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13-1 Introduction 13-1

Concern:

• To estimate the random process s(t) in terms of another related process x(ξ)

for a ≤ ξ ≤ b.

Theorem 13-1 The best linear estimator of s(t) in terms of {x(ξ) : a ≤ ξ ≤ b},
which is of the form

ŝ(t) =

∫ b

a

h(α, t)x(α)dα

and which minimizes the MS error Pt = E[(s(t)− ŝ(t))2], satisfies

Rsx(t, s) =

∫ b

a

h(α, t)Rxx(α, s)dα for a ≤ s ≤ b.

Proof:

Pt = E[(s(t)− ŝ(t))2]

= E[s2(t)] +

∫ b

a

∫ b

a

h(α, t)h(β, t)E[x(α)x(β)]dαdβ − 2

∫ b

a

h(α, t)E[s(t)x(α)]dα

= Rss(0) +

∫ b

a

∫ b

a

h(α, t)h(β, t)Rxx(α, β)dαdβ − 2

∫ b

a

h(α, t)Rsx(t, α)dα.
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Under Riemann integrability assumption,

∂Pt

∂h(s, t)

=

(∫ b

a,β �=s

h(β, t)Rxx(s, β)dβ +

∫ b

a,α �=s

h(α, t)Rxx(α, s)dα + 2h(s, t)Rxx(s, s)

)
︸ ︷︷ ︸

conceptually

−2Rsx(t, s)

= 2

∫ b

a

h(α, t)Rxx(s, α)dα− 2Rsx(t, s).

�

Remark

• The minimum MS error is given by:

Pt = Rss(0) +

∫ b

a

h(α, t)

(∫ b

a

h(β, t)Rxx(α, β)dβ

)
dα− 2

∫ b

a

h(α, t)Rsx(t, α)dα

= Rss(0) +

∫ b

a

h(α, t)Rsx(t, α)dα− 2

∫ b

a

h(α, t)Rsx(t, α)dα

= Rss(0)−
∫ b

a

h(α, t)Rsx(t, α)dα.
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Theorem 13-1′ Following Theorem 13-1, we also have:

E[(s(t)− ŝ(t))x(ξ)] = 0 for a ≤ ξ ≤ b.

Proof:

E[(s(t)− ŝ(t))x(ξ)] = E[s(t)x(ξ)]−
∫ b

a

h(α, t)E[x(α)x(ξ)]dα

= Rsx(t, ξ)−
∫ b

a

h(α, t)Rxx(α, ξ)dα

= Rsx(t, ξ)−Rsx(t, ξ) = 0.

�

Orthogonality principle

• Linear estimator ŝ(t) that minimizes E[〈s(t)− ŝ(t), s(t)− ŝ(t)〉] = E[‖s(t)−
ŝ(t)‖2] should satisfy E[〈s(t)− ŝ(t), ŝ(t)〉] = 0.

• This may not be true for a non-linear estimator! (Note that the linear combi-

nation of {x(ξ), a ≤ ξ ≤ b} spans a hyperplane in an inner product space.)
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Terminologies. With [a, b] = data interval,

• If t ∈ [a, b], the estimate operation of ŝ(t) is called smoothing.

• If t > b and x(ξ) = s(ξ), ŝ(t) is called forward predictor.

• If t < a and x(ξ) = s(ξ), ŝ(t) is called backward predictor.

• If t �∈ [a, b] and x(ξ) �= s(ξ), the estimate operation of ŝ(t) is called filtering

and prediction.
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Theorem 13-1 The best linear estimator of s(t) in terms of {s(ξ) : a ≤ ξ ≤ b},
which is of the form

ŝ(t) =

∫ b

a

h(α, t)s(α)dα

and which minimizes the MS error P = E[(s(t)− ŝ(t))2], satisfies

Rss(t, s) =

∫ b

a

h(α, t)Rss(α, s)dα for a ≤ s ≤ b.

In addition,

Pt = Rss(0)−
∫ b

a

h(α, t)Rss(t, α)dα.

• If s(t) is stationary, a = b (i.e., ξ = a = b) and t = a + λ, we have s = a and

Rss(λ) = h(a, a + λ)Rss(0)

⇒ h(a, a+λ) =
Rss(λ)

Rss(0)
and ŝ(a+λ) =

Rss(λ)

Rss(0)
s(a) and Pa+λ = Rss(0)− R2

ss(λ)

Rss(0)
.
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Theorem 13-1′

E[(s(t)− ŝ(t))s(ξ)] = 0 for a ≤ ξ ≤ b.

If E[(s(t)− ŝ(t))s(ξ)] = 0 for ξ < a,

then ŝ(t) is the best linear predictor of s(t) in terms of {s(ξ), ξ ≤ b},
although it only uses the information of {s(ξ), a ≤ ξ ≤ b}.

If
Rss(v)

Rss(u)
=

Rss(0)

Rss(u− v)
for any u ≥ v, then for ξ < a,

E[(s(t)− ŝ(t))s(ξ)] = Rss(t− ξ)−
∫ b

a

h(α, t)Rss(α− ξ)dα

= Rss(t− ξ)

(
1−

∫ b

a

h(α, t)
Rss(α− ξ)

Rss(t− ξ)
dα

)

= Rss(t− ξ)

(
1−

∫ b

a

h(α, t)
Rss(α)

Rss(t)
dα

)
= 0.

If, in addition, a = b in the above case, s(t) is named the wide-sense Markov of

order 1 (i.e., best linear prediction based on one point is the best prediction based

on the entire past.)
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Theorem 13-1 The best linear estimator of s(t) in terms of {xi(ξ) : a ≤ ξ ≤
b}ki=1, which is of the form

ŝ(t) =
k∑

i=1

∫ b

a

hi(α, t)xi(α)dα

and which minimizes the MS error Pt = E[(s(t)− ŝ(t))2], satisfies

Rsxi(t, s) =

k∑
�=1

∫ b

a

hi(α, t)Rx�xi(α, s)dα for a ≤ s ≤ b and 1 ≤ i ≤ k.

Proof: A different proof is used here. The optimal estimator should satisfy:

E[(s(t)− ŝ(t))xi(ξ)] = 0 for a ≤ ξ ≤ b and 1 ≤ i ≤ k.

Hence,

Rsxi(t, ξ) =

n∑
�=1

∫ b

a

h�(α, t)Rx�xi(α, ξ)dα.

�
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Example. If s(t) is real and stationary, a = b, t = a + λ, x1(t) = s(t) and

x2(t) = s′(t), then


Rss(a + λ, a) = h1(a, a + λ)Rss(a, a) + h2(a, a + λ)Rs′s(a, a)

= h1(a, a + λ)Rss(a, a) + h2(a, a + λ)Rss′(a, a)

Rss′(a + λ, a) = h1(a, a + λ)Rss′(a, a) + h2(a, a + λ)Rs′s′(a, a)

which in turns implies:{
Rss(λ) = h1(a, a + λ)Rss(0)− h2(a, a + λ)R′

ss(0)

−R′
ss(λ) = −h1(a, a + λ)R′

ss(0)− h2(a, a + λ)R′′
ss(0)

Rss′(t1, t2) =
∂Rss(t1 − t2)

∂t2
= −R′

ss(t1 − t2)

and

Rs′s′(t1, t2) =
∂Rss′(t1, t2)

∂t1
= −R′′

ss(t1 − t2).
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⇒




h1(a, a + λ) = h1(λ) =
Rss(λ)R

′′
ss(0) +R′

ss(λ)R
′
ss(0)

Rss(0)R′′
ss(0) + [R′

ss(0)]
2

=
Rss(λ)

Rss(0)

h2(a, a + λ) = h2(λ) =
R′

ss(λ)Rss(0)−R′
ss(0)Rss(λ)

Rss(0)R′′
ss(0) + [R′

ss(0)]
2

=
R′

ss(λ)

R′′
ss(0)

where it is reasonable to assume that R′
ss(0) = 0.

⇒ ŝ(a + λ) =
Rss(λ)

Rss(0)
s(a) +

R′
ss(λ)

R′′
ss(0)

s′(a).
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⇒ Pt = E[(s(a + λ)− ŝ(a + λ))2]

= E[s2(a + λ)] +

(
Rss(λ)

Rss(0)

)2

E[s2(a)] +

(
R′

ss(λ)

R′′
ss(0)

)2

E[(s′(a))2]

−2

(
Rss(λ)

Rss(0)

)
E[s(a + λ)s(a)]− 2

(
R′

ss(λ)

R′′
ss(0)

)
E[s(a + λ)s′(a)]

+2

(
Rss(λ)

Rss(0)

)(
R′

ss(λ)

R′′
ss(0)

)
E[s(a)s′(a)]

= Rss(0) +

(
Rss(λ)

Rss(0)

)2

Rss(0)−
(
R′

ss(λ)

R′′
ss(0)

)2

R′′
ss(0)

−2

(
Rss(λ)

Rss(0)

)
Rss(λ) + 2

(
R′

ss(λ)

R′′
ss(0)

)
R′

ss(λ)−
����������������������

2

(
Rss(λ)

Rss(0)

)(
R′

ss(λ)

R′′
ss(0)

)
R′

ss(0)

= Rss(0)− R2
ss(λ)

Rss(0)
+

(R′
ss(λ))

2

R′′
ss(0)

.
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Theorem 13-1 The best linear estimator of s(t) in terms of {x(ξ) : a ≤ ξ ≤ b},
which is of the form

ŝ(t) =

∫ b

a

h(α, t)x(α)dα

and which minimizes the MS error Pt = E[(s(t)− ŝ(t))2], satisfies

Rsx(t, s) =

∫ b

a

h(α, t)Rxx(α, s)dα for a ≤ s ≤ b.

• If s(t) and x(t) are joint stationary and t = a = b, we have s = t and

Rsx(0) = h(t, t)Rss(0)

⇒ h(t, t) = h =
Rsx(0)

Rss(0)
and ŝ(t) =

Rsx(0)

Rss(0)
x(t) and Pt = Rss(0)− R2

sx(0)

Rss(0)
.
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Concern

• To estimate, in the MS sense, s(t + λ) in terms of {s(t + kT )}Nk=−N :

ŝ(t + λ) =
N∑

k=−N

aks(t + kT ).

By using the orthogonality principle (and implicitly, the assumption of real s(t)):

E

{[
s(t + λ)−

N∑
k=−N

aks(t + kT )

]
s(t + nT )

}
= 0,

we obtain
N∑

k=−N

akRss(kT − nT ) = Rss(λ− nT ) for −N ≤ n ≤ N.

In addition,

Pt = E

{[
s(t + λ)−

N∑
k=−N

aks(t + kT )

]
s(t + λ)

}
= Rss(0)−

N∑
k=−N

akRss(λ− kT ).

Note: If s(t) is complex, we should use s∗(t + nT ) and s∗(t + λ) instead.
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Theorem 10-9 (Stochastic sampling theorem) If s(t) is BL with band-

width σ, then

s(t + λ) =

∞∑
k=−∞

sin[σ(λ− kT )]

σ(λ− kT )
s(t + kT ) (in the MS sense),

where T = π/σ.

Example. Let Sss(ω) = 1 for |ω| < σ and zero, otherwise. Then,

Rss(τ ) =
1

2π

∫ ∞

−∞
Sss(ω)e

jωτdω =
1

2π

∫ σ

−σ

ejωτdω =
sin(τσ)

πτ
.

We thus derive for Tσ = π that
N∑

k=−N

ak
sin((kT − nT )σ)

π(kT − nT )
=

sin((λ− nT )σ)

π(λ− nT )
for −N ≤ n ≤ N

⇔
N∑

k=−N

ak
sin(π(k − n))

π(k − n)
=

T sin(σ(λ− nT ))

π(λ− nT )
for −N ≤ n ≤ N

⇔ an =
sin(σ(λ− nT ))

σ(λ− nT )
for −N ≤ n ≤ N

�
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Concern

• To estimate (real WSS) s(t) in terms of {x(ξ),−∞ < ξ < ∞} with WSS

x(t) = s(t) + v(t).

Using the orthogonality principle:

E

{[
s(t)−

∫ ∞

−∞
h(α, t)x(t− α)dα

]
x(t− ξ)

}
= 0 for −∞ < ξ < ∞,

or equivalently,

Rsx(ξ) =

∫ ∞

−∞
h(α, t)Rxx(ξ − α)dα

This gives that

H(ω; t) = H(ω) =
Ssx(ω)

Sxx(ω)

which is named the noncausal Wiener filter.

Assume v(t) is zero-mean and is independent of s(t). Then,

Rsx(τ ) = E[s(t + τ )(s(t) + v(t))] = Rss(τ )

Rxx(τ ) = E[(s(t + τ ) + v(t + τ ))(s(t) + v(t))] = Rss(τ ) +Rvv(τ ).
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In such case, the best filter is:

H(ω) =
Sss(ω)

Sss(ω) + Svv(ω)
,

which is real and symmetric (because Rss(τ ) is real and symmetric, and Rvv(τ ) is

real and symmetric). And

Pt = E

{[
s(t)−

∫ ∞

−∞
h(α, t)x(t− α)dα

]
s(t)

}
= Rss(0)−

∫ ∞

−∞
h(α)Rss(α)dα

=
1

2π

∫ ∞

−∞
Sss(ω)dω −

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
H(ω)ejωαdω

)(
1

2π

∫ ∞

−∞
Sss(ω

′)ejω
′αdω′

)
dα

=
1

2π

∫ ∞

−∞
Sss(ω)dω − 1

2π

∫ ∞

−∞
H(−ω′)Sss(ω

′)dω′

=
1

2π

∫ ∞

−∞

Sss(ω)Svv(ω)

Sss(ω) + Svv(ω)
dω.

Conclusion: As long as there is no overlap in Sss(ω) and Svv(ω), Pt is zero!

The end of Section 13-1 Introduction
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Prediction of s[n] in terms of:

• Entire past: {s[n− k]}k≥1

• r-step away past: {s[n− k]}k≥r

• Finite past: {s[n− k]}r≤k≤N

• . . .

Assume throughout Section 13-2 that s[n] is stationary.
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• ŝ[n] =
∑∞

k=1 h[k, n]s[n− k].

• Orthogonality principle: For all m ≥ 1,

0 = E[(s[n]− ŝ[n])s[n−m]] = Rss[m]−
∞∑
k=1

h[k, n]Rss[m− k]

Hence, again under stationarity assumption, h[k, n] = h[k] is invariant in n.

• Therefore, the best prediction filter satisfies:

Rss[m] =
∞∑
k=1

h[k]Rss[m− k] for m ≥ 1.

This is called the Wiener-Höpf equation (in digital form).
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• ŝ[n] is the response of the predictor filter

H[z] = h[1]z−1 + h[2]z−2 + · · · + h[k]z−k + · · ·
due to the input s[n].

• Hence, the error process defined as e[n] = s[n]− ŝ[n] = s[n]−∑∞
k=1 h[k]s[n−

k] is the response of the filter

E[z] = 1−H[z]

due to the input s[n].

• Claim: The error process e[n] is white.

Proof:

– e[n] is orthogonal to s[n−m] for all m ≥ 1.

– e[n−m] is a linear combination of s[n−m− �] for all � ≥ 0.

– Hence, e[n] is orthogonal to e[n−m] for all m ≥ 1, and Ree[m] = Pδ[m],

where P = E[e2[n]] = E[e[n]s[n]] is the minimum MS power. �
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Theorem 13-2 All zeros of E[z] satisfy |z| ≤ 1.

Proof: If there exists a zi such that E[zi] = 0 and |zi| > 1, then form a new error

filter as:

E0[z] = E[z]
1− z−1/z∗i
1− ziz−1

.

Then, by letting zi = |zi|ejθi and ω′ = ω − θi, we have:

|E0[ejω]|2 = |E[ejω]|2
∣∣∣∣ejω − ejθi/|zi|
ejω − |zi|ejθi

∣∣∣∣2 = |E[ejω]|2
∣∣∣∣∣e

jω′ − 1/|zi|
ejω′ − |zi|

∣∣∣∣∣
2

= |E[ejω]|21− (2/|zi|) cos(ω′) + 1/|zi|2
1− 2|zi| cos(ω′) + |zi|2

= |E[ejω]|2 1

|zi|2 < |E[ejω]|2.

However,

P =
1

2π

∫ π

−π

|E[ejω]|2Sss[ω]dω

is the minimum MS error that can be achieved, and E0[z] improves the minimum

MS error. Thus, the desired contradiction is obtained. �
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The z-transform technique cannot be applied to solve the Wiener-Höpf Equation.

If

Rsx[m] =
∞∑
k=1

h[k]Rxx[m− k] for all integer m,

then H[z] = Ssx[z]/Sxx[z], where

Sxx[z] =
∞∑

k=−∞
Rxx[k]z

−k and Ssx[z] =
∞∑

k=−∞
Rsx[k]z

−k.

However,

Rsx[m] =
∞∑
k=1

h[k]Rxx[m− k] only for m ≥ 1.
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Solving Wiener-Höpf equation under the assumption that s[n] is

stationary and regular

• A regular process can be represented as the response of a causal finite-energy

system due to a unit-power white-noise process i[n]. So,

s[n] =
∞∑
k=0

l[k]i[n− k].

• Then, ŝ[n] =
∑∞

k=1 h[k]s[n− k] can be written as

ŝ[n] =
∞∑
k=1

g[k]i[n− k],

for some {g[k]}∞k=1 that minimizes the MS error.

• The orthogonality principle then gives that for all m ≥ 1,

0 = E

{(
s[n]−

∞∑
k=1

g[k]i[n− k]

)
i[n−m]

}

= Rsi[m]−
∞∑
k=1

g[k]Rii[m− k] = Rsi[m]− g[m],

which implies g[m] = Rsi[m].
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• By regularity,

Rsi[m] = E[s[n]i[n−m]] =
∞∑
k=0

l[k]E{i[n− k]i[n−m]} = l[m].

This concludes to the first important result:

ŝ[n] =

∞∑
k=1

l[k]i[n− k]

is the best linear predictor for a regular and stationary process

s[n] =
∞∑
k=0

l[k]i[n− k] and P = l2[0].

• By noting that i[n] is the response of system 1/L[z] due to input s[n], and ŝ[n]

is the response of system L[z]− l[0] due to input i[n], we obtain:

H[z] =
1

L[z]
(L[z]− l[0]) = 1− l[0]

L[z]
= 1− limz↑∞ L[z]

L[z]
.

�
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�s[n]
1

L[z]
�i[n]

L[z]− L[0] � ŝ[n]

H[z]

If S[ω] is a rational spectrum, then L[z] can be obtained as follows.

• S[z] = A((z + z−1)/2)/B((z + z−1)/2).

• Then the roots of S[z] are symmetric with respect to the unit circle.

So, we can separate them into two groups: Inside group that consists of all

roots with |z| < 1, and the outside group that consists of all roots with

|z| > 1.

• Form L[z] by the ratio of two polynomials with the inside roots of S[z].
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Example 13-3 (Slide 11-16) Sss[ω] =
5− 4 cos(ω)

10− 6 cos(ω)

Then, L[z] =
2− z−1

3− z−1
.

In this case,

H[z] = 1− limz↑∞ L[z]

L[z]
= 1− 2/3

2− z−1

3− z−1

= 1− 2− (2/3)z−1

2− z−1
=

−(1/6)z−1

1− (1/2)z−1
.

Consequently,

ŝ[n]− 1

2
ŝ[n− 1] = −1

6
s[n− 1]

or equivalently,

ŝ[n] = −1

6
s[n− 1] +

1

2
ŝ[n− 1].
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Appendix 12A A minimum-phase system L[z] satisfies

log l2[0] =
1

2π

∫ π

−π

log |L[ejω]|2dω.

Kolmogorov and Szego noted from the above result and Sss(ω) = |L[ejω]|2 that

P = l2[0] = exp

{
1

2π

∫ π

−π

log |L[ejω]|2dω
}

= exp

{
1

2π

∫ π

−π

log Sss[ω]dω

}
.

This is named the Kolmogorov-Szego MS Error Formula.
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• If s[n] is an autoregressive (AR) process, then (Slide 11-46)

L[z] =
b0

1 + a1z−1 + · · · + anz−N
.

• Then,

H[z] = 1− limz↑∞ L[z]

L[z]
= 1− b0

b0
1 + a1z−1 + · · · + anz−N

= a1z
−1+· · ·+anz

−N,

which implies

ŝ[n] = −a1s[n− 1]− · · · − aNs[n−N ].

• Then, s[n] is called the wide-sense Markov of order N .

– Best linear prediction based on the past N points is the best prediction

based on the entire past.
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Concern

• To find the best linear estimator of s[n], in the MS sense, in terms of the

r-step-away entire past, i.e., {s[n− k]}k≥r.

ŝ[n] =

∞∑
k=r

l[k]i[n− k]

is the best linear r-step predictor for a regular and stationary process

s[n] =

∞∑
k=0

l[k]i[n− k] and P =

r−1∑
k=0

l2[k].

Proof:

– A regular process can be represented as the response of a causal finite-energy

system due to a unit-power white-noise process i[n]. So,

s[n] =

∞∑
k=0

l[k]i[n− k].
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– Then, ŝ[n] =
∑∞

k=r h[k]s[n− k] can be written as

ŝ[n] =
∞∑
k=r

g[k]i[n− k],

for some {g[k]}∞k=1 that minimizes the MS error.

– The orthogonality principle then gives that for all m ≥ r,

0 = E

{(
s[n]−

∞∑
k=r

g[k]i[n− k]

)
i[n−m]

}

= Rsi[m]−
∞∑
k=r

g[k]Rii[m− k] = Rsi[m]− g[m],

which implies g[m] = Rsi[m] for m ≥ r.

– By regularity,

Rsi[m] = E[s[n]i[n−m]] =

∞∑
k=0

l[k]E{i[n− k]i[n−m]} = l[m].

�
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• In addition, it can be derived that

Hr[z] = 1− 1

L[z]

r−1∑
k=0

l[k]z−k.

Example 13-4 Suppose Rss[m] = a|m| for 0 < a < 1. Then,

Sss[z] =

∞∑
m=−∞

Rss[m]z−m =

∞∑
m=0

am(z−m + zm)− 1

=
1

1− az−1
+

1

1− az
− 1 =

1− a2

(1− az−1)(1− az)
.

⇒ L[z] =
b

1− az−1
= b(1 + az−1 + a2z−2 + · · · ), where b =

√
1− a2.

⇒ Hr[z] = 1− 1

L[z]

r−1∑
k=0

l[k]z−k

= 1− (1− az−1)

b

r−1∑
k=0

bakz−k

= 1− (1− az−1)(1 + az−1 + a2z−2 + · · · + ar−1z−(r−1)) = arz−r
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Concern:

• To linearly estimate the random process s(t + λ) in terms of its entire past

{s(t− τ ), τ ≥ 0} in the MS sense.

Analog Wiener-Höph equation

• Orthogonality principle:

E

{[
s(t + λ)−

∫ ∞

0

h(α)s(t− α)dα

]
s(t− τ )

}
= 0 for all τ ≥ 0

⇔ Rss(λ + τ ) =

∫ ∞

0

h(α)Rss(τ − α)dα for all τ ≥ 0

The solution of (analog) Wiener-Höph equation is named the causal Wiener

filter.
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Solving Wiener-Höpf equation under the assumption that s(t) is

stationary and regular.

• A regular process can be represented as the response of a causal finite-energy

system due to a unit-power white-noise process i(t). So,

s(t + λ) =

∫ ∞

0

l(α)i(t + λ− α)dα.

• Then, ŝ(t + λ) =

∫ ∞

0

h(α)s(t− α)dα can be written as

ŝ(t + λ) =

∫ ∞

0

g(α)i(t− α)dα,

for some {g(t)}t≥0 that minimizes the MS error.

• The orthogonality principle then gives that for all τ ≥ 0,

0 = E

{(
s(t + λ)−

∫ ∞

0

g(α)i(t− α)dα

)
i(t− τ )

}
= Rsi(λ + τ )−

∫ ∞

0

g(α)Rii(τ − α)dα,

which implies g(τ ) = Rsi(λ + τ ).
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• By regularity,

Rsi(λ + τ ) = E[s(t)i(t− λ− τ )] =

∫ ∞

0

l(α)E{i(t− α)i(t− λ− τ )}dα = l(λ + τ ).

This concludes to the first important result:

ŝ(t + λ) =

∫ ∞

0

l(λ + α)i(t− α)dα =

∫ ∞

λ

l(α)i(t + λ− α)dα

is the best linear predictor for a regular and stationary process

s(t + λ) =

∫ ∞

0

l(α)i(t + λ− α)dα and P =

∫ λ

0

l2(α)dα.

• By noting that i(t) is the response of system 1/L(s) due to input s(t), and

ŝ(t + λ) is the response of system l(τ + λ)1{τ ≥ 0} due to input i(t), we

obtain:

H(ω) =
1

L(ω)

∫ ∞

0

l(τ + λ)e−jωτdτ.

�
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Example 13-5 Rss(τ ) = 2αe−α|τ | with 0 < α < 1.

⇒ Sss(ω) =

∫ ∞

−∞
2αe−α|τ |e−jωτdτ =

4α2

α2 + ω2

⇒ Sss(s) =
4α2

α2 + ω2

∣∣∣∣
ω=−js

=
4α2

α2 − s2
=

2α

(α + s)

2α

(α− s)
= L(s)L(−s)

⇒ L(s) =
2α

α + s

⇒ L(ω) =
2α

α + jω

⇒ l(τ ) =
1

2π

∫ ∞

−∞

2α

α + jω
e−jωτdω = 2αe−ατ1{τ ≥ 0}

⇒ H(ω) =
1

L(ω)

∫ ∞

0

l(τ + λ)e−jωτdτ =
1

L(ω)

∫ ∞

0

2αe−α(τ+λ)1{τ + λ ≥ 0}e−jωτdτ

=
1

L(ω)
e−αλ

(∫ ∞

0

2αe−ατe−jωτdτ

)
= e−αλ

⇒ h(τ ) = e−αλδ(τ )

⇒ ŝ(t + λ) =

∫ ∞

0

h(τ )s(t− τ )dτ = e−αλs(t).
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An alternative way to express Wiener-Höpf equation

• The Wiener-Höpf equation only depends on Rss(τ ); hence, any process with

the same autocorrelation function should result in the same predictor.

• (Slide 9-105) Define a process z(t) = ejωt, where ω has density A(ω). Then,

Rzz(τ ) = E
{
ejω(t+τ)e−jωt

}
=

∫ ∞

−∞
A(ω)ejωτdτ.

So, z(t) is a process with power spectrum 2πA(ω).

• The best-MS linear predictor for z(t + λ) in terms of {z(t− τ )}τ≥0 is

ẑ(t + λ) =

∫ ∞

0

h(α)z(t− α)dα =

∫ ∞

0

h(α)ejω(t−α)dα = ejωtH(ω),

and should satisfy

E {(z(t + λ)− ẑ(t + λ))z∗(t− τ )} = 0 for τ ≥ 0

⇔ E
{
ejω(λ+τ) − ejωτH(ω)

}
= 0 for τ ≥ 0

⇔
∫ ∞

−∞
[A(ω)ejωλ]ejωτdω =

∫ ∞

−∞
A(ω)H(ω)ejωτdω for τ ≥ 0
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Example 13-5 Revisited. Let’s confirm the alternative expression in terms of

Example 13-5.

Szz(ω) = 2πA(ω) =
4α2

α2 + ω2

Then, ∫ ∞

−∞
[A(ω)ejωλ]ejωτdω =

1

2π

∫ ∞

−∞

4α2

(α2 + ω2)
ejω(λ+τ)dω = 2αe−α|τ+λ|

and ∫ ∞

−∞
A(ω)H(ω)ejωτdω =

1

2π

∫ ∞

−∞

4α2

(α2 + ω2)
e−αλejωτdω = 2αe−α(|τ |+λ)

⇒ |τ + λ| = |τ | + λ, which is valid only for τ ≥ max{0,−λ} = 0 (since λ > 0)

Note that it is erroneous to claim A(ω)ejωλ = A(ω)H(ω) from∫ ∞

−∞
[A(ω)ejωλ]ejωτdω =

∫ ∞

−∞
A(ω)H(ω)ejωτdτ

because the equation holds only for τ ≥ 0.
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Definition (Predictable processes) A process s[n] is predictable if it equals

its linear predictor, i.e.,

s[n] =
∞∑
k=1

h[k]s[n− k]

and there is no MS prediction error.

Formula for predictable processes.

• Let E[z] = 1−H[z] = 1−∑∞
k=1 h[k]z

−k. Then, the prediction error equals

P = E[(s[n]− ŝ[n])s[n]] = Rss[0]−
∞∑
k=1

h[k]Rss[k].

Equivalently, (with WSS property,)

P =
1

2π

∫ π

−π

|E[ejω]|2Sss[ω]dω.

• For predictable processes, P = 0, which indicates from Sss[ω] ≥ 0 that

Sxx[ω] > 0 only possibly at those ω’s with E[ejω] = 0.

As E[z] is a polynomial of z−1, it follows that for countably many ωi,

Sss[ω] = 2π
∑
i

αiδ(ω − ωi) where E[e
jωi] = 0.
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• This concludes that a process s[n] that is a sum of exponentials:

s[n] =
∑
i

cie
jωin, where {ci} uncorrelated and zero-mean

is predictable, and its prediction filter equals H[z] = 1− E[z], where

E[z] =

m∏
i=1

(
1− ejωiz−1

)
.
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Concern

• To find the best linear estimator of s[n], in the MS sense, in terms of its N

most recent past, i.e., {s[n− k]}1≤k≤N .

• This is also named the forward predictor of order N .

Yule-Walker equations

• By orthogonality principle,

E

{(
s[n]−

N∑
k=1

aks[n− k]

)
s[n−m]

}
= 0 for 1 ≤ m ≤ N.

This yields

Rss[m]−
N∑
k=1

akRss[m− k] = 0 for 1 ≤ m ≤ N

or equivalently,

Rss[1]

Rss[2]
...

Rss[N ]


 =




Rss[0] Rss[−1] · · · Rss[1−N ]

Rss[1] Rss[0] · · · Rss[2−N ]
... ... . . . ...

Rss[N − 1] Rss[N − 2] · · · Rss[0]





a1
a2
...

aN



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• The MS estimate error is equal to:

PN = E

{(
s[n]−

N∑
k=1

aks[n− k]

)
s[n]

}
= Rss[0]−

N∑
k=1

akRss[−k].

• We can incorporate the above result into the Yule-Walker equations:

[
PN 0 · · · 0

]
=
[
1 −a1 · · · −aN

]



Rss[0] Rss[1] Rss[2] · · · Rss[N ]

Rss[−1] Rss[0] Rss[1] · · · Rss[N − 1]

Rss[−2] Rss[−1] Rss[0] · · · Rss[N − 2]
... ... . . . ...

Rss[−N ] Rss[1−N ] Rss[2−N ] · · · Rss[0]




=
[
1 −a1 · · · −aN

]
DN+1

Recall that for a square matrix D:

D · Adj(D) = |A|I,
where Di,j is the cofactor of element di,j in D (specifically, Di,j = (−1)i+jMi,j and

Mi,j is the determinant of the matrix by removing those elements at the same row

and the same column as di,j), and Adj(D) = [Di,j]
T .
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Hence, [
PN 0 · · · 0

]
Adj(DN+1) =

[
1 −a1 · · · −aN

] |DN+1|,
which implies PN |DN | = |DN+1|.

• As a result, PN =




0, if for some k ≤ N, |Dk| �= 0 and |Dk+1| = 0

|DN+1|
|DN | , |DN | �= 0.

Final note of the optimal {ak}Nk=1

• The optimal a1 in a system of order N may be different from that in a system

of order N + 1. This may cause some scalability problem in implementation.

Example. Suppose Rss[m] = ρ|m| for m = 0,±1, and zero, otherwise.

Then,

a1 = ρ and P1 = 1− ρ2 when N = 1.

a1 = ρ/(1−ρ2), a2 = −ρ2/(1−ρ2) and P2 = (1−2ρ2)/(1−ρ2) when N = 2.
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Non-scalable straightforward structure

• The predictor error

e[n] = s[n]− ŝ[n] = s[n]−
N∑
k=1

aks[n− k]

can be obtained by input s[n] to the filter H[z] = 1− a1z
−1 − · · · − aNz

−N .

• The filter H[z] can be implemented using the ladder structure as follows.

s[n] �

�

z−1 �

�
�
�
�

�
−a1

�⊕ � �

� z−1

�
�
�

�
�

−aN
�⊕ � e[n]

• This structure is not scalable in coefficients {ak}Nk=1 (since coefficients {ak}Nk=1

are dependent on N).
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Is there a scalable implementation structure?

• Denote the optimal {ak}Nk=1 in a system of order N as {a(N)
k }Nk=1.

• Consider the below lattice structure:

��

A
� z−1 ����

��
−k1

�
�
�
���
⊕� ��

B1

�

��	
��

��
−k1

�
�
�	⊕� ��

C1

Denote the input at A as s[n].

Denote the outputs at B1 and C1 respectively by ê1[n] and ě1[n].

Then,

ê1[n] = s[n]− k1s[n− 1]

ě1[n] = −k1s[n] + s[n− 1]

So, the filters for output ê1[n] and output ě1[n] are

Ê1[z] = 1 − k1z
−1

Ě1[z] = −k1 + z−1 = z−1Ê1[1/z]
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• Consider the below lattice structure:

��

A
� z−1 ����

��
−k1

�
�
�
���
⊕� ��

B1

�

��	
��

��
−k1

�
�
�	⊕� ��

C1

� z−1 ����
��

−k2
�
�
�
���
⊕� ��

B2

�

��	
��

��
−k2

�
�
�	⊕� ��

C2

Denote the input at A as s[n].

Denote the outputs at B2 and C2 respectively by ê2[n] and ě2[n].

Then,

ê2[n] = ê1[n]− k2ě1[n− 1]

ě2[n] = −k2ê1[n] + ě1[n− 1]

So, the filters for output ê2[n] and output ě2[n] are

Ê2[z] = Ê1[z]− k2z
−1Ě1[z]

Ě2[z] = −k2Ê1[z] + z−1Ě1[z]
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• Continuing cascading more “lattices,” we obtain

êN [n] = êN−1[n]− kN ěN−1[n− 1]

ěN [n] = −kN êN−1[n] + ěN−1[n− 1]

and

ÊN [z] = ÊN−1[z]− kNz
−1ĚN−1[z]

ĚN [z] = −kN ÊN−1[z] + z−1ĚN−1[z]

Then, ĚN [z] = z−N ÊN [1/z].

Proof: Suppose ĚN−1[z] = z−(N−1)ÊN−1[1/z]. Then,

z−N ÊN [1/z] = z−N
(
ÊN−1[1/z]− kNzĚN−1[1/z]

)
= z−N

(
zN−1ĚN−1[z]− kNz(z

N−1ÊN−1[z])
)

= −kN ÊN−1[z] + z−1ĚN−1[z]

= ĚN [z].
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• By ĚN [z] = z−N ÊN [1/z], we know that if

ÊN [z] = 1− a
(N)
1 z−1 − · · · − a

(N)
N z−N,

then

ĚN [z] = z−N − a
(N)
1 z−(N−1) − · · · − a

(N)
N .

In summary,

– êN [n] is the forward prediction error for predicting s[n] in terms of its most

recent N pasts. In other words,

êN [n] = s[n]− ŝN [n] = s[n]−
N∑
k=1

a
(N)
k s[n− k].

– ěN [n] is the backward prediction error for predicting s[n−N ] in terms of

its most recent N futures. In other words,

ěN [n] = s[n−N ]− šN [n−N ] = s[n−N ]−
N∑
k=1

a
(N)
k s[n−N + k].
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Derivation of kN

• From

ÊN−1[z] = 1− a
(N−1)
1 z−1 − · · · − a

(N−1)
N−1 z−(N−1),

and

ĚN−1[z] = z−(N−1)ÊN−1[1/z],

we derive:

ÊN [z] = ÊN−1[z]− kNz
−1ĚN−1[z]

=
(
1− a

(N−1)
1 z−1 − · · · − a

(N−1)
N−1 z−(N−1)

)
−kN

(
z−N − a

(N−1)
1 z−(N−1) − · · · − a

(N−1)
N−1 z−1

)
= 1−

(
a
(N−1)
1 − kNa

(N−1)
N−1

)
z−1 −

(
a
(N−1)
2 − kNa

(N−1)
N−2

)
z−2 − · · ·

−
(
a
(N−1)
N−1 − kNa

(N−1)
1

)
z−(N−1) − kNz

−N.

Comparing termwisely with

ÊN [z] = 1− a
(N)
1 z−1 − · · · − a

(N)
N z−N,

we yield:

a
(N)
k = a

(N−1)
k − kNa

(N−1)
N−k for 1 ≤ k < N and a

(N)
N = kN.
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• It remains to solve kN :

[
PN 0 · · · 0

]
=
[
1 −a

(N)
1 · · · −a

(N)
N

]



Rss[0] Rss[1] Rss[2] · · · Rss[N ]

Rss[−1] Rss[0] Rss[1] · · · Rss[N − 1]

Rss[−2] Rss[−1] Rss[0] · · · Rss[N − 2]
... ... . . . ...

Rss[−N ] Rss[1−N ] Rss[2−N ] · · · Rss[0]




implies

0 = Rss[N ]−
N−1∑
k=1

a
(N)
k Rss[N − k]− a

(N)
N Rss[0]

⇒ 0 = Rss[N ]−
N−1∑
k=1

(
a
(N−1)
k − kNa

(N−1)
N−k

)
Rss[N − k]− kNRss[0]

⇒ kN =
Rss[N ]−∑N−1

k=1 a
(N−1)
k Rss[N − k]

Rss[0]−
∑N−1

k=1 a
(N−1)
N−k Rss[N − k]

=
1

PN−1

(
Rss[N ]−

N−1∑
k=1

a
(N−1)
k Rss[N − k]

)
,

where the last step follows from the fact that Rss[N − k] = Rss[k −N ] (See Slide 13-39).

• The above (blue-colored) formula gives kN from known PN−1 and {a(N−1)
k }N−1

k=1 .
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Alternative derivation of kN in terms of êN [n] = êN−1[n]−kN ěN−1[n−1]

(Hence, E[êN [n]s[n]] = E[êN−1[n]s[n]]− kNE[ěN−1[n− 1]s[n]]).

• PN = E
[
êN [n] s[n]

]
and PN−1 = E

[
êN−1[n] s[n]

]
.

•

ěN−1[n− 1] = s[(n− 1)− (N − 1)]−
N−1∑
k=1

a
(N−1)
k s[(n− 1)− (N − 1) + k]

= s[n−N ]−
N−1∑
k=1

a
(N−1)
k s[n−N + k]

implies

E[ ěN−1[n− 1]s[n] ] = E[s[n−N ]s[n]]−
N−1∑
k=1

a
(N−1)
k E[s[n−N + k]s[n]]

= Rss[N ]−
N−1∑
k=1

a
(N−1)
k Sss[N − k] = kNPN−1.

• Consequently, PN = PN−1 − kN(kNPN−1) = (1− k2N)PN−1.
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Concern:

• A recursive algorithm to obtain kN and MS estimate error PN .

Levinson’s algorithm

• k1 = a
(1)
1 = Rss[1]/Rss[0] and P1 = (1− k21)Rss[0].

• Assume that {a(N−1)
k }N−1

k=1 , kN−1 and PN−1 are known.

Then, it can be derived that

kN =
1

PN−1

(
Rss[N ]−

N−1∑
k=1

a
(N−1)
k Rss[N − k]

)
PN = (1− k2N)PN−1

a
(N)
k =


a

(N−1)
k − kNa

(N−1)
N−k , 1 ≤ k ≤ N − 1

kN, k = N
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• P1 ≥ P2 ≥ · · · ≥ PN ≥ · · · ≥ 0.

• If PN > 0,

then |ki| < 1 for 1 ≤ i ≤ N ,

and z
(N)
i (the root of ÊN [z] = 1 − ∑N

k=1 a
(N)
k z−k) satisfies |z(N)

i | < 1 for

1 ≤ i ≤ N .

• If PN−1 > 0 and PN = 0,

then |ki| < 1 for 1 ≤ i < N and kN = 1,

and |z(N)
i | = 1 for 1 ≤ i ≤ N ,

which indicates that s[n] is predictable and consists of line spectrum.

• If P = limN→ PN > 0,

then

P = exp

{
1

2π

∫ π

−π

log(Sss[ω])dω

}
= l2[0] = lim

N→∞
|DN+1|
|DN | .

• If PM−1 > PM but PM(= PM+1 = · · · ) = P ,

then ki = 0 for i > M ,

and s[n] is wide-sense Markov of order M .

s[n] is autoregressive (AR) if, and only if, it is wide-sense Markov of finite order.
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Equal predictor of two processes

• Suppose process s[n] and s̄[n] have the same autocorrelation function up to

order M .

Then, the predictors of these two processes of order M are identical because

the predictors only depend on the value of Rss[m] for |m| ≤ M .

Also, from Levinson’s algorithm, we learn that PM for both processes are the

same since PM =
∏M

i=1(1− k2i )Rss[0].
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Define the process i[n] as

i[n] � ên[n]√
Pn

=
1√
Pn

(
s[n]−

n∑
k=1

a
(n)
k s[n− k]

)

=
n∑

k=0

γ
(n)
k s[k] for some {γ(n)

k = −a
(n)
n−k/

√
Pn}n−1

k=0 and γ(n)
n = 1/

√
Pn.

By orthogonality principle, i[n] is orthogonal to s[n−m] for 1 ≤ m ≤ n;

hence, i[n] is orthogonal to i[n−m] for 1 ≤ m ≤ n, and E[i2[n]] = 1.

For the validity of the underlined statement, we implicitly assume that

s[−1] = s[−2] = · · · = 0.
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In matrix form,

[
i[0] i[1] · · · i[n]

]
=
[
s[0] s[1] · · · s[n]

]


γ
(0)
0 γ

(1)
0 · · · γ

(n)
0

0 γ
(1)
1 · · · γ

(n)
1

... ... . . . ...

0 0 · · · γ
(n)
n




=
[
s[0] s[1] · · · s[n]

]
Γn+1

Remarks

• This is similarly the Gram-Schmidt orthonormalization procedure for
[
s[0] s[1] · · · s[n]

]
.

• In terminologies, i[n] is called the Kalman innovations of s[n], and Γn+1 is

called the Kalman whitening filter of s[n].

• It can then be derived:

[
s[0] s[1] · · · s[n]

]
=
[
i[0] i[1] · · · i[n]

]


�
(0)
0 �

(1)
0 · · · �

(n)
0

0 �
(1)
1 · · · �

(n)
1

... ... . . . ...

0 0 · · · �
(n)
n




=
[
i[0] i[1] · · · i[n]

]
Ln+1
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Then, the covariance matrix of s[n] is given by:

Rn+1 � E






s[0]

s[1]

· · ·
s[n]


 [s[0] s[1] · · · s[n]

]

 = L

T
n+1Ln+1.

Therefore,

ΓT
n+1Rn+1Γn+1 = In+1,

where In+1 is the identity matrix.

The end of Section 13-2 Prediction


