H51(0<xi<0):e—nHI(O<xi<9,i:1,...,n)
i=1 i=1

1
= O0<y,<0)-1

=Y, is sufficient for 6
Now, we prove it complete.

The p.d.f of Y,, is

_ gnfll_ﬁ n—1
Frly) =n(y)" " 5 =gy, 0<y <0
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Suppose that h(Y,,) satisfies 0 = Egh(Y,,),V0 < 0 < o0
o n
0 = Egh(Y,) = / hy)gmy"tdy = o= | h(y)y"dy
0 0

0
S 0= / h(y)y" dy,¥0 > 0
0

Taking differentiation both sides with 6.

= 0=h(0)0""V0 >0

< 0="~n(y),0<y<6,Vl>0

& Py(h(Y,)=0)=P0<Y,<0)=1,¥0>0
=Y, = max{Xi,..., X,,} is complete.

Def. If the p.d.f of r.v. X can be formulated as
f($,0) _ ea(m)b(0)+c(9)+d(a:)’l <z <q

where | and q do not depend on 0, then we say that f belongs to an exponential
famaly.

Thm. Let Xy,..., X, be a random sample from f(x,0) which belongs to an
exponential family as

f(flf,@) _ 6a(a:)b(9)+c(0)+d(x)7l <z <gq
Then Y a(X;) is a complete and sufficient statistic.
i=1

Note: We say that X =Y if P(X =Y) =1

Thm. Lehmann-Scheffe

Let Xy, ..., X, be a random sample from f(x,0). Suppose thatU = u(Xy,...,X,)
is a complete and sufficient statistic. If 7 = t(U) is unbiased for 7(0), then

7 is the unique function of U unbiased for 7(0)and is a UMVUE of 7(6).
(Unbiased function of complete and sufficient statistic is UMV UE.)

Proof. 1f 7* = t*(U) is also unbiased for 7(#), then
Eo(7 —77) = Eo(7) — Eg(77) = 7(0) — 7(0) = 0,V0 € ©.

= 1=Py(7 — 7 =0)=P(+ = 7),¥0 € ©.

= 7 = 7, unbiased function of U is unique.
If T is any unbiased estimator of 7(#) then Rao-Blackwell theorem gives:
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(a) E(T'|U) is unbiased estimator of 7(6) .

By uniqueness, E(T|U) = 7 with probability 1

(b) Vary(7) = Vary(E(T'|U)) < Vary(T),V0 € O.

This holds for every unbiased estimator T.

Then 7 is UMVUE of 7(6) O

Two ways in constructing UMVUE based on a complete and sufficient statis-
tic U:

(a) If T is unbiased for 7(0), then E(T|U) is the UMVUE of 7(0).
This is easy to define but difficult to transform it in a simple form.

(b) If there is a constant such that E(U) = ¢-6, then T' = 1U is the UMVUE
of 6.

Example :

(a)Let Xi,...,X, be a random sample from U(0, §).

Want UMVUE of 6.
sol: Y,, = max{Xy,...,X,} is a complete and sufficient statistic .

The p.d.f of Y}, is

_ gn—ll_

0 n—1

y n
E(Y,) = dy = 0.
(¥,) / ¥y = "
We then have E(2HY,) = 2 E(Y,,)

So, "HY is the UMVUE of 6.

(b) Let Xi,..., X, be a random sample from Bernoulli(p).
Want UMVUE of 6.
sol: The p.d.fis

—x xln(—2— n(l—
flz,p) =p"(1 —p)'™" = (1 - p)(—— In(£-)+In(1-p)

=e€

= Y X, is complete and sufficient.
i=1

B(Y Xi) = L E(X:) = np
=1 in = X is UMVUE of p.

_n
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(©) X1, ..., Xn % N(u,1).

Want UMVUE of pu.
sol: The p.d.f of X is

1 _(a:—u)2 1 _(x2—2;x+u2) e 2 2 ln\/ﬂ

f(l”all)zﬁe ;=

n
= > X, is complete and sufficient.
i=1
n

E(i:il X)) = L B(X,) = np

1=

= =13 X, =X is UMVUE of 4.
=1

Since X is unbiased, we see that E(X;| Y. X;) = X

i=1

(d)Xy,..., X, % Possion(\).
Want UMVUE of e~
sol: The p.d.f of X is

1
f(xa >\) - —‘)\ze_A - ezlnk—k—lnm!
X

= Y X, is complete and sufficient.
i=1
E(I(X; = 0)) = P(X; =0) = f(0,\) = e where I(X; = 0) is an
indicator function.
= I(X; = 0) is unbiased for e™*

= E(I(X; = 0)| > X;) is UMVUE of e~
=1
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