Chapter 3. Statistical Inference — Point Estimation

Problem in statistics:

A random variables X with p.d.f. of the form f(z,0) where function f is
known but parameter 6 is unknown. We want to gain knowledge about 6.
What we have for inference:

There is a random sample X1, ..., X, from f(z,0).

Point estimation: 6 = (X1, ..., X,,)

Estimation nterval estimation

Statistical inferences
such that 1 —a=P(T; <6 <Ty)

Hypothesis testing: Hy : 0 = 6y or Hy : 0 > 0.

Want to find a rule to decide if we accept or reject Hy.

Def. We call a statistic 6 = é(Xl,...,Xn) an estimator of parameter 0
if it is used to estimate 0. If X1 = x1,..., X, = x, are observed, then
0 =0(xq,...,x,) is called an estimate of 6.

Two problems are concerned in estimation of 6 :

(a) How can we evaluate an estimator f for its use in estimation of 6 ?
Need criterion for this estimation.

(b) Are there general rules in deriving estimators 7 We will introduce two
methods for deriving estimator of 6 .

Def. We call an estimator 0 unbiased for 0 if it satisfies

Ey(0(Xy, ..., X)) = 0,V0.

[ [ 0, ) (2, g, O)day - - dy,

Eo(A(Xy,.... X

A~

Def. If Ey(A(X1,..., X)) # 0 for some 0, we said that 0 is o biased esti-

mator.
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Find statistics T1 = t1<X1, e ,Xn), T2 = tQ(Xl, ce

W)= { [ 07 £5(07)d0* where 6 = 0(X,,..., X,) is a r.v. with pdf f;(6)
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Example : Xq,..., X, & N(u,0?), Suppose that our interest is p, X,

EM(Xl) {4, is unbiased for pu,
(X0 + X), E(21322) = 41 is unbiased for ,
X,E,(X) = u, is unbiased for p,

n—o0

» a, — a, if , for € > 0, there exists N > 0 such that |a,—a| < e if n > N.

{X,} is a sequence of r.v.’s. How can we define X,, — X as n — oo?

Def. We say that X,, converges to X, a r.v. or a constant, in probability
if for e >0,
P(X,—X|>¢€¢) — 0, asn — oc.

In this case, we denote X, Ly X,

Thm.
If BE(X,) =a or E(X,) — a and Var(X,) — 0, then X, s a.
Proof.

E[(X,, — a)’] = E[(X,, — E(X,) + E(X,,) — a)’]
= E[(X,, — E(X,))’] + E[(E(X,,) — a)?] + 2E[(X,, — E(X,)))(E(X,.) — a)]
= Var(Xn) +E((X,) —a)?

Chebyshev’s Inequality :
E(X, — X)?

P(|X,—X|>¢) < 5

1
or P(|1X, — p| > ko) < =

€

For e > 0,

0< P(|X,—a|l>¢) =P(X,—a)>é)
E(X, —a)? _ Var(X,) + (E(X,) — a)?

5 — 0 asn — 0.

€
P(| X, —a|] >¢€) — 0, asn — 00. = X, — a.
[
Thm. Weak Law of Large Numbers(WLLN)

If X1,..., X, is a random sample with mean j and finite variance o2, then
X5
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Proof.

2
E(Y):u,Var(Y):U——>Oasn—>oo.:>7i>p.

n
O
Def. We sat that 0 is a consistent estimator of 0 ifé L.
Example : Xi,...,X,, is a random sample with mean p and finite variance

02.Is X, a consistent estimator of u ?
E(X;)=u, X; is unbiased for p.
Let € > 0,

P(Xi—p>e)=1-P(Xi —p[<e)=1-Plp—e< Xy <p+te)

pte
:1—/ fx(x)dz > 0,-» 0 as n — 0.
n—e

= X is not a consistent estimator of p

2
E(X) = p, Var(X) = 7 L 0asn— oo
n

=X -5
= X is a consistent estimator of .

» Unbiasedness and consistency are two basic conditions for good estimator.

Moments :
Let X be a random variable having a p.d.f. f(z,8), the population ky,
moment is defined by

ST oakf(x,0) , discrete
Eo(X") =< all«

ffooo xkf(x, Q)dx , continuous

n

The sample k;, moment is defined by % > Xk
i=1

Note :
E(l Z X5 = % Z E(X;F) = % Z Eo(X*) = Eo(X¥)
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= Sample ky, moment is unbiased for population k;, moment.
Vaur(l iXk) = iVar(i XM = L iVar(X‘k) = l\/'au"(Xk) — 0 asn — o0
né&—"" n? L n? & ‘ n '

= Ly XF 2 Ey(XF).

=1

=1y X,;* is a consistent estimator of Eg(X*).
i=1

Let X1, ..., X, be arandom sample with mean p and variance 2. The sample
variance is defined by 5 = —L- 3~ (X;—X)? Want to show that S? is unbiased
i=1

for o2.
Var(X) = E[(X — u)?] = EIX? - 230X + ] = B(X?) —
= BE(X?) = Var(X) + ¢* = Var(X) + (E(X))?

2

E(X) = p, Var(X) = —

ZX2—2XZX +nX)

) — nE(X")]

E(5?) = E( ! Z(Xi—y

n—1
=1

ZX2

1 2 2 o’ 2 1 2 2
= ——fno* (S + ) = ——(n = 1)oP =0

= 52 = L 3"(X; — X)? is unbiased for o2,

1=

—_

92 _ X2—X X2—PEX2_2:2 2_ 2 _ 2
n—lg " T a1 nz (X ==y —p ?
Xi,..., X, are iid with mean p and variance o>
X%, ..., X% are iid r.v.’s with mean E(X?) = p? + o2
By WLLN , L 3~ x2 55 B(X2) = 12 4 o2
i=1
= 52 L2 o2
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Def. Let Xq,...,X,, be a random sample from a distribution with p.d.f.

f(z,0)

(a) If 0 is univariate, the method of moment estimator 0 solve 0 for X =

Ep(X)

(b) If 6 = (61,0,) is bivariate, the method of moment estimator (0y,6,)

solves (01, 60) for

— 1 <
X = By ,(X), > X = By g,(X?)
i=1

(c)If0 = (6.,...,6;) is k-variate, the method of moment estimator (6, . ..

solves 0, ... ,0, for

1 ; N
_ZXi]:Ebh ..... Gk(X])aj:L"'7k
n <

Example :

(a) X1,..., X, “ Bernoulli(p)
Let X =E,(X)=p
= The method of moment estimator of p is p = X
By WLLN, p = X N E,(X) = p = p is consistent for p.
E(p) = E(X) = E(X) = p = p is unbiased for p.

(b) Let Xy,..., X, be a random sample from Poisson()
Let X = Ey(X) = A o
= The method of moment estimator of A is A = X
E(\) = E(X) = A = X is unbiased for A.
Ai=Xx5 E(X) = A = ) is consistent for \.

(c) Let X1,..., X, be a random sample with mean p and variance o>

0 :(_,u,az)
Let X = B, ,2(X) =

S X =B, (X?) = 0%+
=1

= Method of moment estimator are ji = X |
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§2=1 ZXZ X' = Ly (X, — X)?
i=1
X is unblased and con_sistent estimator for .
B(6%) = E(: T(X - X)?) = 22 DX - X)) = 25to £ 02
=062 is not unblased for o?
A2 1ZX2 2 E(X2)—/L2:O'2

= 62 is con51stent for o2.

Maximum Likelihood Estimator :
Let Xi,..., X, be a random sample with p.d.f. f(z,0).
The joint p.d.f. of Xy,..., X, is

n

f($1a"'7$n79) :Hf($za9)axz€RaZ:17an

i=1
Let © be the space of possible values of . We call © the parameter space.

Def. The likelihood function of a random sample is defined as its joint p.d.f.

as
L(0)=L0,z,...,x,) = f(x1,...,2,,0),0 € O.
which is considered as a function of 6.

For (xy,...,x,) fized, the value L(0,x1,...,x,) is called the likelihood at 6.

Given observation 1, ..., x,, the likelihood L(0,z1, ..., x,) is considered as
the probability that X; = zq,..., X,, = x,, occurs when 6 is true.

Def. Let 0 = H(xl, ., Ty) be any value of O that maximizes L(0, x4, ..., x,).
Then we call 6 = H(xl, ..., Ty) the mazimum likelihood estimator (m.l.e)
of 0. When X1 = x1,...,X,, = x, is observed, we call 0 = é(ml, .., Ty) the
mazimum likelihood estimate of 6.

Note :

(a) Why m.l.e 7
When L(01,z1,...,2,) > L(02, 21, ..., 2,),

we are more confident to believe 8 = #; than to believe 6 = 6,
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(b) How to derive m.l.e 7
ag‘x: >0=Inzis Sinz
=If L(@l) > L(0y), then In L(61) > In L(6s)

If 6 is the m.lLe., then L0, xy,...,x,) = rglzg;L(@,xl,...,xn) and
E

In L(é,xl, ey X)) = rgleagxlnL(Q, S

Two cases to solve m.l.e. :

(b.1) alnL( ) — ¢

(b.2) L(Q) is monotone. Solve IglE%XL(H,xl,...,mn) from monotone
property.

Order statistics:

Let (Xy,...,X,) be a random sample with d.f. F and p.d.f. f.

Let (Y3,...,Y,) be a permutation (Xi,...,X,) such that Y} <Y, <-.-Y,.
Then we call (Y3,...,Y,) the order statistic of (Xi,...,X,) where Y] is
the first (smallest) order statistic, Y3 is the second order statistic,..., Y, is
the largest order statistic.

If (Xi,...,X,) are independent, then
P(Xi €A, Xy€4,,...,X, € A) / fxl,...,xn)dx1-~dacn

_/ fn(xn)dxn A fi(x1)dx,
= P(X,€A,) --P(X, €A

Thm. Let (Xy,...,X,) be a random sample from a “continuous distribution”

with p.d.f. f(z) and d.f F(x). Then the p.d.f. of Y, = max{Xy,..., X} is
9n(y) = n(F(y))" " f(y)
and the p.d.f. of Y1 = min{Xy,..., X} is
gi(y) =n(l = F()" " fy)
Proof. This is a R™ — R transformation. Distribution function of Y, is

Gn(y) = P(Y, <y)=Pmax{X;,...,. X, } <y)=P(X; <vy,.... X, <)
=P(X1 <y)P(Xy <y)--- P(X, <y)=(F(y)"
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= p.d.f. of Y, is gu(y) = Dy(F(y))" = n(F(y)" " f(y)
Distribution function of Y is

Gi(y) = P(Y1 <y) = Pmin{Xy,..., X,,} <y)=1— P(min{X;,..., X,,} > v)
=1-PX;>y,Xo>y,...., X, >y)=1—P(X; >y)P(Xa>y) - P(X,, >v)
=1-(1-F(y)"

= p.df. of Y1 is gi1(y) = Dy(1 = (1 = F(y))") =n(l - F(y))" " f(y)

Example : Let (Xi,...,X,) be a random sample from U(0, 9).
Find m.l.e. of 8. Is it unbiased and consistent ?

sol: The p.d.f. of X is
f(z,0) = {

Consider the indicator function

1 ifa<z<b
Tap () :{ -

o<z <6

elsewhere.

S o=

0 elsewhere.

Then f(z,0) = }ljg)(x).
The likelihood function is

H [EZ, H%I[OG :L‘z 0" HI[OG] :Ez
i=1 =1

Let Y,, = max{Xy,..., X, }

Then [] Ijpg(z;) =1 0<2; <0, foralli=1,.... n< 0y, <0
i=1

We then have

L()

. Loty
L(0) = - Toa() = - lpyog(8) = 77 1020
(0) on [09](31) on [yv}() {0 if 0 <y,

L(0) is maximized when 6 = y,. Then m.le. of 0is 0§ =Y,
The d.f. of x is

20



The p.d.f. of Y is

n—1

Yyl Yy
gnly) =n(H)"" 5 =n"g y
E(Y,) = foe yny;:dy = #19 # 60 = m.le. 0 = Y,, is not unbiased.

However, E(Y,,) = 50 — 6 asn — oo, mle. 6 is asymptotically unbiased.

0 n—1
EY?) = [ y*nl—dy= "¢
00 = [ n iy =

n 0> —( n 207 — 6?—0> = 0 as n — oo.

Y.) = E(Y?)—(EY,)? =
Var(V) = (V)= (BY,)* = ——0°~(-——

=Y, L0 =mle 0= Y,, is consistent for 6 .
Is there unbiased estimator for 6 7

1 1 1
A W e s 1 ¥ YO L Ly

E
( n n n+1

= 1Y), is unbiased for 6.
Example :

(a) Y ~ b(n,p)
The likelihood function is

L(p) = fy(y.p) = (Z)pyu )

In L(p) =1In <Z) +ylnp+(n—y)n(l-p)

Oln L(p) vy n—vy Y y
— 7 _ :()4:)—:—(:)y1p p\in—y) <=y =np
5 o — il (1=p) = p(n—y)
= m.l.e p—%

(b) X1,..., X, are a random sample from N (u,c?). Want m.l.e.’s of y and

0.2

The likelihood function is

2 n )2
202 = (271-)7%(0-2)*%672:#12(55 g

m\»—t

Ilwﬁ



2y _ 2
In L(u,a)—(——)ln(27r)—§lna _T‘Qizl(%_u)
oln L(p, 0® IR —
n (M?U):_ (xl—u)2:O:>ﬂ:X
O o? i=1
dln L(ji, 0?) n 1< . U .
002 :—20_24—@' (.ZUZ—{L‘) :0#0’2252({[‘1—37)

E(f1) = E(X) = p (unbiased),Var(j1) = Var(X) = % —0asn — o0
= m.l.e. fi is consistent for p.

E(6?) = E(2 Y (X; — X)?) = 2=10? # o (biased).

E(6%) = =20% — 0% as n — 00 = 67 is asymptotically unbiased.

1 & 1 (zi = 2)°
SN —\2y _ 2i=1
Var(6%) = Var(; ZZ:;(JEZ —T)°) = ﬁ\/ar(a p )
N2
ot Z;(xz 7) 2(n—1) 4,
= — Var( 5 ) = 5—0 —0asn— o0
n o n
= m.le. o2 is consistent for o2.
Suppose that we have m.le. § = é(xl, ..., Zy,) for parameter 6 and our in-

terest is a new parameter 7(6), a function of 6.
What is the m.l.e. of 7(0) 7
The space of 7(0) is T ={r:30 € © s.t T =7(0)}

Thm. If 0 = 0(xy, . .. ,Tp) s the m.l.e. of 0 and 7(0) is a 1-1 function of 0,
then m.l.e. of T(0) is 7(0)

Proof. The likelihood function for 6 is L(#,x1,...,x,). Then the likelihood
function for 7(#) can be derived as follows :

L0, x1,...,2,) = L(r7(7(0)),21,...,2,)
= M(7(0),x1,...,2,)
M(r,x1,...,2,),TE€T



(T(Q)7x17 CRCI 7In)7ve - @
(1,21,...,2,), TET

~

= 7(0) is m.Le. of 7(0).
This is the invariance property of m.l.e. O

Example :
(DY ~b(n,p), mleofpisp=1X
7(p) m.l.e of 7(p)

PP opr= ()

NG \//\;5 - \/% p(1 —p) is not a 1-1 function of p.
ep éb — @%

e_p e/_\p g 6_%

(2) X1,.. ., X % N(p,0%), mLes of (u,02) is (X, (X, — X)2).
m.le.’s of (u,0) is (X, \/% SN(X; —X)?) (o€ (0,00) .. 0% — 0 s

1-1)
You can also solve

Oln L(p, 02, 21,...,2,)

=0
o
Oln L 2 Cey Ty
1 (Maaaxla ’a:):()fOI'[L,O'
oo
(4%, o) is not a 1-1 function of (i, o?).
(€ (—00,00) . — p? isn’t 1-1)
Best estimator :
Def. An unbiased estimator 6 = é(Xl, .., X)) is called a uniformly min-

imum variance unbiased estimator (UMVUE) or best estimator if for any
unbiased estimator 0* ,we have

Vary 0 < Vary é*, for 8 € ©

(0 is uniformly better than 0* in variance. )
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There are several ways in deriving UMVUE of 6.
Cramer-Rao lower bound for variance of unbiased estimator :
Regularity conditions :

(a) Parameter space © is an open interval. (a,o0),(a,b),(b,00), a,b are
constants not depending on 6.

(b) Set {z : f(x,0) = 0} is independent of 6.

(c) [ 2R gy = O [ f(x,0)dzr =0

(d) If T'=t(z4,...,x,) is an unbiased estimator, then

/ afg’;e)dx ;;/tf(x 0)dz

Thm. Cramer-Rao (C-R)
Suppose that the regularity conditions hold.
If 7(0) = t(X4, ..., X,) is unbiased for 7(0), then

: ((0)? Q)
Varg 7(0) > In /(2,0)\2] 2In f(z oo
U TNy e o) R

Proof. Consider only the continuous distribution.

e e (O Rttt

a o

7(0) = Eg7(0) = Eg(t(x1, ..., 7)) :/---/t(zl,...,xn)Hf(xi,H)dei

Taking derivatives both sides.

:%/.../t(xl,..., lf[ 75,0 del 9/.../§f(xi,9)
://m aﬁﬁ s dei—/-~-/7<e>%ﬁf<xi,e>

/ / Tiy. ., T ﬁ xl,Q))ﬁdxi
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Then

T’(Q)z/---/(t(xl ..... 1) —7(0)(> ah”;—(;j’@))ﬂf(xi,e)nd%

= B[(t(z1,. .., ) ﬂ@))Zam J(;g”]’ )
(7(0)7 < Bl(t(ar, .. ) — (@) B IOy

E[(Z alnf—(”“"f’e)y] _ ZE(M ZE 8lnf .x], )alng(;i’e))




Then, we have

) (7'(9))?
Varg 7(0) > nE, K%{gﬂcm)?]

You may further check that

9?In f(z,0), Oln f(x,0)

Bl ) =Bl )

]

Thm. If there is an unbiased estimator 7(0) with variance achieving the

Cramer-Rao lower bound i ([Z;(Qel)ff w0 ,then 7(0) is a UMVUE of 7(0).
_ ELIN 2]

Note: X
If 7(#) = 0, then any unbiased estimator 6 satisfies

Varg (é) > (T/(‘g))2

21n f(x
_nEe(a lagé ,9))

Example:

(@)X, .., X, % Poisson(\), E(X) = A, Var(X) = .
MLE \ = XE()—/\Vr) g
1,.

pdf f(flf, /\) = Ta - 07 )
=1Inf(z,\) =zlnA— X —Inz!
0
—1 N=2-1
) =4

8/\

3/\2 In f(z,\) = IV

0? x E(X
By In f(e, X)) = B(—ig) =~ 200 = 2

Cramer-Rao lower bound is

— MLE \ = X is the UMVUE of \.
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(b)Xy,..., X, w Bernoulli(p), E(X) = p, Var(X) = p(1 — p).
Want UMVUE of p.
p.df fz,p) =p*(1-p)'~

= Inf(z,p) =zlnp+ (1 —z)In(1 — p)

0 z 1—=x
—Inf(z,p) = — —
o f(z,p) > T 1 o,
0? x 1—x
iy | - _
apQ nf(x’p) p2 + (1 _p)z
0? X 1—-X 1 1 1
B(ZIn f(X,p) = B(—2 + -+ — -
(0192 (X.9) (p2 (1—p)2) p l1—-p  p(l-p)
C-R lower bound for p is
1 p(1—p)

1
n(_p(lfp)) n

m.le. of pisp= X
E(p) = E(X) = p, Var(p) = Var(Y) = I@ = C-R lower bound.
= MLE p is the UMVUE of p.
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