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Why Introducing Random or Stochastic Processes 9-1

Oxford Dictionary

Random: adj. Made, done, or happening without method or conscious deci-

sion. In Statistics. Governed by or involving equal chances for each item.

Stochastic: adj. Having a random probability distribution or pattern that

may be analysed statistically but may not be predicted precisely.

Process: n. A series of actions or steps taken in order to achieve a particular

end.

• Why introducing random process? For convenience of analyzing a system.

• Two models may be considered in a, e.g., communication system.

– Deterministic model

∗ No uncertainty about its time-dependent (exact) behavior.

– Random or Stochastic model

∗ Uncertain about its time-dependent (exact) behavior, but certain

on its statistical behavior.

• Example of stochastic models

– Channel noise and interference, or source of information such as voice



Random Variables 9-2

Definition (Random variable) A random variable on a probability space

(S,F , P ) (in which F is a σ-field and P is a probability measure for events in F)

is a real-valued function x(ζ) (i.e., x : S → �) with {ζ ∈ S : x(ζ) ≤ x} ∈ F for

every x ∈ �.

(page 4) ‘The name “random variable” is actually a misnomer, since it is not ran-

dom and not a variable . . . the random variable simply maps each point (outcome)

in the sample space to a number on the real line.
Richard M. Feldman and Ciriaco Valdez-Flores. Applied Probability and Stochastic Processes. Technology & Engineering. Springer
Science & Business Media, 2 edition, 2010.

• An element of S is referred to as a sample outcome.

• An element of F is referred to as an event.

• An event is a subset of S. In other words, F is a non-empty collection of

subsets (events) of S.

• Probability measure P is defined for the events in F . In other words, all events

containing in F should be probabilistically measurable.



Random Variables 9-3

Example S = {�,�,♦} and F =

{
∅, {�,�}, {♦}, S

}
.

Then, a legitimate probability measure P should be defined for all events below:

P (∅) = 0, P ({�,�}) = 0.7, P ({♦}) = 0.3, P (S) = 1.

No specification is given or should be given for P ({�}) and P ({�}).



Random Variables 9-4

Definition (Random variable) A random variable on a probability space

(S,F , P ) (in which F is a σ-field and P is a probability measure for events in F)

is a real-valued function x(ζ) (i.e., x : S → �) with {ζ ∈ S : x(ζ) ≤ x} ∈ F for

every x ∈ �.

• The event space F must be a σ-field. Why? See the next two slides.

• {ζ ∈ S : x(ζ) ≤ x} must be an event for every x ∈ �.

– Otherwise, the cumulative distribution function (cdf) of x is not well-

defined:

Pr[x ≤ x] = P
( {ζ ∈ S : x(ζ) ≤ x} ).



The Concept of Field/Algebra 9-5

Definition (Field/algebra) A set F is said to be a field or algebra of a sample

space S if it is a nonempty collection of subsets of S with the following properties:

1. ∅ ∈ F and S ∈ F ;

• Interpretation: F should be a mechanism to determine whether the out-

come lies in an empty set (impossible) or the sample space (certain).

2. (closure under complement action) A ∈ F ⇒ Ac ∈ F ;

• Interpretation: “having a mechanism to determine whether the outcome

lies in A” is equivalent to “having a mechanism to determine whether the

outcome lies in Ac.”

3. (closure under finite union) A ∈ F and B ∈ F ⇒ A ∪ B ∈ F .

• Interpretation: If one has a mechanism to determine whether the outcome

lies in A, and a mechanism to determine whether the outcome lies in B,

then he can surely determine whether the outcome lies in the union of A

and B.



σ-field/algebra 9-6

• To work on a field may result some problems when one is dealing with “limit”.

E.g., S = � (the real line) and F is a collection of all open, semi-open and

closed intervals whose two endpoints are rational numbers, including � itself.

Let

Ak = [0, [π]k),

where [π]k �
⌊
π × 10k

⌋
/10k. Does the infinite union ∪∞

i=1Ai belong to F?

The answer is apparently negative!

• We therefore need an extension definition of field, which is named σ-field.

Definition (σ-field/σ-algebra) A set F is said to be a σ-field or σ-algebra of

a sample space S if it is a nonempty collection of subsets of S with the following

properties:

1. ∅ ∈ F and S ∈ F ;

2. (closure under complement action) A ∈ F ⇒ Ac ∈ F ;

3. (closure under countable union) Ai ∈ F for i = 1, 2, 3, . . . ⇒
∞⋃
i=1

Ai ∈ F .



Probability Measure 9-7

Definition (Probability measure) A set function P on a measurable space

(S,F) is a probability measure, if it satisfies:

1. 0 ≤ P (A) ≤ 1 for A ∈ F ;

2. P (∅) = 0 and P (S) = 1.

3. (countable additivity) if A1, A2, . . . is a disjoint sequence of sets in F ,

then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P (Ak).



Sufficiency of CDF 9-8

• It can be proved that we can construct a well-defined probability space (S,F , P )

for any random variable x if its cdf F (·) is given.

It can be proved that any function G(x) satisfying:

1. limx→−∞ G(x) = 0 and limx→∞ G(x) = 1,

2. Right-continuous,

3. Non-decreasing;

is a legitimate cdf for some random variable. It suffices to check the above three

properties for F (·) to well-define a random variable.
† See Theorem 14.1 in [P. Billingsley, Probability and Measure, 3rd Edition, Wiley, 1995]

– Hence, defining a real-valued random variable only by providing its cdf is

good enough from engineering standpoint.

– In other words, it is not necessary to mention the probability space (S,F , P )

when defining a random variable.

• Then, why bother to introduce the probability space (S,F , P )?



Merit of defining random variables based on (S,F , P ) 9-9

Merit 1: Good for making abstraction of something. For example, (S,F , P ) is

what truly and internally occurs but is possibly non-observable.

• In order to infer what really occurs for this non-observable random outcome

ζ , an experiment that results in an observable value x that depends on this

non-observable outcome must be performed.

• So, x that takes from real values is a function of ζ ∈ S.

• Since ζ is random with respect to probability measure P , the probability of

the occurrence of observation x is defined as P ({ζ ∈ S : x(ζ) = x}).
• Some books therefore state that x : (S,F , P ) → (x(S),B, Q) yields an ob-

servation probability space (x(S),B, Q), where

x(A) = {x(ζ) : ζ ∈ A}, B = {x(A) : A ⊂ F} and Q(x(A)) = P (A).

† See [Robert M. Gray and Lee D. Davisson, Random Processes: A Mathematical Approach for Engineers, Prentice Hall,

1986].



Merit of defining random variables based on (S,F , P ) 9-10

Example An atom may spin counterclockwisely or clockwisely, which is not di-

rectly observable. The original true probability space (S,F , P ) for this atom is

S = {counterclockwise, clockwise},
F =

{
∅, {counterclockwise}, {clockwise}, {counterclockwise, clockwise}

}
,

and 


P (∅) = 0,

P ({counterclockwise}) = 0.4,

P ({clockwise}) = 0.6,

P ({counterclockwise, clockwise}) = 1.

Now an experiment that uses some advanced facilities is performed to examine

the spin direction of this atom. (Suppose there is no observation noise in this

experiment; so a 1-1 correspondence mapping from S to � is obtained.) This results

in an observable two-value random variable x, namely,

x(counterclockwise) = 1 and x(clockwise) = −1.



Merit of defining random variables based on (S,F , P ) 9-11

Merit 2: (S,F , P ) may (be too abstract and) be short of the required mathematical

structure for manipulation, such as ordering (which is the operation required for

cdf).

Example (of a random variable x, whose inverse function exists)

S = {�,�,�,�,♦,�}
F = A σ-field collection of subsets of S

P = Some assigned probability measure on F
Define a random variable x on (S,F , P ) as:

x(�) = 1

x(�) = 2

x(�) = 3

x(�) = 4

x(♦) = 5

x(�) = 6



Merit of defining random variables based on (S,F , P ) 9-12

Examine what subsets should be included in F .

For x < 1, {ζ ∈ S : x(ζ) ≤ x} = ∅
For 1 ≤ x < 2, {ζ ∈ S : x(ζ) ≤ x} = {�}
For 2 ≤ x < 3, {ζ ∈ S : x(ζ) ≤ x} = {�,�}
For 3 ≤ x < 4, {ζ ∈ S : x(ζ) ≤ x} = {�,�,�}
For 4 ≤ x < 5, {ζ ∈ S : x(ζ) ≤ x} = {�,�,�,�}
For 5 ≤ x < 6, {ζ ∈ S : x(ζ) ≤ x} = {�,�,�,�,♦}
For x ≥ 6, {ζ ∈ S : x(ζ) ≤ x} = {�,�,�,�,♦,�} = S

By definition, F must be a σ-field containing the above seven events or sets.

Note that we can sort 1, 2, 3, 4, 5, 6 (to yield the cdf), but we cannot sort

�,�,�,�,♦,�, not to mention the manipulation of (� + �) or (�− �).

The smallest σ-field containing all subsets of the form {ζ ∈ S : x(ζ) ≤ x} is

referred to as the σ-field generated by a random variable x, and is usually denoted

by σ(x).

In this example, σ(x) is the power set of S (since the inverse function of x(ζ)

exists).
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Example (of a random variable y without inverse)

Define a random variable y on (S,F , P ) as:

y(�) = y(�) = y(�) = 1

y(�) = y(♦) = y(�) = 2

Examine what subsets must be included in F .

For y < 1, {ζ ∈ S : y(ζ) ≤ y} = ∅
For 1 ≤ y < 2, {ζ ∈ S : y(ζ) ≤ y} = {�,�,�}
For y ≥ 2, {ζ ∈ S : y(ζ) ≤ y} = {�,�,�,�,♦,�} = S

Hence, F must be a σ-field containing the above three events or sets.

Thus, the smallest σ-field generated by y is

σ(y) = {∅, {�,�,�}, {�,♦,�}, S}.

The introduction of the third merit of defining random variables based on (S,F , P )

will be deferred until the introduction of the definition of random processes.



Random Vectors and Random Processes 9-14

Definition (Random vectors) A random vector on a probability space

(S,F , P ) is a real-valued function x : S → �k with {ζ ∈ S : x(ζ) ≤ xk} ∈ F ,

where for two real vectors xk and yk, [xk ≤ yk] � [x1 ≤ y1, x2 ≤ y2, · · · , xk ≤ yk].

It is possible that x2 �≤ y2 and x2 �≥ y2, e.g., x2 = (0, 1) and y2 = (1, 0). However,

Pr[x(1) < 0 or x(2) < 1] is well-defined because

Pr[x(1) < 0 or x(2) < 1] = Pr[x(1) < 0]+Pr[x(2) < 1]−Pr[x(1) < 0,x(2) < 1].

• A random vector is a finite collection of random variables. In fact, each dimen-

sion of x(ζ) = (x(1, ζ),x(2, ζ), . . . ,x(k, ζ)) is itself a random variable.

• Hence, an equivalent definition of random vectors is:

Definition (Random vectors) A random vector is a finite collection of

random variables, each of which is defined on the same probability space.

• Another equivalent definition that can be seen in literatures is:

Definition (Random vectors) A random vector is an indexed family of

random variables {x(i), i ∈ I}, in which each x(i) is defined on the same

probability space, and the index set I is finite.
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• Why requiring each x(i) to be defined on the same or common

probability space?

Because, through “defined on the same probability space,” the joint distri-

bution of two (or three, four,. . ., etc) random variables can be well-defined.

Pr[x(i) ≤ xi and x(j) ≤ xj]

= P ({ζ ∈ S : x(i, ζ) ≤ xi and x(j, ζ) ≤ xj})
= P ({ζ ∈ S : x(i, ζ) ≤ xi} ∩ {ζ ∈ S : x(j, ζ) ≤ xj}) .

Then, it can be proved that for any xi and xj,

Ai � {ζ ∈ S : x(i, ζ) ≤ xi} ∈ F because x(i) is defined over (S,F , P )

Aj � {ζ ∈ S : x(j, ζ) ≤ xj} ∈ F because x(j) is defined over (S,F , P )

Ac
i ∈ F F closure under complement action

Ac
j ∈ F F closure under complement action

Ac
i ∪Ac

j ∈ F F closure under countable union

(Ac
i ∪ Ac

j)
c = Ai ∩Aj ∈ F F closure under complement action

Hence, P (Ai ∩Aj) is probabilistically measurable.

It can be proved from closures under complement action and countable union that

F is closure under countable intersection.
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Example

S = {�,�,�,�,♦,�}
F = A σ-field collection of subsets of S

P = Some assigned probability measure on F
Define a random vector {x(i), i ∈ {1, 2}} as:

x(1,�) = 1; x(1,�) = 2; x(2,�) = 1; x(2,�) = 2

x(1,�) = 2; x(1,♦) = 1; x(2,�) = 1; x(2,♦) = 2

x(1,�) = 1; x(1,�) = 2; x(2,�) = 1; x(2,�) = 2

Examine what subsets should be included in F .

For x1 < 1, {ζ ∈ S : x(1, ζ) ≤ x1} = ∅
For 1 ≤ x1 < 2, {ζ ∈ S : x(1, ζ) ≤ x1} = {�,�,♦}
For x1 ≥ 2, {ζ ∈ S : x(1, ζ) ≤ x1} = {�,�,�,�,♦,�} = S

For x2 < 1, {ζ ∈ S : x(2, ζ) ≤ x2} = ∅
For 1 ≤ x2 < 2, {ζ ∈ S : x(2, ζ) ≤ x2} = {�,�,�}
For x2 ≥ 2, {ζ ∈ S : x(2, ζ) ≤ x2} = {�,�,�,�,♦,�} = S

Hence, F must be a σ-field containing the above six sets, and both cdfs of x(1)

and x(2) are well-defined.
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Since x(1) and x(2) are defined on the same probability space (S,F , P ) (in

particular, F must contain the above six sets),

Pr[x(1) ≤ x1 and x(2) ≤ x2]

is well-defined for any x1 and x2. �
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We can further extend the random vector to a possibly infinite collection of random

variables, all of which are defined on the same probability space.

Definition (Random process) A random process is an indexed family of ran-

dom variables {x(t), t ∈ I}, in which each x(t) is defined on the same probability

space.

• Under such a definition, all finite dimensional joint distributions are well-defined

because

[x(t1) ≤ x1 and x(t2) ≤ x2 and · · · and x(tk) ≤ xk]

= {ζ ∈ S : x(t1, ζ) ≤ x1 and x(t2, ζ) ≤ x2 and · · · and x(tk, ζ) ≤ xk}

=

k⋂
i=1

{ζ ∈ S : x(ti, ζ) ≤ xi}

is surely an event by properties of σ-field, and hence, is probabilistically mea-

surable.
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• The 3rd merit of defining random processes based on (S,F , P ):

– All finite (or countably infinite) dimensional joint distributions are well-

defined without the tedious process of listing all of them.

• The converse however is not true, i.e., it is not necessarily valid that

the statistical properties of a real random process are completely determined

by providing all finite-dimensional joint distributions for samples.

– See the counterexample in the next slide.
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Example Define random processes {x(t), t ∈ [0, 1)} and {y(t), t ∈ [0, 1)} as

x(t, ζ) =

{
1, ζ �= t;

0, ζ = t
and y(t, ζ) = 1,

where ζ ∈ S = [0, 1). Let P (A) =
∫
A dα for any A ∈ F . Then,

Pr

[
min
t∈[0,1)

x(t) < 1

]
= P

({
ζ ∈ S : min

t∈[0,1)
x(t, ζ)︸ ︷︷ ︸

=x(ζ,ζ)=0

< 1

})
= P (S) = 1,

but

Pr

[
min
t∈[0,1)

y(t) < 1

]
= P

({
ζ ∈ S : min

t∈[0,1)
y(t, ζ) < 1

})
= P (∅) = 0.

Thus, x(t) and y(t) have different statistical properties.
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However, x(t) and y(t) have exactly the same multi-dimensional joint distri-

bution for any samples at t1, t2, . . . , tk and any k:

Pr[x(t1) ≤ x1 and x(t2) ≤ x2 and · · · and x(tk) ≤ xk]

= P

(
k⋂

i=1

{ζ ∈ S : x(ti, ζ) ≤ xi}
)

=

{
1, min1≤i≤k xi ≥ 1;

0, otherwise

= Pr[y(t1) ≤ x1 and y(t2) ≤ x2 and · · · and y(tk) ≤ xk],

where

{ζ ∈ S : x(ti, ζ) ≤ xi} =

{
S, xi ≥ 1;

{ti}, xi < 1.

Notably,

min
t∈[0,1)

x(t) and min
t∈[0,1)

y(t)

are random variables defined via “uncountably infinite dimensional distributions of

x(t) and y(t).” �
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Definition (Complex random process) A complex random process is speci-

fied in terms of two real random processes defined over the same probability space.

• Note that mathematical manipulation of the complex domain, such as sorting,

is undefined!

• Hence, we cannot define by letting C be the set of all complex number that:

Definition (Complex random variable) A complex random variable on

a probability space (S,F , P ) is a complex-valued function x(ζ) (i.e., x : S →
C) with {ζ ∈ S : x(ζ) ≤ x︸ ︷︷ ︸

undefined

} ∈ F for every x ∈ C.

• This is the reason why a complex random variable, vector or process should be

treated as two real random variables, vectors or processes that are defined over

the same probability space.
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Question: Define a random variable y on (S,F , P ) as:

y(�) = 1 y(�) = 2

y(�) = 1 y(♦) = 2

y(�) = 1 y(�) = 2

where

S = {�,�,�,�,♦,�}
F = {∅, {�,�,�}, {�,♦,�}, S}
P = {0, 1/2, 1/2, 1}

Please calculate E[y].

Answer:

E[y] =

∫
S

y(ζ) dP (ζ)

= y(�)P (�) + y(�)P (�) + y(�)P (�) + y(�)P (�) + y(♦)P (♦) + y(�)P (�)
(Yet, we do not know the probability of, say, P (�); how can we calculate E[y]!)

= 1× P ({�,�,�}) + 2× P ({�,♦,�})
= 1× (1/2) + 2 × (1/2) = 3/2.

�



Final note on the definition of real random process 9-24

• x(t, ζ) is a deterministic function of t for fixed ζ , and is a real number for

fixed t and ζ .

• while x(t) is random at any instant t.
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Classification according to I in {x(t), t ∈ I}
• I = �: Continuous-time random processes.

• I = set of integers: Discrete-time random processes.

Classification according to number of states for x(t)

• if x(t, S) � {x ∈ � : x(t, ζ) = x for some ζ ∈ S} is a set with countable

number of elements, x(t) is a discrete-state random process.

• if x(t, S) is not countable, x(t) is a continuous-state random process.
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Definition (First-order distribution) The first-order distribution function

of a random process x(t) is defined as F (x; t) � Pr[x(t) ≤ x].

Theorem 14.1 (in Patrick Billingsley, Probability and Measure, 3rd Edition,

Wiley, 1995) If a function F (·) is non-decreasing, right-continuous and satisfies

lim
x↓−∞

F (x) = 0 and lim
x↑∞

F (x) = 1, then there exists a random variable and a pro-

bability space such that the cdf of the random variable defined over the probability

space is equal to F (·).
Theorem 14.1 releases us with the burden of referring to a probability space in

defining a random variable. We can indeed define a random variable x directly by

its distribution, i.e., Pr[x ≤ x]. Nevertheless, it is better to keep in mind (and

learn) that a formal mathematical notion of random variable is defined over some

probability space.

Notably, Theorem 14.1 only proves the “existence” but not the “uniqueness”.
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Remark.

Although random variables and random vectors can be well-defined by ex-

plicitly listing all the joint distributions without mentioning the inherited probabi-

lity space (cf. Theorem 14.1 in the previous slide), random processes cannot be

well-defined by explicitly providing all the joint distributions of finite samples

from rigorous mathematical standpoint. The key reason is that some sta-

tistical property (e.g., mint∈[0,1)x(t)) cannot be uniquely determined simply from

the knowledge of joint distributions of finite samples.

Yet, from the engineering standpoint, as long as those statistical prop-

erties that an engineer is interested in can all be defined (e.g., mean function and

autocorrelatino function), a random process is “well-defined”! An example can be

found in Slide 9-47 where the Poisson process is defined without introducing its

inherited probability space.
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Definition (First-order density) The first-order density function of a random

process x(t) is defined as

f(x; t) � ∂F (x; t)

∂x
,

provided that F (x, t) is differentiable with respect to x, and x(t) has density.

• It is possible that F (x, t) is not differentiable with respect to x, or x(t) has no

density.

Definition (Probability density function) A random variable x and its

distribution (cdf) have density f , if f is a non-negative function that satisfies

Pr[x ∈ A] =

∫
A

f(x)dx

for every A ⊂ � satisfying that A can be obtained by repeating countable set-

theoretic operations (mostly often, union) of open, semi-open and closed intervals.
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Remarks on Borel sets

• A (in the previous definition) is called a Borel set.

• Lebesque measure λ is only defined on Borel sets.

Definition (Lebesque measure) A Lebesque measure λ over the Borel sets

is that for any Borel set A,

λ(A) =

∞∑
i=1

λ(Ii),

and {Ii}∞
i=1 are disjoint intervals satisfying A = ∪∞

i=1Ii, and λ(I) is equal to the

right-margin of interval I minus the left-margin of the same interval.

• Hence, the largest manageable probability space is perhaps

(S = [0, 1),B, P = Lebesque measure),

where B is the σ-field containing all open, semi-open, closed intervals in S.
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Remarks on pdf

• A random variable x always has cdf F .

• If a random variable has density f , then f(x) = ∂F (x)/∂(x).

• ∂F (x)/∂x is not necessarily a density. In other words, if f(x) = ∂F (x)/∂x,

it may not be true that

Pr[x ∈ A] =

∫
A

f(x)dx

for every Borel set A ⊂ �.
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Definition (Second-order distribution)The second-order distribution func-

tion of a random process x(t) is defined as

F (x1, x2; t1, t2) � Pr[x(t1) ≤ x1 and x(t2) ≤ x2].

Definition (Second-order density) The second-order density function of a

random process x(t) is defined as

f(x1, x2; t1, t2) �
∂2F (x1, x2; t1, t2)

∂x1∂x2
,

provided that F (x1, x2; t1, t2) is differentiable with respect to x1, x2, and x(t) has

second-order density at t1, t2.

• Consistency condition: For any t2 �= t1,

F (x1; t1) = F (x1,∞; t1, t2) and f(x1; t1) =

∫ ∞

−∞
f(x1, x2; t1, t2)dx2.

This condition is always valid if a random process x(t) is defined over a proba-

bility space. However, this condition may need to be explicitly taken care of,

if a random variable is defined explicitly without inherited probability space.

• The nth-order distribution and density can be defined similarly. Consistency

condition should always be preserved.
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Mean: The mean ηx(t) of x(t) is ηx(t) � E[x(t)] =
∫∞
−∞ x f(x; t)dx.

Autocorrelation: The autocorrelation Rxx(t1, t2) of x(t) is

Rxx(t1, t2) � E[x(t1)x
∗(t2)] =

∫ ∞

−∞

∫ ∞

−∞
x1x

∗
2 f(x1, x2; t1, t2)dx1dx2.

The autocorrelation function Rxx(t1, t2) of a random process x(t) is a positive

definite (p.d.) (non-negative definite? See the red-color note below.) function,

namely, ∑
i

∑
j

aia
∗
jRxx(ti, tj) ≥ 0 for any complex ai and aj. (9.1)

Proof:

0 ≤ E

[∣∣∣∣∑
i

aix(ti)

∣∣∣∣2
]
=
∑
i

∑
j

aia
∗
jE[x(ti)x

∗(tj)].

�

The converse that any p.d. function can be the autocorrelation function of

some random process is also true (cf. Existence Theorem in Slide 9-42).

Strictly speaking, p.d. = Equality for (9.1) is valid only when �a = �0.
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(p. 122 in Random Processes: A Mathematical Approach for Engineers by

Robert M. Gray and Lee D. Davisson) . . . By positive definite, we mean that

for any dimension k, any collection of sample times t0, t1, . . . , tk−1, and any

non-zero real vector (r0, r1, . . . , rk−1) we have

k−1∑
i=0

k−1∑
j=0

ri · Λ(ti, tj) · rj > 0,
(where Λ(t, s) = Λ(s, t) is

some symmetric function.)

Average Power: The average power of x(t) at time t is

E[x(t)x∗(t)] � E[|x(t)|2] = Rxx(t, t) ≥ 0.

Autocovariance: The autocovariance Cxx(t1, t2) of x(t) is:

Cxx(t1, t2) � E[(x(t1)− ηx(t1))(x(t2)− ηx(t2))
∗] = Rxx(t1, t2)− ηx(t1)η

∗
x(t2).

Variance: The variance of x(t) is E[|x(t) − ηx(t)|2] = Cxx(t, t).

Correlation Coefficient:

rxx(t1, t2) �
Cxx(t1, t2)√

Cxx(t1, t1)Cxx(t2, t2)
∈ [−1, 1].

Both autocovariance and correlation coefficient functions are p.d. (i.e., n.n.d.)
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Cross Correlation: The cross-correlation of two processes x(t) and y(t) is

Rxy(t1, t2) � E[x(t1)y
∗(t2)].

Cross Covariance: The cross-covariance of two processes x(t) and y(t) is

Cxy(t1, t2) � E[(x(t1) − ηx(t1))(y(t2) − ηy(t2))
∗] = Rxy(t1, t2)− ηx(t1)η

∗
y(t2).
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Independence: Two processes x(t) and y(t) are independent if any finite di-

mensional samples of x(t) is independent of any finite dimensional samples of

y(t).

Comment: Since the multi-dimensional distributions do not completely deter-

mine the statistical properties of a random process, it may be “restricted” to define

independence only based on multi-dimensional samples. For example, whether or

not mint∈[0,1)x(t) and mint∈[0,1) y(t) are independent is not clear under such defi-

nition!

Orthogonality: Two processes x(t) and y(t) are (mutually) orthogonal if

Rxy(t1, t2) = 0

for every t1, t2 ∈ I .
Uncorrelation: Two processes x(t) and y(t) are uncorrelated if

Cxy(t1, t2) = 0

for every t1, t2 ∈ I .
a-dependance: A random process x(t) is a-dependent if the two processes {x(t), t <

t0} and {x(t), t > t0 + a} are independent for any t0.
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Correlation a-dependence: A random process is correlation a-dependent if

Cxx(t1, t2) = 0 for |t1 − t2| > a.

Strictly White: A process x(t) is strictly white if x(t1) and x(t2) are indepen-

dent for every t1 �= t2.

White: A process x(t) is white if x(t1) and x(t2) are uncorrelated for every

t1 �= t2.

Hence, Cxx(t, t + τ ) = q(t)δ(τ ) for a white process, which indicates that it is in

general time-varying in nature (with Doppler spectrum
∫∞
−∞ q(t)e−jλtdt).



General Properties 9-37

A few notes on white processes (Comparison with other texts)

• J. Proakis, Digital Communications, McGraw-Hill, fourth edition, 2001.

(p. 77) The autocorrelation function of a stochastic process X(t) is

φxx(τ ) =
1

2
N0δ(τ ).

Such a process is called white noise. . . .

(p. 157) White noise is a stochastic process that is defined to have a flat (con-

stant) power spectral density over the entire frequency range. . . .

(p. 62) The function φ(t1, t2) is called the autocorrelation function of the stochas-

tic process. . . . (p. 66) A stationary stochastic process . . .

Φ(f) =

∫ ∞

−∞
φ(τ )e−j2πfτdτ (2.2-16)

. . . Therefore, Φ(f) is called the power density spectrum of the stochastic process.
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Comments (for stationary processes)

– It is good to define the power density spectrum as the Fourier

transform of the autocorrelation function because its integration

is really equal to the power.

– However, since for WSS processes,

Rxx(τ ) = Cxx(τ ) + µ2
x.

The power density spectrum (defined based on the autocorrelation)

of a white process will have an impulse µ2
xδ(f) at the origin.

– Strictly speaking, a white process “must” be zero-mean, otherwise

Φ(f) =constant only when f �= 0! (Φ(0) = ∞ for any non-zero mean

process.)
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Robert M. Gray and Lee D. Davisson, Random Processes: A Mathemat-

ical Approach for Engineers, Prentice-Hall, 1986.

(p. 197) A random process {Xt} is said to be white if its power spectral density

is a constant for all f .

(p. 193) The power spectral density SX(f) of the process is defined as the Fourier

transform of the (auto-)covariance function; . . .

– The integration of its power spectral density is not the power of

a non-zero-mean process.

– However, such a definition allows the existence of a non-zero-

mean white process. Hence, the authors wrote in parentheses that:

(p. 197) A white process is also almost always assumed to have a zero mean,

an assumption that we will make unless explicitly stated otherwise. . . .
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In our textbook:

White: A process x(t) is white if x(t1) and x(t2) are uncorrelated for

every t1 �= t2.

– Hence, implicitly, a WSS process is white if its power density

spectrum (defined as the Fourier transform of the autocorrelation

function) is constant except at the origin.

– Why introducing such an indirect definition? Because it paral-

lels the subsequent definition of strictly white.

Strictly White: A process x(t) is strictly white if x(t1) and x(t2) are

independent for every t1 �= t2.

– Notably, one cannot differentiate the (weakly) white process and

strictly white process from their power density spectra.
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Independent Increment: A process x(t) is a process with independent incre-

ment if x(t2) − x(t1) and x(t4) − x(t3) are independent for any t1 < t2 <

t3 < t4.

Example. The Poisson process introduced later (cf. Slide 9-47) is a process with

independent increment.

Uncorrelated Increment: A process x(t) is a process with uncorrelated in-

crement if x(t2)− x(t1) and x(t4)− x(t3) are uncorrelated for any t1 < t2 <

t3 < t4.
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Normal: A process x(t) is called normal if any finite dimensional samples of x(t)

are jointly normal.

Theorem (Existence theorem) Given an arbitrary function η(t) and a

p.d. (i.e., n.n.d.) function C(t1, t2), there exists a normal process x(t) with mean

η(t) and auto-covariance function C(t1, t2).

• Idea behind the proof: The characteristic function of any finite dimensional

samples can be given as:

exp


j

∑
i

η(ti)ωi − 1

2

∑
i,k

C(ti, tk)ωiωk


 .
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Define s =
∫ b

a x(t)dt of a random process x(t).

“Interpreting the above as a Riemann integral” yields:

E[s] =

∫ b

a

E[x(t)]dt =

∫ b

a

ηx(t)dt

and

E[s2] =

∫ b

a

∫ b

a

E[x(t1)x(t2)]dt1dt2 =

∫ b

a

∫ b

a

Rxx(t1, t2)dt1dt2.

. . . . . . . . .
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Riemann integral:

Let s(x) represent a step function on [a, b), which is defined as that there exists a

partition a = x0 < x1 < · · · < xn = b such that s(x) is constant during (xi, xi+1)

for 0 ≤ i < n.

If a function f(x) is Riemann integrable,∫ b

a

f(x)dx
�
= sup{

s(x) : s(x)≤f(x)
}
∫ b

a

s(x)dx = inf{
s(x) : s(x)≥f(x)

}∫ b

a

s(x)dx.

Example of a non-Riemann-integrable function:

f(x) = 0 if x is irrational; f(x) = 1 if x is rational.

Then

sup{
s(x) : s(x)≤f(x)

}
∫ b

a

s(x)dx = 0,

but

inf{
s(x) : s(x)≥f(x)

}∫ b

a

s(x)dx = (b− a).
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Lebesque integral:

Let t(x) represent a simple function, which is defined as the linear combination

of indicator functions for finitely many, mutually disjoint partitions.

For example, let U1, . . . ,Um be mutually disjoint partitions of the domain X and

∪m
i=1Ui = X . The indicator function of Ui satisfies 1(x;Ui) = 1 if x ∈ Ui, and 0,

otherwise.

Then t(x) =
∑m

i=1 ai1(x;Ui) is a simple function (and
∫
X t(x)dx =

∑m
i=1 ai ·λ(Ui),

where λ(·) is a Lebesque measure).

If a function f(x) is Lebesque integrable, then∫ b

a

f(x)dx = sup{
t(x) : t(x)≤f(x)

}
∫ b

a

t(x)dx = inf{
t(x) : t(x)≥f(x)

} ∫ b

a

t(x)dx.

The previous example is actually Lebesque integrable, and its Lebesque integral is

equal to zero.
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Point Processes: A point process is a set of random points ti on the time axis.

Renewal Processes: A renewal process consists of the renewal intervals of a

point process, namely, zn = tn − tn−1.

An example is that zi is the lifetime of the ith renewed lightbulb which was replaced

as soon as the (i− 1)th renewed lightbulb failed.

Counting processes: A counting process x(t) collects the number of random

points that occur during [0, t).
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Example 9-5: Poisson process. An example to define a random process

without the inherited probability space. Assume:

1. the number of Poisson point occurrences at {t1, t2, t3, · · · } in an interval [t1, t2)

is a Poisson random variable with parameter ν(t1, t2) �
∫ t2

t1

λ(t)dt, i.e.,

Pr{n[t1, t2) = k} =
e−ν(t1,t2) [ν[t1, t2)]

k

k!
,

2. andn[t1, t2) andn[t3, t4) are independent if [t1, t2) and [t3, t4) are non-overlapping

intervals.

Please determine the mean and autocorrelation function of x(t) � n[0, t).

0
��

t1

� �

t2

� �

t3

� �

t4

�

x(t)
�

t5

� �

t6

� �

t7

�

· · ·
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Answer:

µx(t) = E[x(t)] = E[n[0, t)] =

∫ t

0

λ(t)dt.

For t1 ≤ t2,

Rxx(t1, t2) = E[x(t1)x
∗(t2)]

= E[n[0, t1)n[0, t2)]

= E{n[0, t1)[n[0, t1) + n[t1, t2)]}
= E[n2[0, t1)] + E[n[0, t1)n[t1, t2)]

= E[n2[0, t1)] + E[n[0, t1)]E[n[t1, t2)] (by independence of n[0, t1) and n[t1, t2))

=

(∫ t1

0

λ(t)dt+

(∫ t1

0

λ(t)dt

)2
)

+

(∫ t1

0

λ(t)dt

)(∫ t2

0

λ(t)dt−
∫ t1

0

λ(t)dt

)

=

∫ t1

0

λ(t)dt +

∫ t1

0

∫ t2

0

λ(t)λ(s)dtds.

Similarly, for t1 > t2,

Rxx(t1, t2) =

∫ t2

0

λ(t)dt+

∫ t1

0

∫ t2

0

λ(t)λ(s)dtds.
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Therefore,

Rxx(t1, t2) =

∫ min{t1,t2}

0

λ(t)dt +

∫ t1

0

∫ t2

0

λ(t)λ(s)dtds.

If λ(t) is a constant λ, then

Rxx(t1, t2) = λ · min{t1, t2} + λ2t1t2.

�

Operational meaning of autocorrelation function: The autocorrelation

function quantifies the correlation of a data point with a previous data point (or,

a future data point).

Cxx(t1, t2) = Rxx(t1, t2) − µx(t1)µx(t2)

=
[
λ ·min{t1, t2} + λ2t1t2

]− (λt1)(λt2) = λ ·min{t1, t2}
For a present point (e.g., t1), if its autocorrelation with a distant future point (e.g.,

t2 > t1) does not die away, the delayed point must have a strong correlation with

an earlier version of itself (e.g., n[0, t2) is apparently affected strongly by n[0, t1)).
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Example 9-6: Semirandom Telegraph Signal

Following Example 9-5 under λ(t) = λ, we re-define:

u(t) =

{
1, if n[0, t) is even;

−1, if n[0, t) is odd.

Please determine mean and autocorrelation functions of u(t).

0

�

�

�

t1
�

�

t2
�

�

t3
�

�

t4
�

u(t)
�

t5
�

�

t6
�

�

t7
�

· · ·

Answer:

E[u(t)] = 1 · Pr[n[0, t) = 0, 2, 4, · · · ] + (−1) · Pr[n[0, t) = 1, 3, 5, · · · ]
= 1 · e−λt

[
1 +

(λt)2

2!
+ · · ·

]
+ (−1) · e−λt

[
λt +

(λt)3

3!
+ · · ·

]
= e−λt cosh(λt)− e−λt sinh(λt)

= e−λt

(
eλt + e−λt

2

)
− e−λt

(
eλt − e−λt

2

)
= e−2λt.
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For t1 ≤ t2,

E[u(t1)u
∗(t2)]

= Pr[n[0, t1) = even ∧ n[0, t2) = even] + Pr[n[0, t1) = odd ∧ n[0, t2) = odd]

−Pr[n[0, t1) = even ∧ n[0, t2) = odd]− Pr[n[0, t1) = odd ∧ n[0, t2) = even]

= Pr[n[0, t1) = even ∧ n[t1, t2) = even] + Pr[n[0, t1) = odd ∧ n[t1, t2) = even]

−Pr[n[0, t1) = even ∧ n[t1, t2) = odd]− Pr[n[0, t1) = odd ∧ n[t1, t2) = odd]

= Pr[n[0, t1) = even] Pr[n[t1, t2) = even] + Pr[n[0, t1) = odd] Pr[n[t1, t2) = even]

−Pr[n[0, t1) = even] Pr[n[t1, t2) = odd]− Pr[n[0, t1) = odd] Pr[n[t1, t2) = odd]

= (Pr[n[0, t1) = even + Pr[n[0, t1) = odd])(Pr[n[t1, t2) = even] − Pr[n[t1, t2) = odd])

= Pr[n[t1, t2) = even] − Pr[n[t1, t2) = odd]

= e−λ(t2−t1) cosh[λ(t2 − t1)]− e−λ(t2−t1) sinh[λ(t2 − t1)]

= e−λ(t2−t1)

(
eλ(t2−t1) + e−λ(t2−t1)

2

)
− e−λ(t2−t1)

(
eλ(t2−t1) − e−λ(t2−t1)

2

)
= e−2λ(t2−t1).

Similarly, for t1 > t2,

E[u(t1)u
∗(t2)] = e−2λ(t1−t2).
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Therefore,

Ruu(t1, t2) = E[u(t1)u
∗(t2)] = e−2λ|t1−t2|.

�

Remarks

• u(t) is named semirandom telegraph signal because u(0) = 1 is deterministic.

• A (fully) random telegraph signal can be formed by v(t) = a · u(t), where a
is independent of u(t), and a = +1 and a = −1 with equal probability.

• It can be shown that the mean of v(t) is zero, and the autocorrelation function

of v(t) is the same as that of u(t).

• Indeed, in comparison of the statistics of u(t) and v(t),

Pr[u(t) = 1] = e−λt cosh(λt) =
1

2
+

1

2
e−2λt t−→ Pr[v(t) = 1] =

1

2

Pr[u(t) = −1] = e−λt sin(λt) =
1

2
− 1

2
e−2λt t−→ Pr[v(t) = −1] =

1

2
Hence, u(t) and v(t) have asymptotically equal statistics.
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Sum and difference of Poisson processes

• It is easy to show that the sum, z(t) = x1(t)+x2(t), of two independent Pois-

son processes, x1(t) ∼Poisson(λ1t) and x2(t) ∼Poisson(λ2t), is Poisson((λ1 +

λ2)t).

• However, the difference, y(t) = x1(t) − x2(t), of two independent Poisson

processes is not Poisson! Its statistics is computed as follows.

Pr[y(t) = n] =
∞∑

k=max{0,−n}
Pr[x1(t) = n + k] Pr[x2(t) = k]

=

∞∑
k=max{0,−n}

e−λ1t
(λ1t)

n+k

(n + k)!
e−λ2t

(λ2t)
k

k!
(Let k̃ = k − max{0,−n})

= e−(λ1+λ2)t

(
λ1

λ2

)n/2 ∞∑
k̃=0

(
t
√
λ1λ2

)n+2max{0,−n}+2k̃

(k̃ +max{0,−n})!(n+ k̃ +max{0,−n})!

= e−(λ1+λ2)t

(
λ1

λ2

)n/2

I|n|
(
2t
√
λ1λ2

)
for n = 0,±1,±2, . . . ,

where In(x) �
∞∑
k=0

(x/2)n+2k

k!(n + k)!
is the modified Bessel function of order n.

(k̃ +max{0,−n})!(n+ k̃ +max{0,−n})!

=

{
(k̃ + |n|)!(k̃)!, n < 0;

(k̃)!(|n|+ k̃)!, n ≥ 0

|n| = n+ 2max{0,−n}
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Random selection of Poisson points

Let x(t) ∼Poisson(λt) be formed from Poisson points {t1, t2, t3, . . .}.

0
��

t1

� �

t2

� �

t3

� �

t4

�

x(t)
�

t5

� �

t6

� �

t7

�

· · ·

Suppose each occurrence ti of x(t) gets tagged independently with probability p.

Let y(t) represent the total number of tagged events in the interval [0, t).

Let z(t) represent the total number of untagged events in the interval [0, t).

Claim:

y(t) ∼ Poisson(pλt) and z(t) ∼ Poisson((1− p)λt).
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Proof:

Pr[y(t) = k] =
∞∑
n=k

Pr[x(t) = n] Pr[k out of n are tagged|x(t) = n]

=
∞∑
n=k

(
e−λt(λt)

n

n!

)[(
n

k

)
pk(1− p)n−k

]

= e−λt(pλt)
k

k!

∞∑
n=k

[(1− p)λt]n−k

(n− k)!

= e−λt(pλt)
k

k!

∞∑
r=0

[(1− p)λt]r

(r)!

= e−λt(pλt)
k

k!
e(1−p)λt

= e−pλt(pλt)
k

k!
.

The claim on z(t) can be proved similarly. �

This only proves the first property

that defines the Poisson process!

You should add the proof of the

second property in Slide 9-47.

Remark: Given that the customer arrival forms a Poisson process, the male

customer arrival also forms a Poisson process, and so does the female custom arrival.
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Claim: For a Poisson process x(t) and for t1 < t2, the event [x(t1) = k given

x(t2) = n] forms a binomial distribution B(n, t1/t2).

Proof:

Pr[x(t1) = k|x(t2) = n] =
Pr[x(t1) = k ∧ x(t2) = n]

Pr[x(t2) = n]

=
Pr[n[0, t1) = k ∧ n[t1, t2) = n − k]

Pr[n[0, t2) = n]

=
Pr[n[0, t1) = k] Pr[n[t1, t2) = n − k]

Pr[n[0, t2) = n]

=

e−λt1
(λt1)

k

k!
e−λ(t2−t1)

(λ(t2 − t1))
n−k

(n − k)!

e−λt2
(λt2)

n

n!

=

(
n

k

)(
t1
t2

)k(
1 − t1

t2

)n−k

for k = 0, 1, 2, . . . , n.

�
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Remarks

• For 0 < t1 < T ,

Pr[x(t1) = 1|x(T ) = 1] = Pr[0 ≤ t1 < t1|x(T ) = 1] =

(
1

1

)(
t1
T

)1(
1 − t1

T

)1−1

=
t1
T

indicates that a Poisson arrival is equally likely to happen anywhere in an

interval of length T , given that exactly one Poisson occurrence has taken place

in that interval.

• In fact, the joint pdf of t1, t2, · · · , tn given that x(T ) = n is the order statistics

of s1, s2, · · · , sn, in which {si}ni=1 are i.i.d., and each si is uniformly distributed

over [0, T ).

– “Order statistics” means

{t1, t2, · · · , tn} = {s1, s2, · · · , sn} and t1 ≤ t2 ≤ · · · ≤ tn.

– Summary: A Poisson process x(t) distributes Poisson arrival points inde-

pendently and uniformly over any finite interval [0, T ).
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Stationarity family

Stationarity: A random process x(t) is called strict-sense stationary (SSS) if

its statistical properties are invariant to a shift of the origin.

Joint Stationarity: Two random processes are jointly stationary if their joint

statistical properties are invariant to a shift of the origin.

A complex process z(t) = x(t)+ jy(t) is stationary if the processes x(t) and y(t)

are jointly stationary.

Wide-Sense Stationarity: A random process x(t) is called wide-sense sta-

tionary (WSS) if its mean and autocorrelation functions are invariant to a

shift of the origin.

As a result, the mean function ηx(t) is a constant µx(t) = µx(0) = c, and the au-

tocorrelation function Rxx(t1, t2) only depends on the time difference Rxx(t1, t2) =

Rxx(t1 − t2, 0) = Rxx(t1 − t2).

Joint Wide-Sense Stationarity: Two random processes x(t) and y(t) are

jointly wide-sense stationary if their mean and autocorrelation functions, as

well as their cross-correlation function, are all invariant to a shift of the origin.
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Other Forms of Stationarity

Covariance Stationarity: A process x(t) is covariance-stationary if the auto-

covariance function is invariant to a shift of the origin.

nth Order Stationarity: A process x(t) is nth order stationary if any n di-

mensional statistics is invariant to a shift of the origin.

Stationarity in an interval: A process x(t) is stationary in an interval if its

statistical properties within that interval is invariant to a shift of the origin.

Namely, {x(ti)}ni=1 and {x(ti+ c)}ni=1 have the same statistics as long as all ti
and ti + c belong to that interval.

Asymptotic Stationary: A process x(t) is asymptotic stationary if y(t) =

limc→∞x(t + c) is stationary, provided the limit exists.
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Theorem The process x(t) = a cos(ωt) + b sin(ωt) is SSS if, and only if, the

joint density f(a, b) of a and b is circularly symmetric, namely,

f(a, b) = g(r) for some g(r),

where r =
√
a2 + b2.

Proof:

1. Forward (Only if part): If x(t) is SSS, then �xT = [x(0),x(π/2ω)]T = [a, b]T

and �yT = [x(t),x(t+π/2ω)]T must have the same density f . Specifically, the

density of �y = g(�x) =

[
cos(ωt) sin(ωt)

− sin(ωt) cos(ωt)

]
�x is equal to (cf. the next slide):

f�y(y1, y2) = f�x

([
cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

] [
y1
y2

])
·
∣∣∣∣cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

∣∣∣∣
= f�x(y1 cos(ωt) − y2 sin(ωt), y1 sin(ωt) + y2 cos(ωt)).

The forward proof is completed by noting that f�x = f�y = f , and hence,

f(y1, y2) = f(y1 cos(ωt)− y2 sin(ωt), y1 sin(ωt) + y2 cos(ωt)) is valid for every

ωt, and every y1, y2 ∈ �.
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(P. Billingsley, Probability and Measure, pp. 260-261, 3rd Edition, Wiley, 1995)

Suppose that

• �x ∈ �k has density f , and has support V that is an open set in �k.

• g is a (one-to-one, continuously differentiable) mapping from V to U , where

U is an open set in �i. (Specifically, g : �k → �i.)

• T is the inverse function of g, is continuously differentiable in U , and is under-

stood as T (�y) = (T1(�y), T2(�y), · · · , Tk(�y)), where T� : �i → �, and �y ∈ �i.

(Specificially, T : �i → �k.)

Then, �y � g(�x) has density

{
f(T (�y)) · |J(�y;T )|, for �y ∈ U ;

0, for �y �∈ U,

where J(�y;T ) = Det







∂T1
∂y1

∂T1
∂y2

· · · ∂T1
∂yk

∂T2
∂y1

∂T2
∂y2

· · · ∂T2
∂yk

... ... · · · ...
∂Tk
∂y1

∂Tk
∂y2

· · · ∂Tk
∂yk


 (�y)


 �= 0 for �y ∈ U.

T : U → V continuously differ-

entiable implies that V is open,

and T−1, if it exists, is also con-

tinuously differentiable.



Density for a Mapping 9-62

Example

• (x1,x2) ∈ �2 has density f(x1, x2) = 1
2π
e−(x21+x22)/2, and has support V =

[(−∞, 0) ∪ (0,∞)] × [(−∞, 0) ∪ (0,∞)] that is an open set in �2.

• g with g(x1, x2) =
(√

x21 + x22, tan
−1(x2/x1) mod 2π

)
is a (one-to-one, continu-

ously differentiable) mapping from V to U , where U = {(y1, y2) : y1 > 0 and 0 <

y2 < 2π} is an open set in �2.

• T with T (y1, y2) = (y1 cos(y2), y1 sin(y2)) is the inverse function of g, is continu-

ously differentiable in U , and is understood as T (�y) = (T1(�y) = y1 cos(y2), T2(�y) =

y1 sin(y2)), where T� : �2 → �, and �y ∈ �2.

Then, (y1,y2) � g(x1,x2) has density{
f(T (�y)) · |J(�y;T )|, for �y ∈ U ;

0, for �y �∈ U
=

{
1
2πy1e

−y21/2, for �y ∈ U ;

0, for �y �∈ U,

where J(�y;T ) = Det

([
∂T1
∂y1

∂T1
∂y2

∂T2
∂y1

∂T2
∂y2

]
(�y)

)
= Det

[
cos(y2) −y1 sin(y2)

sin(y2) y1 cos(y2)

]
= y1 �= 0 for �y ∈ U.
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2. Converse (If part) :

• Define a new process for a fixed τ as:

x1(t) � a1 cos(ωt) + b1 sin(ωt),

where

a1 = a cos(ωτ ) + b sin(ωτ ) and b1 = b cos(ωτ ) − a sin(ωτ ).

• The statistics of x(t) is completely determined by the statistics of a and b.

The statistics of x1(t) is completely determined by the statistics of a1 and b1.

• However, the statistics of (a, b) and (a1, b1) are completely identical be-

cause f(a, b) is circular symmetric, which means that x(t) and x1(t) =

x(t + τ ) have the same statistics for any shift τ .

• This concludes to the desired result that the statistics of x(t) is invariant

to a shift of the origin. �
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Corollary The process x(t) = a cos(ωt) + b sin(ωt) for uncorrelated zero-mean

a and b with equal variance is WSS.

Proof: The corollary is true because E[x(t)] = E[a] cos(ωt) + E[b] sin(ωt) = 0

and

E[x(t1)x(t2)] = E{[a cos(ωt1) + b sin(ωt1)][a cos(ωt2) + b sin(ωt2)]}
= E[a2] cos(ωt1) cos(ωt2) + E[b2] sin(ωt1) sin(ωt2) = E[a2] cos(ω(t1 − t2)).

�

Corollary The process x(t) = a cos(ωt+ϕ) is WSS, provided thatϕ is uniformly

distributed over [−π, π).

Proof: The corollary is true because E[x(t)] = E[E[a cos(ωt + ϕ)|ω = ω]] = 0

and

E[x(t1)x(t2)] = E{a2 cos(ωt1 + ϕ) cos(ωt2 +ϕ)}
= E

{
a2
cos[ω(t1 − t2)] + cos[ω(t1 + t2) + 2ϕ]

2

}
=

a2

2
E[cos(ω(t1 − t2))].

�

Corollary (No proof) The complex process z(t) = aej(ωt+ϕ) is WSS, provided

that ϕ is uniformly distributed over [−π, π).
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Corollary The SSS process x(t) = a cos(ωt) + b sin(ωt) for independent a and

b is normal.

Proof:

• From the Theorem on Slide 9-60, SSS of x(t) implies that f(a, b) is circularly

symmetric.

• By independence of a and b, g(r) = fa(a)fb(b), where r =
√
a2 + b2.

• We then derive:

1

r

(∂g(r)/∂r)

g(r)
=

1

r

(∂g(r)/∂r)

g(r)

(∂r/∂a)

(∂r/∂a)

=
1

r

(∂g(r)/∂a)

g(r)

1

(∂r/∂a)

=
1

r

(∂[fa(a)fb(b)]/∂a)

[fa(a)fb(b)]

1

(a/r)

=
1

a

(∂fa(a)/∂a)

fa(a)
.
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Hence, it should be true that:

1

r

(∂g(r)/∂r)

g(r)
=

1

a

(∂fa(a)/∂a)

fa(a)
= constant

(
= − 1

σ2

)
(Eq. 1),

because if for some α and β with α �= β,

1

a

(∂fa(a)/∂a)

fa(a)

∣∣∣∣
a=α

�= 1

a

(∂fa(a)/∂a)

fa(a)

∣∣∣∣
a=β

,

then as (a, b) = (α, β) and (a, b) = (β, α) yield the same r =
√

α2 + β2, a

contradiction would result as:

1

r

(∂g(r)/∂r)

g(r)

∣∣∣∣
(a,b)=(α,β)

�= 1

r

(∂g(r)/∂r)

g(r)

∣∣∣∣
(a,b)=(β,α)

.

This implies (together with
∫∞
−∞

∫∞
−∞ fa(a)fb(b)dadb = 1) that

g(r)|r=√
a2+b2 = fa(a)fb(b) =

1

2πσ2
e−(a2+b2)/(2σ2).

This completes the proof that (a, b) is a Gaussian random vector.

Summary: Circular symmetry and independence imply Gaussian.
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Normal: A process x(t) is called normal if any finite dimensional samples

of x(t) are jointly normal.

The desired result that x(t) = a cos(ωt) + b sin(ωt) is a normal process can

be substantiated by the observation that “linear combination of Gaussians” is

still Gaussian, namely,

[
x(t1) x(t2) · · · x(tk)

]
=
[
a b

] [cos(ωt1) cos(ωt2) · · · cos(ωtk)

sin(ωt1) sin(ωt2) · · · sin(ωtk)

]
.

�
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∫
g′(r)
g(r)

dr =

∫ (
− 1

σ2
r

)
dr + logC ⇔ log g(r) = − r2

2σ2
+ logC

⇔ g(r) = Ce−r2/(2σ2),

where

C =

∫∞
−∞

∫∞
−∞

(
g(r)|

r=
√

x2+y2

)
dxdy∫∞

−∞
∫∞
−∞

(
e−r2/(2σ2)

∣∣
r=

√
x2+y2

)
dxdy

=
1∫∞

−∞
∫∞
−∞ e−r2/(2σ2)dxdy

=
1

2πσ2
.

Notably, it can be shown that if the constant in Eq. (1) is positive or zero,∫∞
0 g(r)dr = 1 cannot be satisfied. Hence, we can assume that the constant

is equal to −1/σ2 for some σ.
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Definition (Correlation time) The correlation time τc of a WSS process x(t)

is defined as:

τc =
1

Cxx(0)

∫ ∞

0

Cxx(τ )dτ.

• For an a-dependent WSS process x(t), Cxx(τ ) = 0 for |τ | > a. Hence,

|τc| =
∣∣∣∣ 1

Cxx(0)

∫ ∞

0

Cxx(τ )dτ

∣∣∣∣ ≤ 1

Cxx(0)

∫ ∞

0

|Cxx(τ )|dτ

=
1

Cxx(0)

∫ a

0

|Cxx(τ )|dτ

≤
∫ a

0

dτ = a.

The end of Section 9-1 Definitions
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Definition A system with statistic input process x(t)

({x(t), t ∈ I} defined over (S,F , P ))

is specified through an operator T : S �→ �XI×I

(hence, {T (xI, t), (xI, t) ∈ XI × I} is itself a random process defined

over the same (S,F , P ))

such that its output process y(t) is defined as y(t, ζ) = T ({x(s, ζ), s ∈ I}, t, ζ)
for t ∈ I and ζ ∈ S.

(As a result, {y(t), t ∈ I} is a random process defined over the same

(S,F , P ).)

Example. I = {1, 2, 3}. So, {x(t), t ∈ I} = {x(1),x(2),x(3)}

•



y(1) = T ({x(1),x(2),x(3)}, 1)
y(2) = T ({x(1),x(2),x(3)}, 2)
y(3) = T ({x(1),x(2),x(3)}, 3)

The above system is of course non-causal. A causal system will have

y(1) = T ({x(1)}, 1)
y(2) = T ({x(1),x(2)}, 2)
y(3) = T ({x(1),x(2),x(3)}, 3)
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The above system has memory. A memoryless causal system will have

y(1) = T ({x(1)}, 1)
y(2) = T ({x(2)}, 2)
y(3) = T ({x(3)}, 3)

End of the example �

In usual notation, we write

y(t) = T ({x(s), s ∈ I}, t) = T t({x(s), s ∈ I}),
where

• the second (resp. subscript) argument t in T (·, t) (resp. T t(·)) retains the

possibility of specifying a time-varying system,

• and the first argument {x(s), s ∈ I} retains the possibility of specifying a

with-memory (or non-causal) system.
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Classification of systems

• Deterministic System: T t(x
I , ζ) = T t(x

I). I.e., T only depends on xI and

t, and is irrelevant to ζ .

A random variable z : S �→ � defined over a probability space (S,F , P ) is

degenerately deterministic if z(ζ) = z, a constant, for all ζ ∈ S. In such

case, Pr[z = z] = 1.

• Stochastic System: T t(x
I, ζ1) �= T t(x

I, ζ2) for some ζ1 �= ζ2.

Due to the complication of a stochastic system, the deterministic system is

considered mostly in the literature. However, the recent demand on research

of fading channels makes necessary the consideration of a stochastic system.
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Definition (Memoryless system) A system is memoryless if T t(x
I, ζ) =

T (x, ζ).

Example (S = {⊕,�,⊗,�},F = 2S, P = {0.1, 0.2, 0.3, 0.4} resp. for S)

At some specific time t, we have

x(t,⊕) = x(t,�) = 1 and x(t,⊗) = x(t,�) = −1,

and the memoryless T satisfies

T (1,⊕) = 1, T (1,�) = −1, T (−1,⊗) = 1 and T (−1,�) = −1.

Then,




y(t,⊕) = T (x(t,⊕),⊕) = T (1,⊕) = 1

y(t,�) = T (x(t,�),�) = T (1,�) = −1

y(t,⊗) = T (x(t,⊗),⊗) = T (−1,⊗) = 1

y(t,�) = T (x(t,�),�) = T (−1,�) = −1

Hence, Pr[T (1) = 1] = Pr[y(t) = 1|x(t) = 1] =
P ({⊕})

P ({⊕,�}) =
0.1

0.1 + 0.2
=

1

3
and

Pr[T (1) = −1] =
2

3
, Pr[T (−1) = 1] =

3

7
, Pr[T (−1) = −1] =

4

7
.
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• It is called memoryless because the statistics of y(t) depends only on the

statistics of x(t) and not on any other past or future values of x(t).

• A memoryless system is often denoted by y(t) = T (x(t)), and is equivalently

written as a time-independent transition probability

Py|x(y|x) = Pr[T (x) = y].

• Note that y(n) = x(n)+z(n) for integer n, satisfying that z(i) is independent

of z(j) for any i �= j, may not be a memoryless system, if the statistics of z(i) is

different from z(j). This is because we still need to maintain the time index n

in order to know the (statistical) mapping from x(n) to y(n). “Memoryless” in

its strict sense means that one only needs to know (the statistics of) the current

input in order to determine (the statistics of) the current output (cf. Eq. (9-

74) in textbook). Thus, {z(n)} must be i.i.d. in order to obtain a (strictly)

memoryless system defined according to y(n) = x(n) + z(n).

In this additive system,

Pr[T (x) = y] = Py|x(y|x) = Pz(y − x).
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• Independence between input x(t) and system T :

Continue from the example in Slide 9-73.

Pr[x(t) = 1 ∧ T (1) = 1] = P ({⊕,�} ∩ {⊕}) = 0.1

Pr[x(t) = 1] × Pr[T (1) = 1] = P ({⊕,�})× 1

3
= 0.1

Pr[x(t) = 1 ∧ T (1) = −1] = P ({⊕,�} ∩ {�}) = 0.2

Pr[x(t) = 1]× Pr[T (1) = −1] = P ({⊕,�})× 1

3
= 0.2

Pr[x(t) = −1 ∧ T (−1) = 1] = P ({⊗,�} ∩ {⊗}) = 0.3

Pr[x(t) = −1]× Pr[T (−1) = 1] = P ({⊗,�})× 3

7
= 0.3

Pr[x(t) = −1 ∧ T (−1) = −1] = P ({⊗,�} ∩ {�}) = 0.4

Pr[x(t) = −1]× Pr[T (−1) = −1] = P ({⊗,�})× 4

7
= 0.4
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Lemma If the input x(t) to a memoryless system is SSS, its output y(t) is also

SSS.

Proof: The statistics of

P {ζ ∈ S : y(t + c, ζ) ∈ A} ,
can be rewritten as:

P {ζ ∈ S : T (x(t + c, ζ), ζ) ∈ A} ,
which, for a given memoryless T , can be replaced by:

P {ζ ∈ S : x(t + c, ζ) ∈ B} , (9.2)

where B � {x ∈ � : T (x, ζ) ∈ A}. By the SSS of x(t), (9.2) is equal to:

P {ζ ∈ S : x(t, ζ) ∈ B} ,
which in turns equal

P {ζ ∈ S : T (x(t, ζ), ζ) ∈ A} = P {ζ ∈ S : y(t, ζ) ∈ A} .
Since the above proof is valid for any c, the lemma holds. �
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For a non-memoryless system,

P{ζ ∈ S : x(t, ζ) ∈ B} and P{ζ ∈ S : x(t + c, ζ) ∈ B}
are still equal due to SSS of x(t).

But,

Bt = {x ∈ � : T t(x, ζ) ∈ A}
may not be equal to

Bt+c = {x ∈ � : T t+c(x, ζ) ∈ A}
since T t(·, ζ) and T t+c(·, ζ) may not be the same mapping.

This proof again substantiates that only i.i.d. {z(n)} can make y(n) = x(n)+z(n)

a (strictly) memoryless system! (Note that if {z(n)} is not i.i.d., SSS {x(n)} may

not induce SSS {y(n)}.)
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Corollary For a memoryless system,

• if input x(t) is nth order stationary, output y(t) is also nth order stationary.

• if input x(t) is stationary in an interval, output y(t) is also stationary in the

same interval.

• however, if input x(t) is WSS, output y(t) might not be WSS.

(Counterexample: Square-law detector y(t) = x2(t), where x(t) = a cos(ωt) +

b sin(ωt) for independent zero-mean a and b with equal statistics as in Slide

9-64.)

E[y(t1)y(t2)] = E[(a cos(ωt1) + b sin(ωt1))
2(a cos(ωt2) + b sin(ωt2))

2]

=
E[a4] + E2[a2]

2
+

E[a4] − E2[a2]

2
cos(2ωt1) cos(2ωt2)

+E2[a2] sin(2ωt1) sin(2ωt2).

Hence, y(t) is WSS only when E[a4] = 3E2[a2].
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Example 9-16 (Arcsine law) Define the hard limiter process y(t) as:

y(t) =

{
+1, if x(t) > 0;

−1, if x(t) < 0,

where x(t) is a zero-mean Gaussian stationary process.

Please determine the mean and autocorrelation functions of y(t).

Answer: It is clear that E[y(t)] = 0. As for Ryy(t1, t2), we note that

y(t1)y(t2) =

{
+1, if x(t1)x(t2) > 0;

−1, if x(t1)x(t2) < 0,

Since x(t1) and x(t2) are jointly normal with zero mean and covariance matrix

Σ =

[
Rxx(0) Rxx(t1 − t2)

Rxx(t2 − t1) Rxx(0)

]
= Rxx(0)

[
1 ρ

ρ 1

]
,

where ρ = Rxx(t1 − t2)/Rxx(0), we derive:

Pr[x(t1)x(t2) > 0] = 2

∫ ∞

0

∫ ∞

0

1

2π|Σ|1/2 exp
{
−1

2
[x, y]Σ−1

[
x

y

]}
dxdy

= 2

∫ ∞

0

∫ ∞

0

1

2π(1− ρ2)1/2Rxx(0)
exp

{
− x2 − 2ρxy + y2

2(1− ρ2)Rxx(0)

}
dxdy

=
1

2
+

1

π
arcsin (ρ) .
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Hence,

E[y(t1)y(t2)] =
2

π
arcsin(ρ) =

2

π
arcsin

(
Rxx(t1 − t2)

Rxx(0)

)
.

�

Now, you shall know why it is named the arcsine law.

The below derivation is just for your reference.
Let x = r cos(θ)

√
1 − ρ2, y = r sin(θ)

√
1− ρ2 and u = tan(θ).∫ ∞

0

∫ ∞

0

1

2π(1− ρ2)1/2
exp

{
−x2 − 2ρxy + y2

2(1− ρ2)

}
dxdy

=

∫ π/2

0

∫ ∞

0

1

2π(1− ρ2)1/2
exp

{
− [1− ρ sin(2θ)]r2

2

} ∣∣∣∣∂x/∂r ∂y/∂r
∂x/∂θ ∂y/∂θ

∣∣∣∣ drdθ
=

(1− ρ2)1/2

2π

∫ π/2

0

∫ ∞

0

r exp

{
− [1− ρ sin(2θ)]

2
r2
}
drdθ

=
(1− ρ2)1/2

2π

∫ π/2

0

(
− 1

(1 − ρ sin(2θ))
exp

{
− [1− ρ sin(2θ)]r2

2

}∣∣∣∣∞
0

)
dθ

=
1

2π

∫ π/2

0

(1− ρ2)1/2

1− ρ sin(2θ)
dθ

=
1

π

∫ π/4

0

(1− ρ2)1/2

1− ρ sin(2θ)
dθ =

1

π

∫ π/4

0

(1 − ρ2)1/2

sin2(θ) + cos2(θ)− 2ρ sin(θ) cos(θ)
dθ
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=
1

π

∫ 1

0

(1− ρ2)1/2

u2 + 1 − 2ρu
du =

1

π

∫ 1

0

(1− ρ2)1/2

(u− ρ)2 + (1− ρ2)
du =

1

π
arctan

(
u− ρ√
1− ρ2

)∣∣∣∣∣
1

0

=
1

π
arctan

(
1− ρ√
1− ρ2

)
+

1

π
arctan

(
ρ√

1 − ρ2

)
=

1

π
arcsin

(√
1− ρ

2

)
+

1

π
arcsin (ρ)

=
1

π

(
π

4
− 1

2
arcsin(ρ)

)
+

1

π
arcsin (ρ) (9.3)

=
1

4
+

1

2π
arcsin (ρ) ,

where (9.3) follows from

sin

[
2 · arcsin

(√
1− ρ

2

)]
= 2 sin

[
arcsin

(√
1− ρ

2

)]
cos

[
arcsin

(√
1− ρ

2

)]

= 2

(√
1− ρ

2

)(√
1 + ρ

2

)
=
√
1− ρ2 = sin

(π
2

− arcsin(ρ)
)
.
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Theorem (Example 9-17: Bussgang’s theorem) The cross-correlation

Rxy(τ ) of system input x(t) and system output y(t) for a stationary zero-mean

Gaussian input and memoryless system is proportional to Rxx(τ ).

Proof:

Rxy(t1, t2) = E[x(t1) · T (x(t2))]

= E [E [x1 · T (x2)|x(t1) = x1,x(t2) = x2]]

=

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
x1 y dPy|x(y|x2)

)
1

2π|Σ|1/2 exp
{
−1

2
[x1, x2]Σ

−1

[
x1
x2

]}
dx1dx2,

where

Σ =

[
Rxx(0) Rxx(t1 − t2)

Rxx(t1 − t2) Rxx(0)

]
= Rxx(0)

[
1 ρ

ρ 1

]
.

Hence, by letting g(x2) = E[T (x2)],

Rxy(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞

x1 · g(x2)
2πRxx(0)(1− ρ2)1/2

exp

{
−x21 − 2ρx1x2 + x22

2Rxx(0)(1− ρ2)

}
dx1dx2

= ρ

∫ ∞

−∞

x2 · g(x2)√
2πRxx(0)

exp

{
− x22
2Rxx(0)

}
dx2

= ρE[E[x2 · g(x2)|x(t) = x2]] = Rxx(t1 − t2)
E[x(t) · g(x(t))]

Rxx(0)
.

�
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Following the example in Slide 9-73,

g(1) = E[T (1)] = E[y(t)|x(t) = 1] = 1 · 1
3
+ (−1) · 2

3
= −1

3

g(−1) = E[T (−1)] = E[y(t)|x(t) = −1] = 1 · 3
7
+ (−1) · 4

7
= −1

7

Special Case (a) Hard Limiter. Suppose that T is a deterministic system

with T (x) = g(x) =

{
1, x ≥ 0;

−1, x < 0
.

Then,

E[x(t) · g(x(t))] = E[|x(t)|] =
√

2Rxx(0)

π
.

Hence,

Rxy(τ ) = Rxx(τ )

√
2

πRxx(0)
.
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Special Case (b) Limiter. Suppose that T is a deterministic system with

T (x) = g(x) = x · 1(|x| ≤ c) + c · 1(x > c) + (−c) · 1(x < −c).

Then,

E[x(t) · g(x(t))] =

∫ c

−c

x2√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}
dx

+ 2

∫ ∞

c

cx√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}
dx

= Rxx(0) · erf
(

c√
2Rxx(0)

)

Hence, Rxy(τ ) = Rxx(τ ) · erf
(

c√
2Rxx(0)

)
= Rxx(τ ) ·

(
2G

(
c√

Rxx(0)

)
− 1

)
,

where G(·) is the standard normal cdf.

E[x(t) · g(x(t))]
Rxx(0)

=

∫ a

−a

y2√
2π

e−y2/2dy + 2a

∫ ∞

a

y√
2π

e−y2/2dy (Let y = x/
√
Rxx(0) and a = c/

√
Rxx(0).)

=

(∫ a

−a

1√
2π

e−y2/2dy − y√
2π

e−y2/2

∣∣∣∣a
−a

)
+ 2a

(
− 1√

2π
e−y2/2

∣∣∣∣∞
a

)
=

∫ a

−a

1√
2π

e−y2/2dy.
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The text uses a different constant as K = E[g′(x(t))], which can be shown to be

equal to K = E[x(t) · g(x(t))]/Rxx(0), and which requires the existence of g′(·).

If limx→∞ g(x) exp

{
− x2

2Rxx(0)

}
= limx→−∞ g(x) exp

{
− x2

2Rxx(0)

}
< ∞, and

g′(·) exists, then
1

Rxx(0)

∫ ∞

−∞

x · g(x)√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}
dx

= − g(x)√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}∣∣∣∣∣
∞

−∞
+

∫ ∞

−∞

g′(x)√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}
dx.

Special Case (a) Hard Limiter:

E[g′(x(t))] = E[2δ(x(t))] =

∫ ∞

−∞

2δ(x)√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}
dx =

√
2

πRxx(0)
.

Special Case (b) Limiter: (K in text is wrong because g′(x) = 1{−c < x < c}.)

E[g′(x(t))] =
∫ c

−c

1√
2πRxx(0)

exp

{
− x2

2Rxx(0)

}
dx = 2G

(
c√

Rxx(0)

)
− 1.
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Definition (Linear systems) If the output due to a linear combination of

the input processes is equal to the linear combination of the individually induced

outputs with the same weights, then the system T is called a linear system.

Note that the weights for the linear combination can be random variables.

Convolutionalization of linear systems

Lemma If a first-order differentiable function f satisfies that for any �x and �u,

f(�x) + f(�u) = f(�x + �u),

then f must be of the shape:

f(�x) =
∑
i

(
∂f(�x)

∂xi

∣∣∣∣
�x=0

)
xi.
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Key behind the Proof:

∂f(�x)

∂xi
= lim

δ↓0
f(· · · , xi−1, xi + δ, xi+1, · · · ) − f(· · · , xi−1, xi, xi+1, · · · )

δ

= lim
δ↓0

[f(· · · , xi−1, xi, xi+1, · · · ) + f(· · · , 0, δ, 0, · · · )]− f(· · · , xi−1, xi, xi+1, · · · )
δ

= lim
δ↓0

f(· · · , 0, δ, 0, · · · )
δ

= constant

⇒ f(�x) is affine from the standpoint of xi
⇒ f must be of the shape:

f(�x) =
∑
i

(
∂f(�x)

∂xi

∣∣∣∣
�x=0

)
xi + C.

The proof is completed by

f(�0) + f(�0) = f(�0 +�0) ⇒ C + C = C ⇒ C = 0.

�
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• Discrete-time System:

Now define a deterministic with-memory time-varying linear system

T t({x(s), s ∈ I}) = Tt({x(s), s ∈ {t, t− 1}}) = Tt(x(t),x(t− 1)).

Then

y(t) =

(
∂Tt(x1, x2)

∂x1

∣∣∣∣
x1=x2=0

)
x(t) +

(
∂Tt(x1, x2)

∂x2

∣∣∣∣
x1=x2=0

)
x(t − 1)

=

1∑
n=0

h(n; t)x(t− n),

provided that Tt(·, ·) is first-order differentiable.
In general, for a linear system,

y(t) =
∞∑

n=−∞
h(n; t)x(t− n),

where h(n; t) can be a random variable.
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• Continuous-time System:

It can be generalized to the continuous-time system as:

y(t) =

∫ ∞

−∞
h(τ ; t)x(t − τ )dτ.

• h(τ ; t) is usually assumed independent of x(t). If they are dependent, the

statistics of x(t) (e.g., Px(t)) will affect the statistics of the mapping T t (e.g., Py(t)|x(t))
(cf. Slide 9-75).

• Impulse Response:

To obtain h(t − s; t) for any specific s, just input x(t) = δ(t − s), and the

output equals

y(t) =

∫ ∞

−∞
h(τ ; t)δ((t− s) − τ )dτ = h(t− s; t).
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Definition (Time-invariant systems) A system is called time-invariant if

T t(x
I , ζ) = T (xI, ζ).

• If the system is time-invariant, we have h(τ ; t) = h(τ ), which indicates that if

y(t) =

∫ ∞

−∞
h(τ )x(t− τ )dτ is the output due to input x(t),

then

y(t− s) =

∫ ∞

−∞
h(τ )x((t− s) − τ )dτ is the output due to input x(t− s).

• For a linear time-invariant system,

y(t) =

∫ ∞

−∞
h(τ )x(t − τ )dτ.

In such case, h(τ ) = y(τ ) (or h(t) = y(t)) with x(t) = δ(t).

Lemma If the input x(t) to a linear time-invariant system is SSS, its output y(t)

is also SSS.
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• Not all linear systems can be represented in convolutional form or have legit-

imate impulse response.

For example,

y(t) = dx(t)/dt = x′(t)

is a linear system because

ay1(t) + by2(t) = ax′
1(t) + bx′

2(t) = (ax1(t) + bx2(t))
′.

It is also a time-invariant system because y(t− s) is the output due to input

x(t− s) for any s. Hence, we only need to determine h(τ ) with x(t) = δ(t).

However,
dx(t)

dt
=

dδ(t)

dt
= lim

ε↓0
δ(t + ε) − δ(t)

ε
= undefined.
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• It is a function that exists only in principle.

• Define the Dirac delta function δ(t) as:

δ(t) = δ(−t) =

{ ∞, t = 0;

0, t �= 0
and

∫ ∞

−∞
δ(t)dt =

∫ ∞

−∞
δ(−t)dt = 1.

• Replication Property: Define the operation on δ(t) as for every contin-

uous point of g(t),

g(t) =

∫ ∞

−∞
g(τ )δ(t − τ )dτ =

∫ ∞

−∞
g(τ )δ(τ − t)dτ.
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The Replication Property induces that

δ(t) = 2δ(t) but 1 =

∫ ∞

−∞
δ(t)dt �=

∫ ∞

−∞
2δ(t)dt = 2,

where “g(t) = 1” on the left-hand-side and “g(t) = 2” on the right-hand-side!

Note that in usual operations,

f(t) = g(t) for t ∈ � except for countably many points

⇒
∫ ∞

−∞
f(t)dt =

∫ ∞

−∞
g(t)dt

(
if

∫ ∞

−∞
f(t)dt is finite

)
.

Hence, the multiplicative constant on δ(t) cannot be omitted because

saying δ(0) = ∞ = ∞ = 2δ(0) is tricky!

Comment: x + a = y + a ⇒ x = y is incorrect if a = ∞.

As a result, saying ∞ = ∞ (or δ(t) = 2δ(t) ) is not a “rigorously defined”

statement.
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Summary: The Dirac delta function is meaningful only through its replication

property.

For example, the hard limiter in Slide 9-83:

f(x) =

∫ x

−∞
2δ(τ )dτ =

∫ ∞

−∞
(2 · 1{τ < x}) δ(τ )dτ =

{
2 · 1{x > 0}, x �= 0;

undefined, x = 0

is guaranteed to equal gHard Limiter(x) + 1 only when x �= 0 because 2 · 1{x > 0}
is discontinuous at x = 0.

The introduction of Dirac delta function leads to a non-logical inference that∫ x

−∞
g′(τ )dτ = g(x) + c is not always true for every x.
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Example of Time-Varying Systems (Analog modulator)

Suppose that h(τ ; t) = δ(τ )ejω0t. Then,

y(t) =

∫ ∞

−∞
δ(τ )ejω0tx(t − τ )dτ = x(t)ejω0t.

• It is definitely a linear system.

• It is time-varying because the output due to x(t−s) is not a shift of the output

due to x(t).

I use a “proprietary” notation for convolution operation in the time-varying system

as

h(τ ; t) ∗ x(t) =

∫ ∞

−∞
h(τ ; t)x(t− τ )dτ.

For time-invariant systems, the conventional notation h(t) ∗x(t) will also be used
in order to be consistent with the text when no ambiguity is introduced:

h(τ ) ∗ x(t) =
∫ ∞

−∞
h(τ )x(t− τ )dτ = h(t) ∗ x(t).
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Fundamental Theorem and Theorem 9-2 For any linear system (that is
defined via convolution operation),

ηx(t)
� h(τ ; t) �

ηy(t)
= E[h(τ ; t) ∗ ηx(t)]

�
Rxx(t1, t2)

h∗(τ ; t2) �

Rxy(t1, t2)
= E[h∗(τ ; t2) ∗ Rxx(t1, t2)]

h(τ ; t1) �

Ryy(t1, t2)
= E[h∗(τ ; t2) ∗ h(τ ; t1) ∗Rxx(t1, t2)]

Proof:

E[y(t)] =

∫ ∞

−∞
E[h(τ ; t)x(t − τ )]dτ =

∫ ∞

−∞
E[h(τ ; t)]E[x(t − τ )]dτ

=

∫ ∞

−∞
E[h(τ ; t)]ηx(t− τ )dτ.

Rxy(t1, t2) = E[x(t1)y
∗(t2)] = E

[
x(t1)

∫ ∞

−∞
h∗(τ ; t2)x∗(t2 − τ )dτ

]
=

∫ ∞

−∞
E[h∗(τ ; t2)]E[x(t1)x

∗(t2 − τ )]dτ =

∫ ∞

−∞
E[h∗(τ ; t2)]Rxx(t1, t2 − τ )dτ

= E

[∫ ∞

−∞
h∗(τ ; t2)Rxx(t1, t2 − τ )dτ

]
.
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Ryy(t1, t2) = E[y(t1)y
∗(t2)] = E

[∫ ∞

−∞
h(τ ; t1)x(t1 − τ )dτ

∫ ∞

−∞
h∗(s; t2)x∗(t2 − s)ds

]
=

∫ ∞

−∞

∫ ∞

−∞
E[h∗(s; t2)h(τ ; t1)]E[x(t1 − τ )x∗(t2 − s)]dτds

= E

[∫ ∞

−∞

∫ ∞

−∞
h∗(s; t2)h(τ ; t1)Rxx(t1 − τ, t2 − s)dτds

]
. �

Corollary For any linear system (that is defined via convolution operation),

�
Cxx(t1, t2)

h∗(τ ; t2) �

Cxy(t1, t2)
= E[h∗(τ ; t2) ∗ Cxx(t1, t2)]

h(τ ; t1) �

Cyy(t1, t2)
= E[h∗(τ ; t2) ∗ h(τ ; t1) ∗ Cxy(t1, t2)]

Final note on Fundamental Theorem and Theorem 9-2:

• The above Fundamental Theorem, Theorem 9-2 and Corollary also apply to

linear systems without legitimate convolutional forms, e.g., differentiators.

– By treating the system as y(t) = lim
ε↓0

∫ ∞

−∞
hε(τ )x(t− τ )dτ

with hε(τ ) =
δ(τ + ε) − δ(τ )

ε
.
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DefinitionA differentiator is a linear time-invariant (deterministic) system whose

output is the derivative of the input.

By Fundamental Theorem,

ηy(t) =
∂ηx(t)

∂t
.

By Theorem 9-2 (regard that hε(τ ) = [δ(τ + ε) − δ(τ )]/ε with ε ↓ 0 is real ),

Rxy(t1, t2) =
∂Rxx(t1, t2)

∂t2
and Ryy(t1, t2) =

∂Rxy(t1, t2)

∂t1
=

∂2Rxx(t1, t2)

∂t1∂t2

By the corollary on Slide 9-97,

Cxy(t1, t2) =
∂Cxx(t1, t2)

∂t2
and Cyy(t1, t2) =

∂Cxy(t1, t2)

∂t1
=

∂2Cxx(t1, t2)

∂t1∂t2

Exercise (cf. page 403 on text) Let the input x(t) to a differentiator is a

Poisson process. The resultant output y(t) is a train of Poisson impulses

y(t) =
∑
i

δ(t − ti).

Find the mean and autocorrelation functions of the Poisson impulse process.
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Definition A deterministic differential equation with random excitation is an

equation of the form:

any
(n)(t) + · · · + a0y(t) = x(t).

With the assumption that the initial condition is zero, y(t) is unique, and is the

output due to input x(t) onto a linear time-invariant deterministic system.

Again, by Fundamental Theorem,

anη
(n)
y (t) + · · · + a0ηy(t) = ηx(t) with ηy(0) = · · · = η(n−1)

y (0) = 0.

By Theorem 9-2,

an
∂nRxy(t1, t2)

∂tn2
+· · ·+a0Rxy(t1, t2) = Rxx(t1, t2) with Rxy(t1, 0) = · · · = ∂n−1Rxy(t1, 0)

∂tn−1
2

= 0

an
∂nRyy(t1, t2)

∂tn1
+· · ·+a0Ryy(t1, t2) = Rxy(t1, t2) with Ryy(0, t2) = · · · = ∂n−1Ryy(0, t2)

∂tn−1
1

= 0
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Generalization of Theorem 9-2

For a real system, define

Rxxx(t1, t2, t3) = E[x(t1)x(t2)x(t3)], Rxxy(t1, t2, t3) = E[x(t1)x(t2)y(t3)],

Rxyy(t1, t2, t3) = E[x(t1)y(t2)y(t3)], Ryyy(t1, t2, t3) = E[y(t1)y(t2)y(t3)].

For any linear system,

�
Rxxx(t1, t2, t3)

h(τ ; t3) �

Rxxy(t1, t2, t3)
= E[h(τ ; t3) ∗Rxxx(t1, t2, t3)]

h(τ ; t2) �

= E[h(τ ; t3) ∗ h(τ ; t2) ∗ Rxxx(t1, t2, t3)]
Rxyy(t1, t2, t3)

h(τ ; t1) �

Ryyy(t1, t2, t3)
= E[h(τ ; t3) ∗ h(τ ; t2) ∗ h(τ ; t1) ∗Rxxx(t1, t2, t3)]

The end of Section 9-2 Systems with Stochastic Inputs
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Definition (Power spectrum) The power spectrum (or spectral density) of a

WSS process x(t) is the Fourier transform Sxx(ω) of its autocorrelation Rxx(τ ) =

E[x(t + τ )x∗(t)]. Specifically,

Sxx(ω) =

∫ ∞

−∞
Rxx(τ )e

−jωτdτ.

• Rxx(τ ) =
1

2π

∫ ∞

−∞
Sxx(ω)e

jωτdω.

• Since Rxx(−τ ) = R∗
xx(τ ), Sxx(ω) is real. (It is also non-negative, which will

be proved in Wiener-Khinchin Theorem in Slide 9-115.)

• If x(t) is real, Rxx(τ ) is real and even, and so is Sxx(ω).

In such case,

Sxx(ω) = 2

∫ ∞

0

Rxx(τ ) cos(ωτ )dτ

Rxx(τ ) =
1

π

∫ ∞

0

Sxx(ω) cos(ωτ )dω
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Definition (Cross-power spectrum) The cross-power spectrum of two

jointly WSS processes x(t) and y(t) is the Fourier transform Sxy(ω) of their cross-

correlation Rxy(τ ) = E[x(t + τ )y∗(t)]. Specifically,

Sxy(ω) =

∫ ∞

−∞
Rxy(τ )e

−jωτdτ.

Example 9-22 (Continue from Example 9-6 on Slide 9-50): Semi-

random Telegraph Signal

Following Example 9-5 under λ(t) = λ, we re-define

x(t) =

{
1, if n[0, t) is even;

−1, if n[0, t) is odd.

Determine the power spectrum of x(t).

0
�

t1 t2 t3 t4

x(t)

t5 t6 t7 · · ·
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Answer: We already derive that Rxx(τ ) = e−2λ|τ |. Hence,

Sxx(ω) =

∫ ∞

−∞
e−2λ|τ |e−jωτdτ =

∫ ∞

0

e−2λτe−jωτdτ +

∫ 0

−∞
e2λτe−jωτdτ

=

∫ ∞

0

e−(2λ+jω)τdτ +

∫ ∞

0

e−(2λ−jω)τdτ

=
1

2λ + jω
+

1

2λ− ω

=
4λ

4λ2 + ω2
.

�
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Definition (Covariance spectrum) The covariance spectrum of a WSS

process x(t) is the Fourier transform Sc
xx(ω) of its autocovariance Cxx(τ ) =

E[(x(t+τ )−ηx(t+τ ))(x(t)−ηx(t))
∗] = E[(x(t+τ )−η)(x(t)−η)∗]. Specifically,

S c
xx(ω) =

∫ ∞

−∞
Cxx(τ )e

−jωτdτ.

• It can be easily shown that Sxx(ω) = S c
xx(ω) + 2πη2δ(ω).

Exercise (Example 9-23) Let the input x(t) to a differentiator is a Poisson

process. The resultant output y(t) is a train of Poisson impulses

y(t) =
∑
i

δ(t − ti).

Find the covariance spectrum of the Poisson impulse process.
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Lemma Given an arbitrary non-negative integrable function S(ω), there exists a

complex WSS process x(t) whose power spectrum is equal to S(ω).

Proof: The desired complex process can be defined as x(t) = aej(ωt−ϕ) for |a|2 =
1
2π

∫∞
−∞ S(ω)dω, whereω is a random variable with density fω(ω) =

S(ω)

2π|a|2 if |a| > 0,

and with arbitrary density if |a| = 0, and ϕ is uniformly distributed over [−π, π)

and independent of ω. The validation of WSS of x(t) is left to you as an exercise

(cf. Slide 9-64). �

Lemma Given an arbitrary non-negative integrable even function S(ω), there

exists a real WSS process x(t) whose power spectrum is equal to S(ω).

Proof: The desired real process can be defined as x(t) = a cos(ωt + ϕ) for

a2 = 1
π

∫∞
−∞ S(ω)dω, where ω is a random variable with density fω(ω) =

S(ω)
πa2

if

|a| > 0, and with arbitrary density if |a| = 0, and ϕ is uniformly distributed over

[−π, π) and independent of ω. The validation of WSS of x(t) is already done in

Slide 9-64. �
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Example 9-24 (Doppler effect)

�receiver ����
�
�
�����

���
�

velocity v

projected velocity vx
ejω0t

x(t) = aejω0(t−r/c)

r = r0 + vxt

θ�����
�

A moving transmitter transmits a harmonic oscillator signal ejω0t to a fixed-in-

location receiver as shown above.

Assume that v is a random variable with density fv(v), and θ ∈ (−π/2, π/2).

Hence, the received signal equals x(t) = aej(ωt−ϕ), where

ω = ω0

(
1 − vx

c

)
= ω0

(
1 − v cos(θ)

c

)
and ϕ =

r0ω0

c
.

Determine the power spectrum of x(t).

Answer:

The uniformity of ϕ is nothing to do with the power spectrum of x(t) in the first

lemma in Slide 9-105. It is required only to fulfill the WSS requirement of x(t).

Use the lemma in the previous slide,

Sxx(ω) = 2π|a|2fω(ω) = 2π|a|2 c

ω0 cos(θ)
fv

(
c

cos(θ)

(
1 − ω

ω0

))
. �
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fω(ω) =
∂

∂ω
Fω(ω) =

∂

∂ω
Pr[ω ≤ ω]

=
∂

∂ω
Pr

[
ω0

(
1− v cos(θ)

c

)
≤ ω

]
=

∂

∂ω
Pr

[
v ≥ c

cos(θ)

(
1 − ω

ω0

)]
=

∂

∂ω

{
1− Fv

(
c

cos(θ)

(
1− ω

ω0

))}
=

c

ω0 cos(θ)
fv

(
c

cos(θ)

(
1 − ω

ω0

))

• Further assume that v is uniformly distributed over [v1, v2]. Then,

Sxx(ω) = 2π|a|2 c

ω0 cos(θ)
fv

(
c

cos(θ)

(
1− ω

ω0

))
= 2π|a|2 c

ω0(v2 − v1) cos(θ)

for ω0

(
1 − v2

c
cos(θ)

)
≤ ω ≤ ω0

(
1 − v1

c
cos(θ)

)
.

Thus, the random motion causes broadening of the spectrum.
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• If Pr[v = v] = 1, then

Pr
[
ω = ω0

(
1− v

c
cos(θ)

)]
= 1,

which implies

Sxx(ω) = 2π|a|2 · δ
(
ω − ω0

(
1 − v

c
cos(θ)

))
.

Thus, the deterministic motion causes a shift in spectrum frequency.

• If cos(θ) ↓ 0, ω = ω0 with probability one. Hence, Sxx(ω) = 2π|a|2δ(ω − ω0).

Thus, no spectrum broadening or frequency-shift is caused by perpendicular

motion, either random or deterministic.
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Fundamental Theorem and Theorem 9-2 Revisited For any linear sys-
tem with WSS input and h(τ ; t) = h1(τ )h2(t),

�
Rxx(τ)

�

Rxy(t+ τ, t)
= E{h∗

2(t)[h
∗
1(−τ) ∗Rxx(τ)]}

�

Ryy(t+ τ, t)
= E{h2(t+ τ)h∗

2(t)[h
∗
1(−τ) ∗ h1(τ) ∗Rxx(τ)]}

Proof: This is a consequence of

Rxy(t1 = t + τ, t2 = t) = E

[∫ ∞

−∞
h∗(u; t2)Rxx(t1 − t2 + u)du

]
= E

[∫ ∞

−∞
h∗
2(t)h

∗
1(u)Rxx(τ + u)du

]
= E

[
h∗
2(t)

∫ ∞

−∞
h∗
1(−u)Rxx(τ − u)du

]
.

Ryy(t1 = t + τ, t2 = t) = E

[∫ ∞

−∞

∫ ∞

−∞
h∗(u′; t2)h(u; t1)Rxx(t1 − t2 − u + u′)dudu′

]
= E

[∫ ∞

−∞

∫ ∞

−∞
h∗
2(t2)h

∗
1(u

′)h2(t1)h1(u)Rxx(τ − u + u′)dudu′
]

= E

[
h2(t + τ )h∗

2(t)

∫ ∞

−∞

∫ ∞

−∞
h∗
1(−u′)h1(u)Rxx(τ − u − u′)dudu′

]
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�

Theorem 9-4 For any linear system with WSS input and h(τ ; t) = h1(τ )e
jω0t,

�
Sxx(ω)

�

Sxy(ω; t)

= e−jω0tE[H∗
1(ω)Sxx(ω)]

�

Syy(ω)

= E[|H1(ω − ω0)|2Sxx(ω − ω0)]

Proof:

Sxy(ω; t) =

∫ ∞

−∞
Rxy(t + s, t)e−jωsds

= e−jω0t

∫ ∞

−∞
E

[∫ ∞

−∞
h∗
1(−τ )Rxx(s − τ )dτ

]
e−jωsds

= e−jω0tE

[∫ ∞

−∞
h∗
1(−τ )e−jωτ

(∫ ∞

−∞
Rxx(v)e

−jωvdv

)
dτ

]
, v = s − τ

= e−jω0tE[H∗
1(ω)Sxx(ω)].
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Syy(ω; t) =

∫ ∞

−∞
Ryy(t + s, t)e−jωsds

=

∫ ∞

−∞
e−jω0tejω0(t+s)E

[∫ ∞

−∞

∫ ∞

−∞
h∗
1(−τ ′)h1(τ )Rxx([s− τ ′] − τ )dτ ′dτ

]
e−jωsds

= E

[∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h∗
1(τ

′′)h1(τ )Rxx(s − τ + τ ′′)e−j(ω−ω0)sdsdτdτ ′′
]
, τ ′′ = −τ

= E

[∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h∗
1(τ

′′)h1(τ )Rxx(v)e
−j(ω−ω0)(v+τ−τ ′′)dvdτdτ ′′

]
, v = s − τ + τ ′′

= Sxx(ω − ω0)E[|H1(ω − ω0)|2]
�
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Transfer-function form of linear systems

• In addition to convolutionalization of linear system, a linear time-invariant

system can be represented in a spectrum form through a (random) transfer

function H(ω) as

Y (ω) = X(ω)H(ω),

where

Y (ω) =

∫ ∞

−∞
y(t)e−jωtdt and X(ω) =

∫ ∞

−∞
x(t)e−jωtdt.

aY 1(ω) + bY 2(ω) = [aX1(ω) + bX2(ω)]H(ω).

Example 9-26 The differentiator in Slide 9-98 can be represented as Y (ω) =

X(ω)H(ω) with H(ω) = jω.

• Remark: If transfer function H(ω) has inverse Fourier transform h(τ ), then

Y (ω) = X(ω)H(ω) can be equivalently represented as y(t) = h(τ ) ∗ x(t).
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• The Fourier transform of a function g(t) exists if
∫∞
−∞ |g(t)|dt < ∞, and g(t)

only has finite number of local maxima, minima and discontinuities in every

finite interval.

Define a function g(x) =

{
1 if |x| < 1 and x is not a rational;

0 otherwise
.

Then,
∫ 1

−1 |g(x)|dx ≤ ∫ 1

−1 dx = 2 < ∞, but for such a function, the conven-

tional Fourier transform is not defined!

• Extended Fourier Transform: Define the extended Fourier transform of

a function g(t) (that does not have Fourier transform) as limn→∞ Gn(ω), where

Gn(ω) is the Fourier transform of gn(t) and limn→∞ gn(t) = g(t).

Example: g(t) = 1 does not have Fourier transform, but has extended Fourier

transform through gn(t) = e−|t|/n as

lim
n→∞

∫ ∞

−∞
e−|t|/ne−jωtdt = lim

n→∞
2n

1 + n2ω2
= 2πδ(ω).

Adding the multiplicative constant 2π is because

∫ ∞

−∞

2n

1 + n2ω2
dω = 2π.
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Definition (Hilbert transform) The system response of a quadrature filter

H(ω) = −jsgn(ω) =

{ −j, ω > 0;

j, ω < 0

due to system input x(t) is called the Hilbert transform of x(t).

• H(ω) is named the quadrature filter because it is an all-pass filter with ±90◦

phase shift.

• The extended inverse Fourier transform of H(ω) is given by

1

2π

∫ ∞

−∞
Hn(ω)e

jωτdω =
1

2π

∫ ∞

−∞

(
−jsgn(ω)e−|ω|/n

)
ejωτdω

=
1

2π

∫ 0

−∞

(
jeω/n

)
ejωτdω +

1

2π

∫ ∞

0

(
−je−ω/n

)
ejωτdω

=
n

2π(nτ − j)
+

n

2π(nτ + j)

=
n2τ

π(n2τ 2 + 1)

n→∞−→
{

1
πτ

τ �= 0

0 τ = 0
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Definition (Analytical signal) The complex process of z(t) = x(t) + jx̂(t)

is called the analytical signal of a real process x(t), where x̂(t) is the Hilbert

transform of x(t).

Z(ω) = X(ω) + jX̂(ω)

= X(ω) + jX(ω)H(ω)

= X(ω) + jX(ω)[−jsgn(ω)]

= [1 + sgn(ω)]X(ω)

= 2X(ω) · 1[ω > 0] +X(ω) · 1[ω = 0].

Theorem (Wiener-Khinchin Theorem) The power spectrum for any WSS

process x(t) is non-negative everywhere.

Proof: First note that Sxx(ω) that is defined as the (non-extended) Fourier trans-

form of Rxx(τ ) is continuous everywhere. Suppose Sxx(ω) is negative for some

interval (ω1, ω2). Define a filter H(ω) = 1 for ω ∈ (ω1, ω2), and zero, otherwise.

Then the output power spectrum due to x(t) is equal to Syy(ω) = Sxx(ω)|H(ω)|2.
By

E[|y(t)|2] = 1

2π

∫ ω2

ω1

Sxx(ω)|H(ω)|2dω =
1

2π

∫ ω2

ω1

Sxx(ω)dω ≥ 0,

we obtain the desired contradiction. �
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Definition (Integrated spectrum) Define the integrated spectrum of a pro-

cess x(t) as:

Fxx(ω) �
∫ ω

−∞
Sxx(s)ds.

• The role of the integrated spectrum versus the power spectrum is similar to

that of the cdf versus pdf of a random variable.

• Note that the cdf alone is sufficient to well-define a random variable (cf. Slide

9-8). Also note that the pdf of a random variable may not exist (without

introducing the Dirac delta functions)!

• Hence, the introduction of integrated spectrums avoids the use of singularity

functions such as Dirac delta functions, and the autocorrelation function can

be obtained through a Riemann-Stieltjes integral:

Rxx(τ ) =
1

2π

∫ ∞

−∞
ejωtdFxx(ω).
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Definition (Integrated covariance spectrum) Define the integrated co-

variance spectrum of a process x(t) as:

F c
xx(ω) �

∫ ω

−∞
Cxx(s)ds.
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Summary

• A function R(τ ) is the autocorrelation function of some WSS process x(t), if

its Fourier transform S(ω) is non-negative (cf. Slide 9-105).

• If a function R(τ ) has non-negative Fourier transform, we can find a process

x(t) with autocorrelation function R(τ ) (cf. Slide 9-105).

• There exists a process with autocorrelation R(t1, t2) if, and only if, R(t1, t2)

is p.d. (cf. Slides 9-32 and 9-42).

• A function R(τ ) has non-negative Fourier transform if, and only if, it is p.d.,

i.e., ∑
i

∑
j

aia
∗
jR(ti − tj) ≥ 0 for any complex ai and aj.
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How to examine whether a function R(τ ) is p.d.?

Answer: Polya’s criterion.

Lemma (Polya’s sufficient criterion) A function R(τ ) is p.d., if it is concave

for τ > 0 and it tends to a finite limit as |τ | → ∞.

Theorem 9-5 If the autocorrelation function Rxx(τ ) of a WSS process x(t)

satisfies that Rxx(τ1) = Rxx(0) for some τ1 �= 0, then Rxx(τ ) is periodic with

period τ1.

Proof: By Cauchy-Schwartz’s inequality,

|E[(x(t+ τ + τ1)− x(t+ τ ))x∗(t)]|2 ≤ E[|x(t+ τ + τ1)− x(t+ τ ))|2]E[|x(t)|2],
which is equivalent to:

|Rxx(τ + τ1) −Rxx(τ )|2 ≤ (2Rxx(0) −Rxx(τ1) − Rxx(−τ1)︸ ︷︷ ︸
=R∗

xx(τ1)=Rxx(0)

)Rxx(0) = 0.

Therefore, Rxx(τ + τ1) = Rxx(τ ) for every τ . �
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Similar proof to Theorem 9-5 can be used to prove the following corollary.

Corollary If the autocorrelation function Rxx(τ ) of a WSS process x(t) is con-

tinuous at the origin, it is continuous everywhere.

Proof: By Cauchy-Schwartz’s inequality,

|E[(x(t+ τ + τ1)− x(t+ τ ))x∗(t)]|2 ≤ E[|x(t+ τ + τ1)− x(t+ τ ))|2]E[|x(t)|2],
which is equivalent to:

|Rxx(τ + τ1) − Rxx(τ )|2 ≤ (2Rxx(0)−Rxx(τ1) −Rxx(−τ1))Rxx(0).

Therefore,

lim
|τ1|↓0

Rxx(τ1) = Rxx(0) implies lim
|τ1|↓0

Rxx(τ + τ1) = Rxx(τ ) for every τ.

�

Remark

• Necessary exclusion: Theorem 9-5 and the followup corollary can be used

to exclude thoseR(τ ) that cannot be the autocorrelation function of someWSS

process.
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Example 9-30 Function w(τ ) =

{
a2 − τ 2, |τ | < a;

0, |τ | > a
is not an autocorrelation

function of any process.

This is because if w(τ ) is the autocorrelation function of x(t), then the autocor-

relation function of the differentiator output y(t) due to input x(t) should be:

Ryy(τ ) = −∂2w(τ )

(∂τ )2
=

{
2, |τ | < a;

0, |τ | > a

However, Ryy(τ ) is continuous at the origin, but is not continuous at |τ | = a, which

indicates that Ryy(τ ) cannot be the autocorrelation of any process.



Bound on Cross Spectrums 9-122

Lemma For any a and b,∣∣∣∣
∫ b

a

Sxy(ω)dω

∣∣∣∣
2

≤
(∫ b

a

Sxx(ω)dω

)(∫ b

a

Syy(ω)dω

)
.

Proof: Let z(t) and w(t) be respectively the system outputs due to WSS inputs

x(t) and y(t) through filterH(ω) = 1·1{a < ω < b}. Then, by Cauchy-Schwartz’s
inequality,∣∣E2[z(t)w∗(t)]

∣∣ ≤ E2 [|z(t)w∗(t)|] ≤ E[|z(t)|2]E[|w∗(t)|2]
= Rzz(0)Rww(0)

=
1

2π

(∫ ∞

−∞
Sxx(ω)|H(ω)|2dω

)
1

2π

(∫ ∞

−∞
Syy(ω)|H(ω)|2dω

)

=
1

4π2

(∫ b

a

Sxx(ω)dω

)(∫ b

a

Syy(ω)dω

)
.
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The proof is completed by noting that:

E[z(t)w∗(t)] = E

[∫ ∞

−∞
h(τ )x(t− τ )dτ ·

∫ ∞

−∞
h∗(s)y∗(t − s)ds

]
=

∫ ∞

−∞

∫ ∞

−∞
h(τ )h∗(s)Rxy(s − τ )dτds

=

∫ ∞

−∞

∫ ∞

−∞
h(τ )h∗(s)

1

2π

(∫ ∞

−∞
Sxy(ω)e

jω(s−τ)dω

)
dτds

=
1

2π

∫ ∞

−∞
Sxy(ω)|H(ω)|2dω

=
1

2π

∫ b

a

Sxy(ω)dω.

�
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Definition (Equality in the mean-square (MS) sense) Two processes

{x(t), t ∈ I} and {y(t), t ∈ I} are equal in the MS sense if, and only if,

E[|x(t)− y(t)|2] = 0 for every t ∈ I.

(Page 375 on text) Denote by

At � {ζ ∈ S : x(t, ζ) = y(t, ζ)} and A∞ �
⋂
t∈I

At.

Then, the above definition requires P (At) = 1 for every specific t, and does not

require P (A∞) = 1.

Note that P (
⋂
At) = 1 if P (At) = 1 that is very true for countable intersection

but may not be true for uncountably infinite intersection.

Example S = I = �, At = S − {t} and P (A) =
∫
A

1√
2π
e−α2/2dα.

Then, P (A∞) = P (
⋂

t∈� At) = P (∅) = 0, and still, P (At) = 1 for every t.

Exercise Is A∞ guaranteed to be a probabilistically measurable event?
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Definition A process x(t) is called MS periodic if

E[|x(t + T ) − x(t)|2] = 0

for every t.

Similar to Slide 9-124, the above definition requires P (At) = 1 for every t, where

At = {ζ ∈ S : x(t + T, ζ) = x(t, ζ)}, but does not require P (∩t∈IAt) = 1.

Theorem 9-1 A process x(t) is MS periodic if, and only if, its autocorrelation

function is doubly periodic, namely,

Rxx(t1 +mT, t2 + nT ) = Rxx(t1, t2) for every integer m and n.

Proof:

1. Forward: Since x(t) is MS periodic, by Cauchy-Schwartz inequality,

|E{x(t1) · (x(t2 + T )− x(t2))
∗}| ≤ E{|x(t1) · (x(t2 + T )− x(t2))

∗|}
≤ E1/2[|x(t1)|2]E1/2[|x(t2 + T )− x(t2)|2]
= 0,

which implies Rxx(t1, t2+T ) = Rxx(t1, t2). The forward proof is completed by

repeating using the Cauchy-Schwartz inequality.
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2. Converse:

• That Rxx(t1+mT, t2+nT ) = Rxx(t1, t2) for every integerm and n implies

Rxx(t + T, t + T ) = Rxx(t + T, t) = Rxx(t, t + T ) = Rxx(t, t).

• Hence,

E[|x(t + T )− x(t)|2]
= Rxx(t + T, t + T ) −Rxx(t + T, t)−Rxx(t, t + T ) +Rxx(t, t)

= 0.

�
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Definition (MS continuity) A process x(t) is called MS continuous if

lim
ε↓0

E[|x(t + ε)− x(t)|2] = 0 for every t.

• Since

E[|x(t+ε)−x(t)|2] = Rxx(t+ε, t+ε)−Rxx(t+ε, t)−Rxx(t, t+ε)+Rxx(t, t),

it turns out that a process is MS continuous if, and only if, its autocorrelation

function is continuous.

That a process x(t) is MS continuous does not imply that its sample x(t, ζ) is

continuous in t. E.g., for Poisson processes, E[|x(t+ε)−x(t)|2] = E[|n[t, t+
ε)|2] = λε(1 + λε)

ε↓0−→ 0, but x(t, ζ) is apparently discontinuous at ti(ζ).

• As far as MS periodicity is concerned (cf. Slide 9-125), since

E[|x(t + T )− x(t)|2] = 2 · Re{Rxx(0)− Rxx(T )}
for a WSS x(t), a WSS process is MS periodic if, and only if, the real part of

its autocorrelation function is periodic.
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We can likewise define MS differentiability and MS integrability as follows. (Details

can be found in Appendix 9A.)

Definition (MS differentiability) A process x(t) is called MS differentiable

if

lim
ε↓0

E

[∣∣∣∣x(t + ε)− x(t)

ε
−
(
lim
γ↓0

x(t + γ)− x(t)

γ

)∣∣∣∣2
]
= 0 for every t.

• Since

E

[∣∣∣∣x(t + ε) − x(t)

ε
− x′(t)

∣∣∣∣2
]
=

Rxx(t + ε, t + ε)− Rxx(t + ε, t)− Rxx(t, t + ε) + Rxx(t, t)

ε2

−Rxx′(t + ε, t)− Rxx′(t, t)

ε
− Rx′x(t, t + ε) −R∗

x′x(t, t)

ε
+Rx′x′(t, t),

and (cf. Slide 9-98)

Rxx′(t1, t2) =
∂Rxx(t1, t2)

∂t2
and Rx′x′(t1, t2) =

∂Rxx′(t1, t2)

∂t1
=

∂2Rx′x′(t1, t2)

∂t1∂t2
,

a process x(t) is MS differentiable if, and only if, ∂2Rxx(t1, t2)/∂t1∂t2
∣∣
t1=t2

exists.



MS Differentiability and MS Integrability 9-129

Definition (MS integrability) A process x(t) is called MS

(Riemann-)integrable if

lim
∆↓0

E



∣∣∣∣∣∣
∫ b

a

x(t)dt−
�(b−a)/∆�∑

i=0

x(a + i∆)× ∆

∣∣∣∣∣∣
2

 = 0 for every a and b.

• Since, by letting y(t) =
∫ t

t−(b−a) x(s)ds =
∫∞
−∞ h(τ )x(t − τ )dτ with h(τ ) = 1

for 0 ≤ τ < (b− a),

E



∣∣∣∣∣∣y(b)− ∆

�(b−a)/∆�∑
i=0

x(a + i∆)

∣∣∣∣∣∣
2

 = Ryy(b, b)+∆

2

�(b−a)/∆�∑
i=0

�(b−a)/∆�∑
k=0

Rxx(a+i∆, a+k∆)

−∆

�(b−a)/∆�∑
i=0

Rxy(a + i∆, b)−∆

�(b−a)/∆�∑
i=0

Ryx(b, a + i∆)

a process x(t) is MS (Riemann-)integrable if, and only if,
∫ b

a

∫ b

a Rxx(t1, t2)dt1dt2
is (Riemann-)integrable.

The end of Section 9-3 The Power Spectrum
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• A discrete-time process can be viewed as a sampled counterpart of a continuous-

time process as

x[m] = x(m) for integer m,

where in text, the index of a discrete process is specially denoted by “bracket”.

For convenience, we simply take the sampling period to be 1.

• For this reason, most results involving continuous-time processes can be readily

extended to discrete-time processes.

• As an example, the autocorrelation function of a discrete-time process x[m]

can be defined as that for integers m1 and m2,

Rxx[m1,m2] = E{x[m1]x
∗[m2]}.

If it is WSS, then Rxx[m1,m2] reduces to:

Rxx[τ ] = E{x[m + τ ]x∗[m]} = E{x(m + τ )x∗(m)} = Rxx(τ ),

where Rxx(τ ) is the autocorrelation function of the parent continuous-time

process x(t).



9-4 Discrete-Time Processes 9-131

• Based on the previous observation, the power spectrum of the random process

{x[m],m ∈ N = set of integers} is given by:

Sxx[ω] =

∞∑
n=−∞

Rxx[n]e
−jωn

(
=

∞∑
n=−∞

Rxx[n]
(
ejω

)−n
=

∞∑
n=−∞

Rxx[n]z
−n

)
.

Note that Sxx[ω] (which is sometimes written as Sxx[z] with z = ejω) is a

function of ejω, and hence, is periodic with period 2π.

Sxx[ω] is named the discrete(-time) Fourier transform of Rxx[τ ].

• We can derive {Rxx[n]}n integer from the inverse discrete(-time) Fourier trans-

form (by integrating over one period):

Rxx[n] =
1

2π

∫ π

−π

Sxx[ω]e
jωndω for integer n.



9-4 Discrete-Time Processes 9-132

• By noting from Slide 9-130 that for integer τ ,

Rxx[τ ] = Rxx(τ ) =
1

2π

∫ ∞

−∞
Sxx(ω)e

jωτdω

=
1

2π

∞∑
k=−∞

∫ (2k+1)π

(2k−1)π

Sxx(ω)e
jωτdω

=
1

2π

∞∑
k=−∞

∫ π

−π

Sxx(ω
′ + 2kπ)ej(ω

′+2kπ)τdω′ (ω′ = ω − 2kπ)

=
1

2π

∫ π

−π

( ∞∑
k=−∞

Sxx(ω
′ + 2kπ)

)
ejω

′τdω′,

and the uniqueness of the discrete(-time) Fourier transform, we obtain:

Sxx[ω] =
∞∑

k=−∞
Sxx(ω + 2kπ).

An aliasing in spectrums is resulted from sampling.



Convolution in Discrete-Time System 9-133

If x[n] is an input to a discrete-time system, the resulting output is the digital

convolution of x[n] with h[n]:

y[n] =
∞∑

k=−∞
h[k]x[n− k] = h[n] ∗ x[n].

Fundamental Theorem and Theorem 9-2 For any linear time-invariant
discrete-time system (that is defined via convolution operation),

ηx[t]
� h[t] �

ηy[t]
= E[h[t] ∗ η[t]]

�
Rxx[t1, t2]

h∗[t2] �

Rxy[t1, t2]
= E[h∗[t2] ∗Rxx[t1, t2]]

h[t1] �

Ryy[t1, t2]
= E[h∗[t2] ∗ h[t1] ∗ Rxx[t1, t2]]
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• A function R(τ ) has non-negative Fourier transform if, and only if, it is p.d.,

i.e., ∑
i

∑
j

aia
∗
jR(ti − tj) ≥ 0 for any complex ai and aj.

Lemma (Schur) A (summable) discrete function R[τ ], satisfying R∗[−τ ] =

R[τ ], has non-negative discrete(-time) Fourier transform

S[ω] =

∞∑
m=−∞

R[m]e−jmω = R[0] + 2

∞∑
m=1

Re
{
R[m]e−jmω

}
if, and only if, the Hermitian Toeplitz matrix Tn is non-negative definite for every

n, where

Tn �



R[0] R[1] R[2] · · · R[n]

R∗[1] R[0] R[1] · · · R[n− 1]

R∗[2] R∗[1] R[0] · · · R[n− 2]
... ... ... . . . ...

R∗[n] R∗[n − 1] R∗[n− 2] · · · R[0]


 .
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Proof:

1. Forward: Suppose S[ω] ≥ 0. Let �a = [a0, a1, · · · , an]T .
Then,

�a†
Tn�a =

n∑
k=0

n∑
m=0

a∗
kamR[m − k]

=
n∑

k=0

n∑
m=0

a∗
kam

1

2π

∫ π

−π

S[ω]ej(m−k)ωdω

=
1

2π

∫ π

−π

S[ω]
n∑

k=0

n∑
m=0

(ake
jkω)∗(amejmω)dω

=
1

2π

∫ π

−π

S[ω]

∣∣∣∣∣
n∑

m=0

ame
jmω

∣∣∣∣∣
2

dω ≥ 0,

where “†” represents the conjugate-transpose matrix operation.
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2. Converse: Suppose Tn is non-negative definite for every n.

Let �a = [a0, a1, · · · , an]T , where am =
√
1 − ρ2ρmejmω0 for some 0 < ρ < 1

and −π ≤ ω0 < π. Then,

0 ≤ �a†
Tn�a =

1

2π

∫ π

−π

(1 − ρ2)

∣∣∣∣∣
n∑

m=0

ρmejm(ω−ω0)

∣∣∣∣∣
2

S[ω]dω

=
1

2π

∫ π

−π

(1 − ρ2)

∣∣∣∣1 − ρn+1ej(ω−ω0)(n+1)

1 − ρej(ω−ω0)

∣∣∣∣2 S[ω]dω
Lebesque (Dominated) Convergence Theorem Suppose |fn(x)| ≤
g(x) on x ∈ E for some E-integrable g, and limn→∞ fn(x) = f(x) for x ∈ E.

Then,
∫
E limn→∞ fn = limn→∞

∫
E fn.

Hence,

0 ≤ lim
n→∞

1

2π

∫ π

−π

(1− ρ2)

∣∣∣∣1− ρn+1ej(ω−ω0)(n+1)

1− ρej(ω−ω0)

∣∣∣∣2 S[ω]dω
=

1

2π

∫ π

−π

lim
n→∞(1− ρ2)

∣∣∣∣1− ρn+1ej(ω−ω0)(n+1)

1− ρej(ω−ω0)

∣∣∣∣2 S[ω]dω.
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For the validity of the dominated convergence theorem, one only needs to

examine the boundedness of the integrand in finite integral domain [−π, π).∣∣∣∣∣∣
∣∣∣∣∣

n∑
m=0

ρmejm(ω−ω0)

∣∣∣∣∣
2

S[ω]

∣∣∣∣∣∣ ≤
( ∞∑

m=0

∣∣∣ρmejm(ω−ω0)
∣∣∣
)2( ∞∑

τ=−∞
|R[τ ]|

)

=

(
1

1− ρ

)2
( ∞∑

τ=−∞
|R[τ ]|

)
,

where |S[ω]| = ∣∣∑∞
τ=−∞ R[τ ]e−jωτ

∣∣ ≤ ∑∞
τ=−∞ |R[τ ]| < ∞ (by “summable”

assumption).

⇒ 0 ≤ 1

2π

∫ π

−π

lim
n→∞(1 − ρ2)

∣∣∣∣1 − ρn+1ej(ω−ω0)(n+1)

1 − ρej(ω−ω0)

∣∣∣∣2 S[ω]dω
=

1

2π

∫ π

−π

(1 − ρ2)

1− 2ρ cos(ω − ω0) + ρ2
S[ω]dω

=
1

2π

∫ π

−π

(1 − ρ2)

1− 2ρ cos(ω − ω0) + ρ2
ϕ(ejω)dω, where ϕ(ejω) =

∞∑
τ=−∞

R[τ ](ejω)−τ
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Poisson’s Integral Formula

ϕ(ρejω0) =
1

2π

∫ 2π

0

(r2 − ρ2)

r2 − 2rρ cos(ω − ω0) + ρ2
ϕ(rejω)dω for 0 < ρ < r.

⇒ ϕ(ρejω0) =
∞∑

τ=−∞
R[τ ](ρejω)−τ ≥ 0 for any 0 < ρ < 1

⇒ Interior radial limit S[ω0] = lim
ρ↑1

ϕ(ρejω0) ≥ 0.

�
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Corollary (Paley-Wiener criterion) Following Schur’s Lemma, if, in addi-

tion,
1

2π

∫ π

−π

log(S[ω])dω > −∞,

then Tn is positive definite for every n.

Proof: Suppose there exists some non-zero �a such that

0 = �a†
Tn�a =

1

2π

∫ π

−π

S[ω]

∣∣∣∣∣
n∑

m=0

ame
jmω

∣∣∣∣∣
2

dω.

Since S[ω] ≥ 0, the integrand inside the above equation must be equal to zero

almost everywhere. With additionally
∫ π

−π

∣∣∑n
m=0 ame

jmω
∣∣2 dω > 0 (See the green

box on next slide), we obtain∫ π

−π

log(S[ω])dω = −∞,

a contradiction to Paley-Wiener criterion is obtained. �
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〈ejnω, ejmω〉 � 1

2π

∫ π

−π

ej(n−m)ωdω =
sin((n −m)π)

(n− m)π
=

{
1, n = m

0, n �= m

Thus,
1

2π

∫ π

−π

∣∣∣∣∣
n∑

m=0

ame
jmω

∣∣∣∣∣
2

dω =

〈
n∑

m=0

ame
jmω,

n∑
m=0

ame
jmω

〉
=

n∑
m=0

|am|2 > 0.

Let f(ω) �
∣∣∑n

m=0 ame
jmω

∣∣2 and
∫ π

−π f(ω)dω = µ > 0. Define Sε � {ω ∈
[−π, π) : f(ω) > ε}. Then,∫

Sε
f(ω)dω = µ−

∫
[−π,π)\Sε

f(ω)dω ≥ µ− 2πε =
µ

2
if ε =

µ

4π
.

Accordingly, S[ω] = 0 for ω ∈ Sµ/(4π), which together with |S[ω]| < ∞ for

ω ∈ [−π, π) (by the “summable” assumption) implies∫ π

−π

log(S[ω])dω =

∫
Sµ/(4π)

log(S[ω])dω +

∫
[−π,π)\Sµ/(4π)

log(S[ω])dω = −∞,

where the last step holds because Sµ/(4π) cannot be a set of Lebesgue measure zero.
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Corollary The process x[t] =
∑n

i=1 cie
jωit is WSS if, and only if, {ci} are

uncorrelated with zero mean (provided that {ωi} are all distinct and does not

include zero.)

Proof: It is straightforward that x[t] is WSS when {ci} are uncorrelated with

zero mean.

Conversely, if x[t] =
∑n

i=1 cie
jωit is WSS, then

E{x[t]} = E

{
n∑

i=1

cie
jωit

}
=

n∑
i=1

E {ci} ejωit

implies that {ci} must be zero-mean (See the first green box in Slide 9-142), and

E{x[t + τ ]x∗[t]} =
n∑

i=1

n∑
k=1

E {cic∗
k} ejωiτejt(ωi−ωk)

implies that E{cic∗
k}ni=1 must be zero for every i �= k (See the second green box in

Slide 9-142). �
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

ejω1 − 1 ejω2 − 1 · · · ejωn − 1

ej2ω1 − 1 ej2ω2 − 1 · · · ej2ωn − 1
... ... . . . ...

ejnω1 − 1 ejnω2 − 1 · · · ejnωn − 1





E{c1}
E{c2}

...

E{cn}


 =



0

0
...

0




and with ω0 = 0,∣∣∣∣∣∣∣∣∣
Det





ejω1 − 1 ejω2 − 1 · · · ejωn − 1

ej2ω1 − 1 ej2ω2 − 1 · · · ej2ωn − 1
... ... . . . ...

ejnω1 − 1 ejnω2 − 1 · · · ejnωn − 1





∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
n∏

i=0

n∏
k=i+1

(
ejωi − ejωk

)∣∣∣∣∣ �= 0

Note that if ω1 = 0, then E{x[t]} may be non-zero mean.

We can define ωik = ωi − ωk and use a similar proof to the above derivation to

prove that E{cic∗
k} must be zero for every i �= k if {ωik} are all distinct.

If, however, ωik = ωi′k′ for some i, i′, k and k′, then we have E {cic∗
k} ejωiτ +

E
{
ci′c

∗
k′
}
ejωi′τ = 0 for every integer τ , which still implies E {cic∗

k} =

E
{
ci′c

∗
k′
}
= 0.



Theorem 9-4 Revisited 9-143

Theorem 9.4 (Discrete) For any linear time-invariant system with WSS input,

�
Sxx[ω]

H∗[ω] �

Sxy[ω]
= E{H∗[ω]Sxx[ω]}

H[ω] �

Syy[ω]

= E{|H[ω]|2Sxx[ω]}
⇓

Theorem 9.4 (Discrete) For any linear time-invariant system with WSS input,

�
Sxx[e

jω]
H∗[ejω] �

Sxy[e
jω]

= E{H∗[ejω]Sxx[e
jω]}

H[ejω] �

Syy[e
jω]

= E{|H[ejω]|2Sxx[e
jω]}

⇓
Theorem 9.4 (Discrete with z = ejω) For any linear time-invariant system
with WSS input,

�
Sxx[z]

H∗[z] �

Sxy[z]
= E{H∗[z]Sxx[z]}

H[z] �

Syy[z]

= E{|H[z]|2Sxx[z]}
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Theorem 9.4 (Discrete) For any real linear time-invariant system with WSS
input,

�
Sxx[z]

H[1/z] �

Sxy[z]
= E{H[1/z]Sxx[z]}

H[z] �

Syy[z]
= E{H[1/z]H[z]Sxx[z]}

Example 9-34 Define the real system through the recursion equation

y[n]− a · y[n− 1] = x[n],

where a is a real random variable with density f(a). Then,

Y [z] − az−1Y [z] = (1− az−1)Y [z] = X [z],

and hence,

H [z] =
Y [z]

X [z]
=

1

1 − az−1
.

Consequently,

Syy[z]=Sxx[z]E{H [z]H [z−1]}=Sxx[z]E

{
1

(1 − az−1)(1− az)

}
=Sxx[z]

∫ ∞

−∞

f(a)

(1 − az−1)(1− az)
da.

The end of Section 9-4 Discrete-Time Processes


