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13-1 Introduction 131

Concern:

e To estimate the random process s(t) in terms of another related process (&)
for a < & <b.

Theorem 13-1 The best linear estimator of s(¢) in terms of {x(&) : a < £ < b},
which is of the form

b
é(t)—/ h(a,t)x(a)do

and which minimizes the MS error P, = E|[(s(t) — 8(t))?], satisfies

b
R, (t,s) = / h(a,t) Ry (v, s)da for a < s <b.

jop)

a a

b b b
= R.(0)+ / h(oz,t)h(ﬂ,t)Rm(oz,B)dozdﬂ—2/ h(a, t) Ry, (t, a)da.
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Under Riemann integrability assumption,

25
Oh(s,t)

b b
— ( / h(B,t)Rux(s, B)dB + / h(o, t) Ry, s)do + 2h(s,t)Rm(s,s)) —2Rg,(t, s)
a,B#s a,aFs _

A

-~
conceptually

b
= 2/ h(a, t) Ry (s, a)da — 2R, (1, s).

Remark

e The minimum MS error is given by:
b b b
P = RSS(O)+/ h(a,t) (/ h(ﬁ,t)Rm(oz,ﬂ)dﬁ) da—2/ h(a, t)Rs,(t, a)da
b b
= Rss(0)+/ h(a,t)Rsx(t,a)da—Q/ h(a,t) R, (t, a)da

= Ry(0) — /b h(a, t)Rs(t, a)dor.



Orthogonality of Optimal MS Estimation 133

Theorem 13-1’ Following Theorem 13-1, we also have:

El(s(t) — 3(t)z(&)] = 0 for a < € < b.

b
El(s(t) = 5(t))x(£)] = E[S(t)w(ﬁ)}—/ he, t) Elz(a)x(§)|do

b
= Rg.(t,&) — / h(a, t) Ry (s, &)da
= R (t,€) — Rs(t, &) =0.

Orthogonality principle
e Linear estimator s(¢) that minimizes E[(s(t) — s(t), s(t) — 5(t))] = E|||s(t) —
5(t)]|?] should satisfy E[(s(t) — s(t), 5(t))] = 0.

e This may not be true for a non-linear estimator! (Note that the linear combi-
nation of {x(§),a < & < b} spans a hyperplane in an inner product space.)
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Terminologies. With [a, b] = data interval,
o If ¢ € [a,b], the estimate operation of §(t) is called smoothing.
o Ift > band x(€) = s(&), s(t) is called forward predictor.
o Ift <aand x(§) = s(§), 8(t) is called backward predictor.

o Ift & [a,b] and x(&) # s(€), the estimate operation of s(¢) is called filtering
and prediction.
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Theorem 13-1 The best linear estimator of s(¢) in terms of {s(£) : a < £ < b},
which is of the form

b
é(t):/ h(a,t)s(a)da

and which minimizes the MS error P = E[(s(t) — 8(t))?], satisfies

b
Rys(t, s) = / h(a,t)Rss(a, s)da for a < s < b.

In addition,

P, = R4(0) —/bh(oz,t)Rss(t,oz)doz.

o If s(t) is stationary, a = b (i.e., ¢ =a =10b) and t = a + A, we have s = a and

Ros(N\) = hla,a + N Ry(0)

R (N)
© R(0)]

= h(a,a+\) = s(a)and|P,;\ = Rs(0)
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Theorem 13-1’
E[(s(t) — s(t))s(&)] =0 for a < £ < b.

If E[(s(t) —s(t))s(&)] =0 for € < a,
then s(t) is the best linear predictor of s(t) in terms of {s(£),& < b},
although it only uses the information of {s(¢),a < & < b}.

Rss(v) _ Rss(o)
Rss(u)  Rgs(u—v)

[f

for any w > v, then for £ < a,

b
E[(s(t) - 3(6)s(€)] = Rult —€) - / b t) Ryl — €)da

= 0.

If, in addition, @ = b in the above case, s(t) is named the wide-sense Markov of
order 1 (i.e., best linear prediction based on one point is the best prediction based
on the entire past.)
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Theorem 13-1 The best linear estimator of s(¢) in terms of {x;(§) : a < £ <
b}¥_,, which is of the form

k b
é(t):z / hi(, t) (o) do

and which minimizes the MS error P, = E[(s(t) — 8(t))?], satisfies

k b
R, (t,s) = Z/ hi(a, t) Ry, (v, s)da for a < s < band 1 <17 < k.
(=114

Proof: A different proof is used here. The optimal estimator should satisfy:
El(s(t) —s(t)xi(&)]=0fora < <band 1 <i<k.
Hence,

n b
Ry (t,6) =) / he(e, t) Ry, (e, €)dav.
(=1 "¢
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Example. If s(t) is real and stationary, a = b, t = a + A, x1(t) = s(t) and
xo(t) = §'(t), then

Rss(a+ A, a) = hi(a,a+ N Rss(a, a) + ho(a,a + N)Ryg(a, a)
= hy(a,a + \)Rss(a,a) + hola,a + A\ Ryy(a, a)
Ryg(a+ A a) = hi(a,a + A Ryg(a,a) + ho(a,a + N)Ryg(a,a)

which in turns implies:

{ Ros(N) = hu(a,a+ N Rus(0) — hola,a + N R.(0)
—R(A) = —hi(a,a+ N E,(0) — ha(a, a + \) R(0)

ORs(t1 — to)

Rss’(tla t2) — ot
2

- _R;s(tl o t2)

and

8Fzss’ (tla tZ)

Rs’s’(tla t2) — (%1

= —R/ (t; — t3).
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(

hg(a,a+>\) = hg()\)

\

hl(a,a+)\) == h1(>\):

13-9

R (A RL(0) + R(VRL(0) _ Ru())
ss(0)RE(0) + [R(0)) Ras(0)
Rlss()‘)RSS( ) B R;S(O)RSS(A) Rlss()‘)
Rs(0)RE(0) + [, (0)] R{(0)
SS O) -
Rys(N) R(A)
R..(0) s(a) + R (0) s'(a).
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Theorem 13-1 Revisited

(0)




Filtering Under Stationarity

Theorem 13-1 The best linear estimator of s(t) in terms of {x(£) : a < £ < b},
which is of the form

b
é(t):/ h(a,t)x(a)da

and which minimizes the MS error P, = E[(s(t) — 8(t))?], satisfies

b
R, (t,s) = / h(a, t) Ry (a, s)da for a < s <b.

o If s(t) and x(t) are joint stationary and ¢t = a = b, we have s =t and

RS%(O) - h(tv t)Rss(O)

S h(tt) = = ZES; and 5(t) ];ng;w(t) and P, = R,.(0) — Zggi |
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Concern

e To estimate, in the MS sense, s(t + ) in terms of {s(t + kT)}__ y:

N
S+ = > aps(t+kT).
k=—N

By using the orthogonality principle (and implicitly, the assumption of real s(t)):

N
E { s(t+ ) — Z aps(t + kT) s(t+nT)} =0,
k=—N

we obtain

N

Y arRy(kT — nT) = Ry(A—nT) for —N <n < N.

=N
In addition,

N N
P,=E { s+ — ) as(t+kT)| s(t+ )\)} = R.s(0) = Y apRy(A—KT).
k=—N k=—N

Note: If s(t) is complex, we should use s*(t +nT') and s*(t + \) instead.
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Theorem 10-9 (Stochastic sampling theorem) If s(t) is BL with band-
width o, then

s(t+ ) = Z Sir;[?)f)\__k;?)]s(t + kT) (in the MS sense),
fo—

— 00

where T' =7 /0.

Example. Let Sgs(w) =1 for |w| < o and zero, otherwise. Then,

1 [ : 1 [7 . '
Rys(T) = / Sss(w)e’Tdw = — [ &“Tdw = Sm(TO).

o 2 J_, T

We thus derive for T'o = 7 that

—00

N . .
Z akbm((kT —nT)o) sin((A—nT)o) for —N <n<N

. w(kT —nT) - a(A=nT)
N . .
sin(m(k —n)) Tsin(oc(A—nT))
— for —N<n<N
< k;N Uk —n) O —nT) =TS
S o, = sin(o(A — nT)) for —N<n<N

g(A—nT)
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Concern

e To estimate (real WSS) s(t) in terms of {x(£), —o00 < & < oo} with WSS
x(t) = s(t) +v(t).

Using the orthogonality principle:

E{[s(t) - /OO ha, t)a(t —a)da] m(t—g)} =0 for — 00 < £ < 00,

o0

or equivalently,

R (&) = /OO h(a,t) Ry (€ — a)da

This gives that
H(w;t) = Hw) =

which is named the noncausal Wiener filter.

Assume v(t) is zero-mean and is independent of s(¢). Then,

R(1) = Els(t+7)(s(t) +v(1))] = Res(7)

Rer(m) = El(s(t+7)+ ot +7))(s(t) +v(t))] = Rss(7) + Ruu(7).
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In such case, the best filter is:

B Sss(w)
Hw) = Sss(w) + Spp(w)’

which is real and symmetric (because Rgs(7) is real and symmetric, and Ry, (7) is
real and symmetric). And

_H—-E{F@%i/:Mmﬂw@—aM4s@%

= Ry(0) — /OO h(a)Rss(a)da

1 [ /1 [® . I o

= — Sss(w)dw—/ (—/ H(w)e]“’o‘dw) (—/ Sss(w’)e]wo‘dw') do
21 J_ oo 2m 2T J_ oo

_ L Sss(w dw—— H (w')dw'
21 )

L[ Su@Sue)
2w/mS()+&A)d

Conclusion: As long as there is no overlap in Sgs(w) and Sy, (w), P; is zero!

The end of Section 13-1 Introduction
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Prediction of s[n| in terms of:
e Entire past: {s[n — k|}i>1
e r-step away past: {s[n — k| }i>,
e Finite past: {s[n — k|},<i<n

Assume throughout Section 13-2 that s[n| is stationary.
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s[n] = >~ hlk,n|s[n — k.

e Orthogonality principle: For all m > 1,

0 = E[(s[n] — 8[n])s[n — m]] = Ra[m] = > hlk,n]Ry[m — k]

Hence, again under stationarity assumption, h[k, n] = hlk] is invariant in n.

e Therefore, the best prediction filter satisfies:

Zh Ry[m — k] for m > 1.

This is called the Wiener-Hopf equation (in digital form).
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e 5[n| is the response of the predictor filter
H[z) =h[l]z ' + b2z 2+ -+ hlk]lz" + - -

due to the input s[n].

A

e Hence, the error process defined as e[n] = s[n]— §[n] = s[n]—>_", h[k]|s[n—
k| is the response of the filter

Elz] =1— H|[Z]
due to the input s[n].

e Claim: The error process e[n] is white.
Proof:

— e[n] is orthogonal to s[n — m] for all m > 1.
— e[n — m] is a linear combination of sjn — m — ¢] for all £ > 0.

— Hence, e[n] is orthogonal to e[n —m] for all m > 1, and R..[m| = Pd|m)|,
where P = E[e*[n]] = E|e[n]s[n]] is the minimum MS power. O
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Theorem 13-2 All zeros of E[z] satisfy |z] < 1.

Proof: If there exists a z; such that E[z;] = 0 and |z;| > 1, then form a new error

filter as:

1—271/2
-

Eol?] = Elzl——L

Then, by letting z; = |z]e/% and W' = w — 6;, we have:

2

-, 2
_ (gl | C

el — |z

el — elli /| 2]
elw — | z;| et
1 — (2/|zi]) cos(w') + 1/|zi|*
1 — 2|z cos(w') + |z]?

[Eole’]]* = |E[e"*]*

o Gl

. 1 .
= [E[e’]]P—5 < [E[¢™]]".

i
However,
1 [7 :
P=— |E[e7“]|* S, [w]dw
2m ),

is the minimum MS error that can be achieved, and Ey[z] improves the minimum
MS error. Thus, the desired contradiction is obtained. O
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The z-transform technique cannot be applied to solve the Wiener-Hopf Equation.
If

|| = Z hlk]R..|m — k] for all integer m,

k=1
then H|z| = Ss;|2]/Ssz|2], where
Seals] = D Rualklz™ and Sul2] = ) Ru[k]z™".
k=—o00 k=—o00

However,

Rs:[m] = Z hlk]R,.[m — k] only for m > 1.
k=1
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Solving Wiener-Hopf equation under the assumption that s[n] is
stationary and regular

e A regular process can be represented as the response of a causal finite-energy
system due to a unit-power white-noise process ¢[n]. So,

sln] = > 1[kin — k).

e Then, s[n] =Y .-, h[k]s[n — k] can be written as

sln] =) glkli[n — k],

for some {g[k]}72, that minimizes the MS error.

e The orthogonality principle then gives that for all m > 1,

0 = E{(s[n]—Zg[k]i[n—k]) i[n—m]}

= Rulm] = glk]Ru[m — k] = Ru[m] — gml,

which implies g[m] = Rg;[m].
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e By regularity,
Ry[m] = Els[n]iln —m]] = Z 1[k|E{i[n — K]i[n — m]} = 1[m].

This concludes to the first important result:

8[n] =) 1[kli[n — k]

is the best linear predictor for a regular and stationary process
©. 9]
sn] =Y 1[kliln — k] and P =1%[0].
k=0

e By noting that 2[n] is the response of system 1/L[z] due to input s[n], and s[n]
is the response of system L[z] — 1[0] due to input ¢|n], we obtain:
1 10} - lim, 1o L[2]

He| = (o (U =10 =1 - 77 = L[¢]
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s ﬁ U Y SR

(V
=

If S|w] is a rational spectrum, then L[z] can be obtained as follows.
o S[z] = A((2 +271)/2)/B((2 + 271)/2).

e Then the roots of S[z] are symmetric with respect to the unit circle.
So, we can separate them into two groups: Inside group that consists of all
roots with |z| < 1, and the outside group that consists of all roots with
12| > 1.

e Form L|[z| by the ratio of two polynomials with the inside roots of S|z].
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5 —4cos(w)
E le 13-3 (Slide 11-16) Ss|w| =
xample (Slide ) Sss|w] 10— Goos(@)
2 _ —1
Then, L[z] = -
3—z71
In this case,
lim, 40 L 2 2—(2 -1 —(1 -1
L[2] 2 — 2 2 — 271 1—(1/2)z71
33—zt
Consequently,
. L.
sn] — §s[n — 1] = —=s[n —1]
or equivalently,
. L.
s[n] = —=s[n — 1] + =s[n — 1]
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Appendix 12A A minimum-phase system L|z] satisfies

1 [" :
log 1°[0] = 2—/ log |L[e’“]|*dw.
m

—T

Kolmogorov and Szego noted from the above result and Sy (w) = |L[e/*]|* that

1 [T : 1 [T
= 2 = — Jw 2 —
P =17[0] exp{27T /Wlog]L[e I dw} exp{27T /WlogSss[w}dw}.

This is named the Kolmogorov-Szego MS Error Formula.



Wide-Sense Markov of Order N 13.96

e If s[n| is an autoregressive (AR) process, then (Slide 11-46)
bo

Liz| = :
s l+aiz7t 4+ 4+ az™V
e Then,
lim 1o L b _ _
H[z]zl—lmT ] =1- . = a1z e daz Y,
L|z] bo
l+az7t+---+a,z=V
which implies
sln| =—aysln—1—--- —ays[n — NJ.

e Then, s[n] is called the wide-sense Markov of order N.

— Best linear prediction based on the past N points is the best prediction
based on the entire past.
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Concern

e To find the best linear estimator of sn], in the MS sense, in terms of the
r-step-away entire past, i.e., {s[n — k] }r>,.

8[n] =) 1[kli[n — k]

is the best linear r-step predictor for a regular and stationary process

sln] =) 1[kliln— k] and P = z_: 1%[K].

k=0

Proof:

— A regular process can be represented as the response of a causal finite-energy
system due to a unit-power white-noise process ¢[n]. So,

sln] = 1[k]i[n — k].

k=0
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— Then, §[n] = > .- hl[k]s[n — k] can be written as

for some {g[k|}7;2; that minimizes the MS error.

— The orthogonality principle then gives that for all m > r,

0 = F { (s[n] — ) glkli[n — k]) i[n — m]}

k=r

which implies g[m] = Rg;[m| for m > r.
— By regularity;,

Rgim| = E[s[n]t[n —m]] = Z 1[k|E{i[n — k]ijn — m]} = 1[m].
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e In addition, it can be derived that

H [z =1-—

L
Llz]

Example 13-4 Suppose Rg[m] = a for 0 < a < 1. Then,

1 — a?

(1—az"1)(1—az)

-), where b =+/1—a?.

Sss|z] = Z Rgs[ml]z"" = Z a(zT"m+ ") =1
m=—00 m=0
S S N
l—az! 1l—az -
_ b 1, 2 -2
= L[z| = T =b(l+az " +a"2 "+
1 r—1
= H[z] = 1— EZW]Z—’C
k=0
1_ -1 r—1
_ 1_( ZZ )Zbakz—k

tta e

13-29
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Concern:

e To linearly estimate the random process s(t + A) in terms of its entire past
{s(t —7),7 > 0} in the MS sense.

Analog Wiener-Hoph equation
e Orthogonality principle:

E{ [s(t +A) — /OOO h()s(t — @)d@] s(t — 7)} —0forallT>0
& Ry(A+7)= /OOO h(@)Rys(T — a)da for all 7 > 0

The solution of (analog) Wiener-Hoph equation is named the causal Wiener

filter.
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Solving Wiener-Ho6pf equation under the assumption that s(t) is
stationary and regular.

e A regular process can be represented as the response of a causal finite-energy
system due to a unit-power white-noise process #(t). So,

s(t+ ) = / 1(a)i(t + A — a)da.
0
e Then, s(t+ \) = / h(a)s(t — a)da can be written as
0

s(t+A) = / g(a)i(t — a)da,
0
for some {g(t)}+>o that minimizes the MS error.

e The orthogonality principle then gives that for all 7 > 0,

0= E { (s(t L) - /OOO gla)it — a)da) it — 7)}
— Ru(A4+7) - /0 " g(0) Ri(r — a)da,

which implies g(7) = Rg(A+ 7).
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e By regularity,
Ry(A+7)=E[s(t)i(t — A —7)] = / 1(a)E{i(t — a)i(t — A — 7)}da =1(A + 7).
0
This concludes to the first important result:

s(t+ ) = /OO 1A+ a)i(t — a)da = /OO 1(a)e(t + N — a)do
0 A

is the best linear predictor for a regular and stationary process

s(t+ ) = /OO 1(a)e(t + N — a)da and P = /A 1%(a)do.

e By noting that (¢) is the response of system 1/L(s) due to input s(¢), and
s(t + A) is the response of system 1(7 + A\)1{7 > 0} due to input (¢), we
obtain:

Hw)=—— /OOO (7 + N)e 7“7dr.
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Example 13-5 R, (1) = 20e™ " with 0 < o < 1.

00 . 4 2
= Sss(cu):/ 2ae0leiwr gy = %

~ a? + w?
4a” 4a? 200 200
= Sss — - — =L L(—
il S e Rl s o B
2
= L(s)=—
a—+ S
200
= Lw)= :
-+ Jw
1) = /OO 20 iy — 9061 {r > 0)
T)= — e w = 2ae T
2T J_o O+ Jw -
1 e . 1 o0 .
= Hw)= —/ (1 + Ne /“Tdr = —/ Zae_o‘(”A)l{T + A >0}e7¥dr
L(w) Jo L(w) Jo
1

= — ¢ (/ Zan‘TejwdT) = ™
L(w) 0

= h(1)=e (1)
= S(t+)\)= / h(T)s(t — 7)dT = e s(t).
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An alternative way to express Wiener-Hopf equation

e The Wiener-Hopf equation only depends on Ry (7); hence, any process with
the same autocorrelation function should result in the same predictor.

e (Slide 9-105) Define a process z(t) = e/“!, where w has density A(w). Then,

09

R..(T)=F {ejw(t”)e_j‘”t} = / Alw)e’Tdr.

—0o0

So, z(t) is a process with power spectrum 27w A(w).

e The best-MS linear predictor for z(¢ + A) in terms of {z(t — 7)},>¢ is
Z(t+ )\ = / h(a)z(t — a)da = / h(a)e?=Ydo = /' H(w),
0 0

and should satisfy

E{(zt+ ) —z(t+N)z"(t—71)}=0for7 >0
& F {ej“’(MT) — eij(w)} =0 for7 >0

& / [A(w)e’* e/ dw = / A(w)H (w)e’“dw for 7 > 0

(0. 9]
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Example 13-5 Revisited. Let’s confirm the alternative expression in terms of
Example 13-5.

N%
S..(w) =21A(w) = R
Then,
°° WAL 1 [ 40
[A(w)ejm]ejmdw S LQW(AH)dw — el
—0 27‘( e (C\f2 + w2)
and

* . L (% _da® ~a(jr+)
Alw)H(w)e’"dw = — ———e “e"dw = 20”7
o 21 J_ o (@ + w?)

= |7+ Al = |7] + A, which is valid only for 7 > max{0, —A} = 0 (since A > 0)

Note that it is erroneous to claim A(w)e/** = A(w)H (w) from

/ T AW)E N e = / " Alw) H(w)e dr

09 —00

because the equation holds only for 7 > 0.
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Definition (Predictable processes) A process s[n] is predictable if it equals
its linear predictor, i.e.,

sln] = _ hlk]s[n — k]
k=1
and there is no MS prediction error.

Formula for predictable processes.

o Let E[z] =1 — H[z| =1— Y2, hlk]z"". Then, the prediction error equals
P = B{(sln] — &ln))slnl] = Rl — S hlk|Rufh]
k=1

Equivalently, (with WSS property,)
1 [ :
P = o | E[e?“]|*Ss[w]dw.
e For predictable processes, P = 0, which indicates from Sss[w] > 0 that
S.[w] > 0 only possibly at those w’s with E[e’*] = 0.
As E[z] is a polynomial of 271, it follows that for countably many w;,

Sss|lw] = 2w Z ;0 (w — w;) where E[e?*] = 0.
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e This concludes that a process s[n] that is a sum of exponentials:

sn| = g c;e’”" where {c¢;} uncorrelated and zero-mean
i

is predictable; and its prediction filter equals H|[z] = 1 — E[z], where

m
| | Wiyl

=1



FIR Predictors

Concern

13-38

e To find the best linear estimator of s[n|, in the MS sense, in terms of its N

most recent past, i.e., {s[n — k| }i<p<n.

e This is also named the forward predictor of order .

Yule-Walker equations

e By orthogonality principle,

5 { (SM .

This yields

Rgs[m] — ZakRss[m —kl=0for1 <m< N

or equivalently,

Rss [1]
Rss [2]

R.[N]

N

Z apsin — k]

k=1

N

k=1

)s[n—m]}—OforlgmgN.

aj
as

an
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e The MS estimate error is equal to:

Py=F { <s[n] — > ags[n — k]

k=1

) 8[”]} — Rss[o] - Z akRss[_k]'

e We can incorporate the above result into the Yule-Walker equations:

[pNo

— [1 —ay -

[1 —ay -

[ R.0] R

Ru[-1 R,
_GN] Rss[_Q] Rss

Rus|—N] Ry[l —
—GN] D1

| R
] R[1
1] Rss[0]
N) Ruf2- N

Recall that for a square matrix ID:

where D; ; is the cofactor of element d; ; in D (specifically, D; ; = (—1)""/M; ; and
M, ; is the determinant of the matrix by removing those elements at the same row
and the same column as d; ;), and Adj(D) = [D; ;]*.
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Hence,

[Py 0 --- 0]Adj(Dys1) = [1 —a1 -+ —an] Dyl
which implies Py|Dy| = [Dy.1].
0, if for some k < N, |Dg| # 0 and |Dy1| =0
e As a result, Py =

Dy 1]
D] £0.
‘]DN‘ ‘ N‘ 7&

Final note of the optimal {a;}: |

e The optimal a; in a system of order N may be different from that in a system
of order N + 1. This may cause some scalability problem in implementation.

Example. Suppose Ry,[m] = p™l for m = 0, £1, and zero, otherwise.
Then,

a;=pand P, =1— p?> when N = 1.

a1 = p/(1—p?), a3 = —p?/(1—p*) and P = (1—2p%) /(1 — p*) when N = 2.
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Non-scalable straightforward structure

e The predictor error

N

eln] = s[n] — 8[n] = s[n] — Y _ays[n — k]
k=1
can be obtained by input s[n] to the filter H[2] =1 —a;z7t — -+ —ayz™".
e The filter H|z] can be implemented using the ladder structure as follows.
s[n] 21 - = = = — 1
—a)/ —ay\/
D - = — - D e[n]

e This structure is not scalable in coefficients {ay }5_; (since coefficients {ay}_,
are dependent on V).
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Is there a scalable implementation structure?

e Denote the optimal {ay};_, in a system of order N as {a,iN)}]kvzl.

e Consider the below lattice structure:

B
N

—1
< N
4

Denote the input at A as s[n].
Denote the outputs at By and C respectively by ei[n] and é;[n].

Then,
n] = s[n] — kisin — 1]

n] = —kisin]+ sn—1]

(R
—

¢
—

So, the filters for output e;n] and output é;[n] are

El[Z] = 1 —/{12_1
Eilz] = —ki+ 271 =2"E[1/7]
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e Consider the below lattice structure:

Tl B
N e

—1 7T\

Z U d
Ch

Denote the input at A as s[n].
Denote the outputs at By and Cy respectively by es[n] and és[n].
Then,

ég[n] = él[n] — kgél[n — 1]
ég[n] = —kgél[n] + él[n — 1]
So, the filters for output és[n] and output é;[n| are

EQ[Z] = El[Z] — kQZ_lﬁl[Z]
E2[Z] == —kzﬁl[Z]—F 2_1]?.1[2’]
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e Continuing cascading more “lattices,” we obtain

eN[n] = éN_l[n] — kNéN_l[n — 1]

éN[TL] = —kNéN_l[n] + éN_l[n — 1]
and

EN[Z] = EN_l[Z] - kNZ_lﬁN_l[Z]

EN[Z] = _kNEN—l[Z] + Z_1EN_1[Z]

Then, Ey[z] = 2~ VEn[1/2].

Proof: Suppose Ey_;[z] = 2= W=DEy_[1/2]. Then,

N = (gl sy 1)
Y (L[] — k(N v 2)
= —lfNEN—l[ J+ 2" EN—l[ ]
= EN[Z]
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e By Ex[z] = 2 VEN[1/2], we know that if

Ex[z] =1— agN)z_l — = ag\],V)Z_N,
then
Exlz] =27 — agmz_(N_l) — = agév).

In summary;,

— ey|n] is the forward prediction error for predicting s[n] in terms of its most
recent N pasts. In other words,

en[n] = s[n] — sy[nj ZaNs

k=1

— en|n| is the backward prediction error for predicting s[n — NJ in terms of
its most recent N futures. In other words,

N
éexn| =sn— N|—syln— N]=sn— N ZaNsn—N+k].
k=1
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Derivation of ky

e From
Ev_ile] =1 —alM Vet - = gm0,
and
EN—l[Z] = Z_(N_l)EN_l[l/Z],
we derive:
Enlz] = En-i[2] — knz 'Ey_1[2]
— (1 —aMU a%V_—IUZ—(N—l))
—ky (Z—N B agN—l)Z—(N—l) o a%v_—ll)z_1>

= 11— (agN_l) - kNag\jfv__ll)> Z_l - (agN_l) - /ﬁNag\],V__Ql)) z_2 — e
_ (ag\][\/_—ll) _ kNagN_1)> ,—(N=1) _ kNZ_N.

Comparing termwisely with

Ex[z] =1— agN)z_l — = agév)z_N,

we yield:

a,(fm — a,iN_l) — kNag\],V__l) for1 <k < N and ag\j,v) = ky.
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e [t remains to solve ky:

[ R0  Ry[1] Ry[2 Ry [N] |
Rgs[—1] R[0] R[1 + Ry[N — 1]
[Py 0 -+ 0] = [1 —d™ Y R~ Ru[-1] RG0] - RGN -2
Rys|-N] Ryl — N] Ry[2 — N Rys[0]
implies
N—-1
0= R[N = > VRN — k] — alR,[0]
k=1
N—-1
— 0= Ry[N] - (a,gN—” - kNa%V__k})) Rua[N — k] — kn Rag[0]
k=1
R[N =SSV 1aM VRN — k] 1 it
= ky = al i =5 R[N =S oM VRN — K] |,
Rys[0] = 34—y an_p, Rss[N — K| N-1 k=1

where the last step follows from the fact that Ry [N — k| = Rs[k — N] (See Slide 13-39).

e The above (blue-colored) formula gives ky from known Py_; and {a,(fN_1> 2;‘11.
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Alternative derivation of ky in terms of ey[n| = ey _1[n] —kyéy_1jn—1]
(Hence, Elex[n|s[n]] = Elen-1[n]s[n]] — knElen-1[n — 1]s[n]]).

e Py = E|ey[n]s[n]| and Py_y = E[én_1[n] s[n]].

en-in—1] = s[(n—1) = (N —-1)] - ]:11 ap’ Vsl(n —1) = (N = 1) + K]
— s[n— N]— S a" Vsin — N + k]
implies -
Eléx_i[n—1]s[n]] = E[s[n — N]s[n]] — ]:z;l a\" "V E[s[n — N + K]s[n]]
——f@JN}-AFléﬁ*%$4N' k] = kn Py,
=1

e Consequently, Py = Py_1 — kn(kyPy_1) = (1 — k%) Py_1.
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Concern:

e A recursive algorithm to obtain ky and MS estimate error Py.

Levinson’s algorithm
o by = a\" = R [1]/Ry[0] and P, = (1 — k2) Ry[0].

e Assume that {a,(gN_D}éV:_ll, kny_1 and Py_q are known.
Then, it can be derived that
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e P>P>--->Py=>---20.
o If Py >0,
then |k;| < 1for1 <7< N,
and ZZ-(N) (the root of EN[Z] = 1 — Zf{vzl a,iN)z_k) satisfies ]zi(N)] < 1 for
1 <17 <N.
o If Py_; > 0and Py =0,
then |k;j| <1for1 <i< N and ky =1,
and ]zi(N)]:lforlgz'SN,

which indicates that s[n] is predictable and consists of line spectrum.

then [ Dy
. L —12[0] — T N+1
P =exp {27r /W 10g(833[w])dw} 1°[0] A}gnoo Dal
o If Pyy_y > Py but PM(:PM+1:"'):P7

then k; = 0 for ¢ > M,

and s[n| is wide-sense Markov of order M.

s[n] is autoregressive (AR) if, and only if| it is wide-sense Markov of finite order.
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Equal predictor of two processes

e Suppose process s\n| and s[n| have the same autocorrelation function up to
order M.

Then, the predictors of these two processes of order M are identical because
the predictors only depend on the value of Rgss[m] for |m| < M.

Also, from Levinson’s algorithm, we learn that Py, for both processes are the
same since Py = []7,(1 — k2)Ry4[0].
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Define the process #[n| as

s en[n)

By orthogonality principle, ¢[n] is orthogonal to s[n — m] for 1 <m < mn;
hence, i[n] is orthogonal to [n — m] for 1 < m < n, and E[i*[n]] = 1.

For the validity of the underlined statement, we implicitly assume that
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In matrix form,

%

O B (1)

0] Al1] o i) = [sl0] s[1] o sfa) | 0T
00 o

Remarks

e This is similarly the Gram-Schmidt orthonormalization procedure for [s[0] s[1] - -

e In terminologies, ¢[n] is called the Kalman innovations of s[n], and I',;1 is
called the Kalman whitening filter of s[n|.

e [t can then be derived:
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Then, the covariance matrix of s[n] is given by:

([ ] )

R, 2 EA [s[0] s[1] -+ s[n]] p =L} Ly

Therefore,
r R r =1
n+1808n+14 n4-1 n+1;

where I, 1 is the identity matrix.

The end of Section 13-2 Prediction




