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Ergodicity based on Shift-invariant Event 12-1

Before we present the “ergodicity” perspective in the textbook, some preliminary

and historical background on this term is given.

Definition (Shift-invariant event for one-sided processes) For a one-

sided random process X = {X1, X2, . . .} with alphabet X ⊆ R, let X∞ be the

set of all sequences x � (x1, x2, x3, . . .) of real numbers in X . Denote by FX the

smallest σ-field generated by all open sets of X∞ (i.e., the Borel σ-field of X∞).

Then, an event E in FX is said to be T-invariant with respect to the left-shift

(or shift transformation) T : X∞ → X∞ if

TE ⊆ E,

where

TE � {Tx : x ∈ E} and Tx � T(x1, x2, x3, . . .) = (x2, x3, . . .).

• In other words, T is equivalent to “chopping the first component.”
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Example. With

E1 � {(x1 = 1, x2 = 1, x3 = 1, x4 = 1, . . .), (x1 = 0, x2 = 1, x3 = 1, x4 = 1, . . .),

(x1 = 0, x2 = 0, x3 = 1, x4 = 1, . . .)} , (12.1)

we have

TE1 = {(x1 = 1, x2 = 1, x3 = 1, . . .), (x1 = 1, x2 = 1, x3 = 1 . . .),

(x1 = 0, x2 = 1, x3 = 1, . . .)}
= {(x1 = 1, x2 = 1, x3 = 1, . . .), (x1 = 0, x2 = 1, x3 = 1, . . .)} .

Thus, TE1 ⊆ E1, which implies E1 is T-invariant.
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Remarks.

• It can be proved that if TE ⊆ E, then T
2E ⊆ TE. By induction, we can

further obtain

· · · ⊆ T
3E ⊆ T

2E ⊆ TE ⊆ E.

• Thus, if an element say (1, 0, 0, 1, 0, 0, . . .) is in a T-invariant set E, then all its

left-shift counterparts (i.e., (0, 0, 1, 0, 0, 1 . . .) and (0, 1, 0, 0, 1, 0, . . .)) should

be contained in E.

• As a result, for a T-invariant set E, an element and all its left-shift counterparts

are either all in E or all outside E, but cannot be partially inside E.

• Hence, a “T-invariant group” such as one containing

(1, 0, 0, 1, 0, 0, . . .), (0, 0, 1, 0, 0, 1 . . .) and (0, 1, 0, 0, 1, 0, . . .)

should be treated as an indecomposable group in T-invariant sets.
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• Although we are in particular interested in these “T-invariant indecomposable

groups,” it is possible that some single “transient” element, such as (0, 0, 1, 1, . . .)

in (12.1), is included in a T-invariant set, and will be excluded after applying

left-shift operation T.

• This however can be resolved by introducing the “pseudo-inverse” operation

T
−1 (See page 3 of the below reference).

† P. C. Shields, The Ergodic Theory of Discrete Sample Paths, American Mathematical Society, 1991.

• Note that T is a many-to-one mapping (See an example below), so its inverse

operation in general does not exist!

Given X = {0, 1},
T{(0, 1, 0, 1, 0, 1 . . .)} = T{(1, 1, 0, 1, 0, 1 . . .)} = {(1, 0, 1, 0, 1 . . .)}.

• The “pseudo-inverse” operation T
−1 is defined as

T
−1E � {x ∈ X∞ : Tx ∈ E} .

T
−1{(1, 0, 1, 0, 1 . . .)} = {(0, 1, 0, 1, 0, 1 . . .), (1, 1, 0, 1, 0, 1 . . .)}.
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Definition (Ergodic set) A set is called the ergodic set if

T
−1E = E.

• It can be shown that if

T
−1E = E,

then

TE = T(T−1E) = E,

which in terms infer

· · · = T
−2E = T

−1E = E = TE = T
2E = · · · .

Thus, this definition excludes all “transient” elements from the ergodic set.

• It is named the ergodic set because as time goes by (the left-shift operator T

can be regarded as a shift to a future time), the set always stays in the state

that it has been before.
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Ergodic Property (遍歷性)

名詞解釋: 遍歷性又稱各態遍歷性，是當力學體系從任一初態開始運動後，

只要時間夠長，將要經過所有在能量曲面上的微觀運動狀態。因此無限長

時間的時間平均等於範圍平均。(來源：國家教育研究院力學名詞辭典)

Oxford Dictionary - Ergodic. adj. Relating to or denoting systems or processes

with the property that, given sufficient time, they include or impinge on all points

in a given space and can be represented statistically by a reasonably large selection

of points.

Example. Let x denote “don’t-care,” which can be either 1 or 0, and define

Ek = {(x, x, . . . , x︸ ︷︷ ︸
k of them

, 1, 0, 1, 0, 1, 0, . . .), (x, x, . . . , x︸ ︷︷ ︸
k of them

, 0, 1, 0, 1, 0, 1, . . .)}.

Then, E = ∪k≥0Ek is an ergodic set.
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• For two-sided sequences, the two conditions below are equivalent:

T
−1E = E ≡ TE = E.

Definition (Ergodic process) A process is ergodic if any ergodic set has

probability either 1 or 0.

Example. For an ergodic process, only one of the ergodic sets below can have

probability one: {
x ∈ {0, 1}∞ : lim

n→∞
x1 + x2 + · · · + xn

n
= 0.0

}
{
x ∈ {0, 1}∞ : lim

n→∞
x1 + x2 + · · · + xn

n
= 0.1

}
{
x ∈ {0, 1}∞ : lim

n→∞
x1 + x2 + · · · + xn

n
= 0.2

}
...{

x ∈ {0, 1}∞ : lim
n→∞

x1 + x2 + · · · + xn
n

= 0.9
}

{
x ∈ {0, 1}∞ : lim

n→∞
x1 + x2 + · · · + xn

n
= 1.0

}
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• The definition of ergodic processes has nothing to do with stationarity. It

simply states that events that are unaffected by time-shifting (both left- and

right-shifting) must have probability either zero or one.

• Ergodicity implies that all convergent sample averages converge to a constant

(but not necessarily to the ensemble average), and stationarity assures that the

time average converges to a random variable; hence, it is reasonably to expect

that they jointly imply the ultimate time average equals the ensemble average

(See the well-known ergodic theorem by Birkhoff and Khinchin.)

Theorem (Pointwise ergodic theorem) Consider a discrete-time sta-

tionary random process X = {Xn}∞n=1. For real-valued function f(·) on R

with finite mean (i.e., |E[f(Xn)]| < ∞), there exists a random variable Y

such that

lim
n→∞

1

n

n∑
k=1

f(Xk) = Y with probability 1.

If, in addition to stationarity, the process is also ergodic, then

lim
n→∞

1

n

n∑
k=1

f(Xk) = E[f(X1)] with probability 1.
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Remarks.

• In communications theory, one may assume that the source is stationary or

the source is stationary ergodic. But it is rare to see the assumption of the

source being ergodic but non-stationary.

• This is perhaps because an ergodic but non-stationary source not only does

not facilitate the analytical study of communications problems, but may have

limited application in practice.

• From this, we note that assumptions are made either to facilitate the analytical

study of communications problems or to fit a specific need of applications.

Without these two objectives, an assumption becomes of minor interest.

• This justifies that the ergodicity assumption usually comes after stationarity

assumption. A specific example is the pointwise ergodic theorem, where the

random processes considered is presumed to be stationary.
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• The notion of ergodicity is often misinterpreted, since the definition is not very

intuitive.

• It gets more confused as some engineering texts may provide a definition that

a stationary process satisfying the ergodic theorem is also ergodic. Here is an

example quoted from some text.

Definition. A stationary random process {Xn}∞n=1 is called ergodic if for

arbitrary integer k and function f(·) on X k of finite mean,

1

n

n∑
i=1

f(Xi+1, . . . , Xi+k)
a.s.−→ E[f(X1, . . . , Xk)].

• This definition somehow implies that if a process is not stationary-ergodic,

then the strong law of large numbers is violated (or the time average does not

converge with probability 1 to its ensemble expectation). But this is not true

(from its origin)!
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Markov

i.i.d. Stationary

Ergodic

General relations of random processes.

• Indeed, the ergodic theorem is indeed a consequence of the original mathemat-

ical definition of ergodicity in terms of the shift-invariant property (See also

pages 174-175 of the below reference).

† P. C. Shields, R. M. Gray and L. D. Davisson, Random Processes: A Mathematical Approach for Engineers,

Prentice-Hall, 1986.
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Let us try to clarify the notion of ergodicity by the following remarks.

• The concept of ergodicity does not require stationarity. In other words, a

non-stationary process can be ergodic.

• As mentioned earlier, stationarity and ergodicity imply the time average con-

verges with probability 1 to the ensemble mean. Now if a process is stationary

but not ergodic, then the time average still converges, but possibly not to the

ensemble mean.

Example. Let {An}∞n=−∞ and {Bn}∞n=−∞ be two i.i.d. binary 0-1 random

variables with

Pr{An = 0} = Pr{Bn = 1} =
1

4
.

Suppose that

Xn =

{
An, if U = 1;

Bn, if U = 0,

where U is equiprobable binary random variable, and {An}∞n=1, {Bn}∞n=1 and

U are independent. Then {Xn}∞n=1 is stationary. Is the process ergodic? The

answer is negative.



Closing Remarks on Ergodicity 12-13

If the stationary process were ergodic, then from the pointwise ergodic theorem,

its relative frequency would converge to

Pr(Xn = 1) = Pr(U = 1) Pr(Xn = 1|U = 1) + Pr(U = 0) Pr(Xn = 1|U = 0)

= Pr(U = 1) Pr(An = 1) + Pr(U = 0) Pr(Bn = 1)

=
1

2
.

However, one should observe that the outputs of (X1, . . . , Xn) form a Bernoulli

process with relative frequency of 1’s being either 3/4 or 1/4, depending on the

value of U . Therefore,

lim
n→∞

1

n

n∑
i=1

Xn
a.s.−→ Y,

where Pr(Y = 1/4) = Pr(Y = 3/4) = 1/2, which contradicts to the ergodic

theorem. �
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• From the above example, the pointwise ergodic theorem can actually be made

useful in such a stationary but non-ergodic case, since the estimate with station-

ary ergodic process (either {An}∞n=−∞ or {Bn}∞n=−∞) is actually being observed

by measuring the relative frequency (3/4 or 1/4).

• This renders a surprising fundamental result of random processes— ergodic

decomposition theorem: Any stationary process is in fact a mixture of sta-

tionary ergodic processes, and hence one always observes a stationary ergodic

outcome.

Example. One always observe either A1, A2, A3, . . . or B1, B2, B3, . . ., de-

pending on the value of U , for which both sequences are stationary ergodic. In

other words, the time-stationary observation Xn satisfies

Xn = U · An + (1− U) · Bn.

�
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• In conclusion, ergodicity is not required for the strong law of large numbers

to be effective. The next question is whether or not stationarity is required.

Again the answer is negative.

• The main concern of the law of large numbers is the convergence of sample

averages to its ensemble expectation.

• It should be reasonable to expect that random processes could exhibit transient

behavior that violates the stationarity definition, yet the sample average still

converges.

Example. A finite-alphabet time-invariant (but not necessarily stationary)

irreducible Markov chain satisfies the law of large numbers.

• Accordingly, one should not take the notions of stationarity and ergodicity too

seriously (if the main concern is the law of large numbers) since they can be

significantly weakened and still have laws of large numbers holding (i.e., time

averages and relative frequencies have desired and well-defined limits).

The end of Preliminary Introduction of Ergodicity
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Concern:

• Can one estimate the mean E[x(t)] of a WSS process x(t) in terms of time

samples x(t1),x(t2), . . . ,x(tn), · · · ?
Suppose that x(t) is defined over the probability system (S,F , P ). Then,

E[x(t)] =

∫
S

x(t, ζ)dP (ζ) or
∑
ζ∈S

x(t, ζ)P (ζ)

can be estimated by x(t, ζ1),x(t, ζ2),x(t, ζ3), · · · ! This indicates that one

needs to impractically take a large number of samples at the same time in

order to estimate E[x(t)].

Definition (Mean-ergodic process) A process x(t) is mean-ergodic if for

some constant η,

E
[ |ηT − η|2 ] → 0 as T → ∞,

where

ηT � 1

2T

∫ T

−T

x(t)dt.
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ηT can then be further approximated by its Riemann integral, using

x(t1),x(t2), . . . ,x(tn), · · · .

Example 12-1 Is x(t) = c mean-ergodic, where c is a nondegenerate random

variable?

Answer:

ηT =
1

2T

∫ T

−T

x(t)dt = c.

Since

lim
T→∞

E[|ηT − η|2] = E[|c− η|2] �= 0,

x(t) is not mean-ergodic. �
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This process is stationary since

x(t) = c and x(t− τ ) = c

have the same statistics for any τ . However,

Pr

(
x(t1) + x(t2) + · · · + x(tn)

n
≤ c

)
= Pr(c ≤ c).

So
x(t1) + x(t2) + · · · + x(tn)

n
converges in distribution (also in probability and with probability 1) to a random

variable c. This is not what mean-ergodicity wishes to see. The mean-ergodicity

demands that
x(t1) + x(t2) + · · · + x(tn)

n
converges in mean-sqaure to a constant c.
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Variance of ηT

• Var[ηT ] = E[η2
T ]− E2[ηT ] =

1

4T 2

∫ T

−T

∫ T

−T

[Rxx(t, s)− ηx(t)ηx(s)]dtds

• If x(t) is WSS, then

Var[ηT ] =
1

4T 2

∫ T

−T

∫ T

−T

Rxx(t− s)dtds− η2x

=
1

4T 2

∫ T

−T

∫ T−s

−T−s

Rxx(u)duds− η2x

=
1

4T 2

(∫ 0

−2T

Rxx(u)

∫ T

−T−u

dsdu +

∫ 2T

0

Rxx(u)

∫ T−u

−T

dsdu

)
− η2x

=
1

2T

∫ 2T

−2T

Rxx(u)

(
1− |u|

2T

)
du− η2x

=
1

2T

∫ 2T

−2T

Cxx(u)

(
1− |u|

2T

)
du.

Lemma AWSS process x(t) is mean-ergodic if, and only if, limT→∞Var[ηT ] = 0.
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Theorem 12-1 (Slutsky’s theorem) A WSS process x(t) is mean-ergodic if,

and only if,

lim
T→∞

1

2T

∫ T

−T

Cxx(τ )dτ = 0.

Proof:

• By Cauchy-Schwartz inequality,

Cov[ηT ,x(0)] ≤
√
Var[ηT ]Var[x(0)].

Since Cov[ηT ,x(0)] =
1

2T

∫ T

−T

Cxx(τ )dτ , it is apparent that if Var[ηT ] → 0,

lim
T→∞

1

2T

∫ T

−T

Cxx(τ )dτ = 0.

• On the contrary,

lim
T→∞

1

2T

∫ T

−T

Cxx(τ )dτ = 0

implies the existence of T0 for a given ε > 0 such that∣∣∣∣ 12T
∫ T

−T

Cxx(τ )dτ

∣∣∣∣ < ε for every T > T0.
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This indicates that∣∣∣∣
∫ t

−t

Cxx(τ )dτ

∣∣∣∣ < 2tε for every t > T0.

Accordingly, for 2T > T0,

Var[ηT ] =
1

2T

∫ 2T

−2T

Cxx(τ )

(
1− |τ |

2T

)
dτ

=
1

4T 2

∫ 2T

−2T

Cxx(τ ) (2T − |τ |) dτ

=
1

4T 2

∫ 2T

−2T

Cxx(τ )

(∫ 2T

|τ |
dt

)
dτ (See Slide 12-23.)

=
1

4T 2

∫ 2T

0

(∫ t

−t

Cxx(τ )dτ

)
dt

=
1

4T 2

∫ T0

0

(∫ t

−t

Cxx(τ )dτ

)
dt +

1

4T 2

∫ 2T

T0

(∫ t

−t

Cxx(τ )dτ

)
dt
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≤ 1

4T 2

∫ T0

0

(∫ t

−t

|Cxx(τ )|dτ
)
dt +

1

4T 2

∫ 2T

T0

∣∣∣∣
∫ t

−t

Cxx(τ )dτ

∣∣∣∣ dt
≤ 1

4T 2

∫ T0

0

(∫ t

−t

Cxx(0)dτ

)
dt +

1

4T 2

∫ 2T

T0

(2tε)dt

=
T 2
0

4T 2
Cxx(0) +

4T 2 − T 2
0

4T 2
ε,

which implies limT→∞Var[ηT ] ≤ ε. The proof is completed by noting that ε

can be made arbitrarily small. �
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Lemma (Sufficient conditions for mean-ergodicity) If∣∣∣∣
∫ ∞

−∞
Cxx(τ )dτ

∣∣∣∣ < ∞ or lim
|τ |→∞

|Cxx(τ )| = 0,

then WSS x(t) is mean-ergodic.

Proof: Since
∣∣∫∞

−∞Cxx(τ )dτ
∣∣ < ∞ implies lim|τ |→∞ |Cxx(τ )| = 0, it suffices to

prove the sufficiency of the latter condition.

For any ε > 0, there exists T0 such that |Cxx(τ )| < ε for |τ | > T0. Hence,∣∣∣∣ 12T
∫ T

−T

Cxx(τ )dτ

∣∣∣∣ ≤ 1

2T

∫ T0

−T0

|Cxx(τ )|dτ +
1

2T

∫
T0≤|τ |<T

|Cxx(τ )|dτ

≤ 1

2T

∫ T0

−T0

Cxx(0)dτ +
1

2T

∫
T0≤|τ |<T

εdτ

= Cxx(0)
T0

T
+ ε

T − T0

T
→ ε as T → ∞.

The proof is completed by noting that ε can be made arbitrarily small. �
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Concern:

• Can one estimate the mean E{x[t]} of a discrete WSS process x[t] in terms of

time samples x[t1],x[t2], . . . ,x[tn], · · · , where t1, t2, . . ., tn, . . . are integers?

Definition (Mean-ergodic process) A discrete process x[t] is mean-ergodic

if for some constant η,

E
[ |ηT − η|2 ] → 0 as T → ∞,

where

ηT � 1

2T + 1

T∑
t=−T

x[t].

• We can then similarly show that for a discrete WSS x[t],

Var[ηT ] =
1

2T + 1

2T∑
u=−2T

Cxx[u]

(
1− |u|

2T + 1

)
.

Lemma A WSS process x[t] is mean-ergodic if, and only if, limT→∞Var[ηT ] = 0.
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Theorem 12-2 (Slutsky’s theorem for discrete processes) A discrete

WSS process x[t] is mean-ergodic if, and only if,

lim
T→∞

1

2T

T∑
τ=−T

Cxx[τ ] = 0.

Lemma (Sufficient conditions for mean-ergodicity) If

lim
|τ |→∞

|Cxx[τ ]| = 0,

then WSS x[t] is mean ergodic.

Example 12-6(a) Suppose x[t] is zero-mean white with autocovariance function

Cxx[m] = Pδ[m]. Then, as limm→∞Cxx[m] = 0, x[t] is mean-ergodic, and the

estimation variance equals:

Var[ηT ] =
1

2T + 1

2T∑
u=−2T

Cxx[u]

(
1− |u|

2T + 1

)

=
1

2T + 1

2T∑
u=−2T

P δ[u]

(
1− |u|

2T + 1

)
=

P

2T + 1
.
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Example 12-6(b) In case Cxx[m] = Pa|m| for |a| < 1, x[t] is still mean-ergodic

because limm→∞Cxx[m] = 0. Also,

Var[ηT ] =
1

2T + 1

2T∑
u=−2T

Cxx[u]

(
1− |u|

2T + 1

)

=
1

2T + 1

2T∑
u=−2T

Pa|u|
(
1− |u|

2T + 1

)

=
P
[
(1− a2)(2T + 1)− 2a + 2a2T+2

]
(1− a)2(2T + 1)2

≈ P

(2T + 1)

(1 + a)

(1− a)
when T large.
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Examination of Mean-ergodicity in terms of Spectral

Var[ηT ] =
1

2T

∫ 2T

−2T

Cxx(u)

(
1− |u|

2T

)
du

=

∫ ∞

−∞
Cxx(u) · 1

2T

(
1− |u|

2T

)
1{|u| ≤ 2T}du

=

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
Sc
xx(ω)e

jωudω

)(
1

2π

∫ ∞

−∞

sin2(Tν)

T 2ν2
ejνudν

)
du

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
Sc
xx(ω)

sin2(Tν)

T 2ν2

(
1

2π

∫ ∞

−∞
ej(ω−ν)udu

)
dνdω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
Sc
xx(ω)

sin2(Tν)

T 2ν2
δ(ω − ν)dνdω

=
1

2π

∫ ∞

−∞
Sc
xx(ω)

sin2(Tω)

T 2ω2
dω,

where Sc
xx(ω) is the covariance spectrum of WSS x(t).
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Example. If Sc
xx(ω) consists of an impulse at the origin, then x(t) is not mean-

ergodic because

Var[ηT ] =
1

2π

∫ ∞

−∞
Sc
xx(ω)

sin2(Tω)

T 2ω2
dω

=
1

2π

∫ ∞

−∞
[S1(ω) + 2πk0δ(ω)]

sin2(Tω)

T 2ω2
dω

=
1

2π

∫ ∞

−∞
S1(ω)

sin2(Tω)

T 2ω2
dω + k0 �→ 0 as T → 0.

If process x(t) is regular, then Sc
xx(ω) contains no impulse at ω = 0.
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• ηT � 1

2T

∫ T

−T

x(t)dt is a special instance of y(t;T0) �
1

T0

∫ t

t−T0

x(α)dα as

ηT = y(T ; 2T ).

• If x(t) is WSS,

Var[y(t;T0)] =
1

T 2
0

∫ t

t−T0

∫ t

t−T0

Cxx(u− v)dudv

=
1

T 2
0

∫ t

t−T0

∫ t−v

t−v−T0

Cxx(s)dsdv

=
1

T 2
0

∫ 0

−T0

Cxx(s)

∫ t

t−s−T0

dvds +
1

T 2
0

∫ T0

0

Cxx(s)

∫ t−s

t−T0

dvds

=
1

T0

∫ T0

−T0

Cxx(s)

(
1− |s|

T0

)
ds,

which is only a function of window size T0.
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Concern:

• Can one estimate the variance of a WSS process x(t) in terms of time samples

x(t1),x(t2), . . . ,x(tn), · · · ?

Concern with known mean and SSS:

• Can one estimate the variance E[x2(t)] − µ2
x of a SSS process x(t) in terms

of time samples x2(t1),x
2(t2), . . . ,x

2(tn), · · · ?
• The answer has already been given in previous slides.

Example. For a zero-mean SSS Gaussian process x(t),

Cx2x2(τ ) = E[x2(t + τ )x2(t)]− E[x2(t + τ )]E[x2(t)]

= E[x2(t + τ )]E[x2(t)] + 2E2[x(t + τ )x(t)]︸ ︷︷ ︸
See the next slide.

−E[x2(t + τ )]E[x2(t)]

= 2C2
xx(τ ).

Thus, zero-mean SSS Gaussian x(t) is variance-ergodic if, and only if,

lim
T→∞

1

2T

∫ T

−T

C2
xx(τ )dτ = 0.
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For joint normal variables x and y with zero-mean, the pdf equals:

f(x, y) =
1

2π|Σ|1/2 exp
{
−1

2

[
x y

]
Σ−1

[
x

y

]}

=
1

2π|Σ|1/2 exp
{
−σ2

yx
2 − 2σxyxy + σ2

xy
2

2(σ2
xσ

2
y − σ2

xy)

}

where Σ =

[
σ2
x σxy

σxy σ2
y

]
. This gives that (x|y) is Gaussian distributed with mean

σxyy/σ
2
y and variance (σ2

xσ
2
y − σ2

xy)/σ
2
y, which implies that

E[x2y2] = E[E[x2y2|y]] = E[y2E[x2|y]]
=

σ2
xσ

2
y − σ2

xy

σ2
y

E[y2] +
σ2
xy

σ4
y

E[y4]

=
σ2
xσ

2
y − σ2

xy

σ2
y

σ2
y +

σ2
xy

σ4
y

(3σ4
y)

= σ2
xσ

2
y + 2σ2

xy. (See (6-199) in text.)
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Concern with unknown mean and SSS:

• Can one estimate the variance of a (real) SSS process x(t) in terms of time

samples x2(t1),x
2(t2), . . . ,x

2(tn), · · · ?

– First, estimate ηT � 1

2T

∫ T

−T

x(t)dt.

– Then, estimate the variance of x(t) by

V̂ T =
1

2T

∫ T

−T

[x(t)− ηT ]
2dt =

1

2T

∫ T

−T

x2(t)dt− η2
T .

Remarks

• V̂ T is a biased estimator, as contrary to

V T � 1

2T

∫ T

−T

x2(t)dt− η2x (estimator with known mean)

is an unbiased estimator.

• The estimation variance of V̂ T , however, is smaller than that of V T in many

cases, which is the reason that some use V̂ T instead of V T even when ηx is

known.
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Concern:

• Can one estimate the autocovariance function of a (real) zero-mean SSS process

x(t) in terms of time samples x(t1),x(t2), . . . ,x(tn), · · · ?
Equivalent concern:

• Can one estimate the mean of a SSS process x(t + τ )x(t) in terms of time

samples x(t1 + τ )x(t1),x(t2 + τ )x(t2), . . . ,x(tn + τ )x(tn), · · · ?

• Answer: CT (τ ) =
1

2T

∫ T

−T

x(t + τ )x(t)dt

Example. If x(t) is a Gaussian zero-mean SSS process, then by letting z(t) =

x(t + λ)x(t),

Czz(τ ) = E[x(t + τ + λ)x(t + τ )x(t + λ)x(t)]− E[x(t + τ + λ)x(t + τ )]E[x(t + λ)x(t)]

= Cxx(λ + τ )Cxx(λ− τ ) + C2
xx(τ ).

Thus, by Theorem 12-1 (cf. Slide 12-20), SSS Gaussian zero-mean x(t) is covariance-

ergodic if, and only if,

lim
T→∞

1

2T

∫ T

−T

[Cxx(λ + τ )Cxx(λ− τ ) + C2
xx(τ )]dτ = 0.

In addition, if Cxx(τ ) → 0 as |τ | → ∞, then x(t) is mean-ergodic, variance-ergodic

and covariance-ergodic.
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Concern:

• Can one estimate the cross-covariance function of two zero-mean jointly SSS

processes x(t) and y(t) in terms of their samples?

• Since the answer is very similar to other cases, the discussion about cross-

covariance-ergodicity is omitted.
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Theorem (Bussgang’s theorem) The cross-covariance Cxy(τ ) of system in-

put x(t) and system output y(t) for a stationary zero-mean Gaussian input and

memoryless system T (·) is proportional to Cxx(τ ). I.e.,

Cxy(t1 − t2) = Cxx(t1 − t2)
E[x(t) · g(x(t))]

Rxx(0)
,

where g(x2) = E[T (x2)].

• By Bussgangs’ theorem, to estimate Cxx(τ ), it suffices to estimate Cxy(τ ) for

some properly chosen system T (·).
Example. Choose y(t) = sgn[x(t)] (cf. Hard Limiter) for zero-mean Gaussian

SSS x(t). Then,

Cxx(τ ) =

√
πCxx(0)

2
Cxy(τ ) =

π

2
Cxy(0)Cxy(τ )

and Cxy(τ ) can be estimated by

1

2T

∫ T

−T

x(t + τ )sgn[x(t)]dt.
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Concern:

• Can one estimate the cdf Fx(x) � Pr[x(t) ≤ x] of a SSS process x(t) in terms

of time samples x(t1),x(t2), . . . ,x(tn), · · · ?
Equivalent concern:

• Can one estimate the mean of a SSS process y(t) � 1{x(t) ≤ x} in terms of

time samples?

• This is exactly the mean-ergodicity.

• Since

Cyy(τ ) = E[y(t + τ )y∗(t)]− E[y(t + τ )]E[y∗(t)]
= Pr{x(t + τ ) ≤ x and x(t) ≤ x} − Pr{x(t + τ ) ≤ x}Pr{x(t) ≤ x}
= Fx(x, x; 0, τ )− F 2

x(x),

a SSS process x(t) is distribution-ergodic if

lim
T→∞

1

2T

∫ T

−T

Fx(x, x; 0, τ )dτ = F 2
x(x).
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• A corelometer is a physical device measuring the autocorrelation Rxx(λ) of

a (WSS) process x(t).

• Below are two possible structures for correlometer, where one uses a multiplier

and the other uses an adder with squarer. The LPF can be treated as an

integrator.

� e−jωλ �⊗
�

� LPF �x(t) x(t− λ)x(t) Rxx(λ)

� e−jωλ �⊕
�

� Squarer � LPF �x(t)

[x(t− λ) + x(t)]2

2[Rxx(0) +Rxx(λ)]
�
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Michelson interferometer (Corelometer)

• λ = 2d/c and t0 = l/c, where c is the light speed.

• D is a squarer; hence, z(t) = A2[x(t− t0 − λ) + x(t− t0)]
2.
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• A spectrometer is a physical device measuring the Fourier transform Sxx(ω)

of Rxx(λ).

• E[y2(t)] =
1

2π

∫ ∞

−∞
Syy(ω)dω =

1

2π

∫ ∞

−∞
Sxx(ω)|B(ω)|2dω ≈ Sxx(ω0)

�

�

�B(ω)
�y(t)
Squarer �y2(t)

LPF �Sxx(ω0)x(t)
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Fabry-Pérot interferometer (Spectrometer)

• B(ω) =
1

1− r2e−j2ωd/c
=

∞∑
n=0

r2ne−j2nωd/c, where r ≈ 1 is the reflection

coefficient of the two places P1 and P2, and c is the light speed in the medium

between the plate (See (a) in the next slide).

• Notably,

|B(ω)|2 = 1

1 + r4 − 2r2 cos(2ωd/c)

and

B(ω) ≈ 1

2
+
ω0

2

∞∑
n=−∞

δ(ω−nω0)−j
1

2
cot

(
π
ω

ω0

)
when r → 1, where ω0 = π

c

d
.

So, if Sxx(ω) only overlaps with one impulse in B(ω), then B(ω) functions like

the ideal single-impulse filter (See (b) in the next slide).
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The end of Section 12-1 Ergodicity
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Concern:

• Can one estimate the power spectrum Sxx(ω) of a real WSS process x(t) in

terms of xT (t), where

xT (t) � x(t)pT (t) pT (t) �
{

1, |t| < T

0, |t| > T

Definition (Periodogram) The periodogram of a process is defined as

ST (ω) =
1

2T

∣∣∣∣
∫ T

−T

x(t)e−jωtdt

∣∣∣∣
2

.

• The periodogram is the normalized absolute square of the Fourier transform of

the known segment xT (t), i.e.,

ST (ω) =
1

2T
|XT (ω)|2 XT (ω) =

∫ ∞

−∞
xT (t)e

−jωtdt.
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Theorem 12-4 Let y(t) = xT (t) = x(t)pT (t). For WSS x(t), ST (ω) =

(1/(2T ))|Y (ω)|2 is an asymptotically unbiased estimator of Sxx(ω).

If, in addition,

Cov{|XT (u)|2, |XT (v)|2} = Cov{|Y (u)|2, |Y (v)|2} = S2
yy(u, v) + S2

yy(u,−v),

Var[ST (ω)] ≈
{

S2
xx(ω), |ω| � 1

T
2S2

xx(0), ω = 0

Proof: It can be shown that the autocorrelation function of y(t) = pT (t)x(t) is:

Ryy(t1, t2) = Rxx(t1 − t2)pT (t1)p
∗
T (t2).
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Hence,

Syy(u1, u2) =

∫ ∞

−∞

∫ ∞

−∞
Rxx(t1 − t2)pT (t1)p

∗
T (t2)e

−j(u1t1+u2t2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
Sxx(f)e

j(t1−t2)fdf

)
pT (t1)p

∗
T (t2)e

−j(u1t1+u2t2)dt1dt2

=

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
pT (t1)e

−j(u1−f)t1dt1

∫ ∞

−∞
p∗T (t2)e

j(−u2−f)t2dt2

)
Sxx(f)df

=

∫ ∞

−∞

1

2π

(
2 sin[T (u1 − f)]

(u1 − f)

)(
2 sin[T (u2 + f)]

(u2 + f)

)
Sxx(f)df

(Here, we also show that Syy(u1, u2) is real! This will be used in Slides 12-51 and 12-73.)

≈
∫ ∞

−∞

1

2π

(
2 sin[T (u1 − f)]

(u1 − f)
1

{
−k ≤ T (u1 − f)

π
≤ k

})
(
2 sin[T (u2 + f)]

(u2 + f)
1

{
−k ≤ T (u2 + f)

π
≤ k

})
Sxx(f)df for k large

=

∫ ∞

−∞

1

2π

(
2 sin[T (u1 − f)]

(u1 − f)
1

{
u1 − πk

T
≤ f ≤ u1 +

πk

T

})
(
2 sin[T (u2 + f)]

(u2 + f)
1

{
−u2 − πk

T
≤ f ≤ −u2 +

πk

T

})
Sxx(f)df.
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Accordingly, it is fair to say that Syy(u1, u2) ≈ 0 if

u1 +
πk

T
≤ −u2 − πk

T
or −u2 +

πk

T
≤ u1 − πk

T
,

which is equivalent to saying that |u1+u2| � 1/T . (I.e., Syy(ω, ω) ≈ 0 if |ω| � 1/T .)

On the other hand, for T large,

Syy(ω,−ω) = 2T

∫ ∞

−∞

sin2[T (ω − f)]

πT (ω − f)2
Sxx(f)df

≈ 2T

∫ ∞

−∞
δ(ω − f)Sxx(f)df (See the next slide.)

= 2TSxx(ω).

Consequently, by the lemma in Slide 11-78,

E[ST (ω)] =
1

2T
RY Y (ω, ω) =

1

2T
Syy(ω,−ω) → Sxx(ω) as T → ∞.

Var[ST (ω)] = Cov{ST (ω),ST (ω)}
=

1

4T 2
Cov{|XT (ω)|2, |XT (ω)|2}

=
1

4T 2

[
S2
yy(ω, ω)︸ ︷︷ ︸

≈0 if ω�1/T

+ S2
yy(ω,−ω)︸ ︷︷ ︸

≈4T 2S2
xx(ω) if T large

] ≈ {
S2
xx(ω), ω� 1/T

2S2
xx(0), ω = 0

�
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That

∫ ∞

−∞

sin2(Ts)

πTs2
ds = 1, lim

s→0

sin2(Ts)

πTs2
=

T

π
, and

∣∣∣∣sin2(Ts)πTs2

∣∣∣∣ ≤ 1

πTs2
for s �= 0

implies that lim
T→∞

sin2(Ts)

πTs2
= δ(s).

• Although it is asymptotic unbias, ST (ω) is still a bias estimate of Sxx(ω) for

finite T .
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• One can reduce the bias by introducing a data window c(t) to obtain:

ST (ω; c) =
1

2T

∣∣∣∣
∫ T

−T

c(t)x(t)e−jωtdt

∣∣∣∣
2

,

which is named the modified periodogram .

• The modified periodogram is the normalized absolute square of the Fourier

transform of the known segment xT (t; c) = cT (t)x(t), where cT (t) = c(t)pT (t),

i.e.,

ST (ω; c) =
1

2T
|XT (ω; c)|2 XT (ω; c) =

∫ ∞

−∞
xT (t; c)e

−jωtdt.

• The choice that minimizes the bias of ST (ω; c) will be introduced later.



Modified Periodogram 12-50

Let y(t) = cT (t)x(t). Then

Ryy(t1, t2) = Rxx(t1 − t2)cT (t1)c
∗
T (t2).

Hence,

Syy(u1, u2) =

∫ ∞

−∞

∫ ∞

−∞
Rxx(t1 − t2)cT (t1)c

∗
T (t2)e

−j(u1t1+u2t2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
Sxx(f)e

j(t1−t2)fdf

)
cT (t1)c

∗
T (t2)e

−j(u1t1+u2t2)dt1dt2

=

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
cT (t1)e

−j(u1−f)t1dt1

∫ ∞

−∞
c∗T (t2)e

j(−u2−f)t2dt2

)
Sxx(f)df

=
1

2π

∫ ∞

−∞
CT (u1 − f)C∗

T (−u2 − f)Sxx(f)df

Consequently, by the lemma in Slide 11-78,

E[ST (ω; c)] =
1

2T
RY Y (ω, ω) =

1

2T
Syy(ω,−ω) =

1

4πT

∫ ∞

−∞
Sxx(f)|CT (ω − f)|2df.

This will be used later in Slide 12-56.
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Theorem 11-3. An example of y(t) for the condition that

Cov{|Y (u)|2, |Y (v)|2} = S2
yy(u, v) + S2

yy(u,−v)

is real Gaussian with zero mean.
Proof:

• Let Y (u) = A(u) + jB(u) and Y (v) = A(v) + jB(v), where A(u), B(u),

A(v) and B(v) are jointly Gaussian (because y(t) is Gaussian).

• Derive

Cov{|Y (u)|2, |Y (v)|2}
= E[(A2(u) +B2(u))(A2(v) +B2(v))]− E[A2(u) +B2(u)]E[A2(v) +B2(v)]

= E[A2(u)A2(v)] + E[A2(u)B2(v)] + E[B2(u)A2(v)] + E[B2(u)B2(v)]

−E[A2(u)]E[A2(v)]− E[A2(u)]E[B2(v)]− E[B2(u)]E[A2(v)]− E[B2(u)]E[B2(v)]

= 2E2[A(u)A(v)] + 2E2[A(u)B(v)] + 2E2[B(u)A(v)] + 2E2[B(u)B(v)]

where the last step follow from the fact that

E[x2y2]− E[x2]E[y2] = 2E2[xy]

for any jointly Gaussian (x,y).
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• We further derive

Syy(u,−v) = RY Y (u, v) = E[Y (u)Y ∗(v)]
= E[(A(u) + jB(u))(A(v)− jB(v))]

= E[A(u)A(v)]︸ ︷︷ ︸
C

+E[B(u)B(v)]︸ ︷︷ ︸
D

−j E[A(u)B(v)]︸ ︷︷ ︸
E

+j E[B(u)A(v)]︸ ︷︷ ︸
F

and

Syy(u, v) =

∫ ∞

−∞

∫ ∞

−∞
Ryy(t1, t2)e

−j(ut1+vt2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
E[y(t1)y(t2)]e

−j(ut1+vt2)dt1dt2

= E[Y (u)Y (v)]

= E[(A(u) + jB(u))(A(v) + jB(v))]

= E[A(u)A(v)]︸ ︷︷ ︸
C

−E[B(u)B(v)]︸ ︷︷ ︸
D

+j E[A(u)B(v)]︸ ︷︷ ︸
E

+j E[B(u)A(v)]︸ ︷︷ ︸
F

.
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• Since Syy(u, v) is real due to WSS x(t) (See Slide 12-46),

2C = Syy(u,−v) + Syy(u, v)

2D = Syy(u,−v)− Syy(u, v)

2E = 0

2F = 0

• Consequently,

4C2 + 4D2 + 4E2 + 4F 2 = 2S2
yy(u,−v) + 2S2

yy(u, v).

�

Syy(u, v) may be complex under y(t) = x(t)c(t) for general real-valued Gaussian

x(t) (not necessarily WSS) and real c(t) (not necessarily symmetric). As such, we

have

Cov{|Y (u)|2, |Y (v)|2} = |Syy(u,−v)|2 + |Syy(u, v)|2.
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Remarks

• The estimation variance (namely, E[|ST (ω; c) − Sxx(ω)|2]) is larger than
the variance of the estimate (namely, Var[ST (ω; c)]) for every T , but their

difference will decrease to zero as T → ∞, if the estimator is asymptotically

unbiased.

E[|ST (ω; c)− Sxx(ω)|2]− Var[ST (ω; c)]

= ����������
E[|ST (ω; c)|2]− Sxx(ω)E[S∗

T (ω; c)]− S∗
xx(ω)E[ST (ω; c)] + |Sxx(ω)|2

−����������
E[|ST (ω; c)|2] + |E[ST (ω; c)]|2

= |E[ST (ω; c)]− Sxx(ω)|2 .

• Fact without formal proof : The estimation variance can not be made zero

even if T is large, and is asymptotically lower-bounded by S2
xx(ω).

• Fact without formal proof : Hence, the use of data window does not help much

in decreasing either the estimation variance or the variance of the estimate (in

asymptotic sense).
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Smoothed Spectrum

• One way to improve the estimation variance is to smooth the spectrum:

ST,w(ω; c) =
1

2π

∫ ∞

−∞
W (y)ST (ω − y; c)dy

at the price of a slightly larger bias. Notably, ST (ω; c) is a biased estimator

for finite T .

• It can be anticipated that:

sT,w(τ ; c) =
1

2π

∫ ∞

−∞
ST,w(ω; c)e

jωτdω

=
1

2π

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
W (y)ST (ω − y; c)dy

)
ejωτdω

=
1

4π2

∫ ∞

−∞
W (y)

∫ ∞

−∞
ST (ω − y; c)ejωτdωdy, u = ω − y

=

(
1

2π

∫ ∞

−∞
W (y)ejyτdy

)(
1

2π

∫ ∞

−∞
ST (u; c)e

juτdu

)
= w(τ )sT (τ ; c),

where w(τ ) is called the lag window with the property w(0) = 1, and its

Fourier transform W (ω) is called the spectral window.
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Bias and variance of ST,w(ω; c)

• Bias:

E[ST,w(ω; c)] =
1

2π

∫ ∞

−∞
W (y)E[ST (ω − y; c)]dy

=
1

2π

∫ ∞

−∞
W (y)

(∫ ∞

−∞
Sxx(v) · 1

4πT
|CT (ω − y − v)|2dv

)
dy

=
1

2π

∫ ∞

−∞
Sxx(v)

(
1

4πT

∫ ∞

−∞
W (y)|CT (ω − y − v)|2dy

)
dv.

Hence, under certain condition that makes valid the bounded convergence the-

orem, and using limT→∞
1

4πT
|CT (ω)|2 = δ(ω), we obtain

lim
T→∞

E[ST,w(ω; c)] =
1

2π

∫ ∞

−∞
Sxx(v)

(∫ ∞

−∞
W (y) lim

T→∞
1

4πT
|CT (ω − y − v)|2dy

)
dv

=
1

2π

∫ ∞

−∞
Sxx(v)

(∫ ∞

−∞
W (y)δ(ω − y − v)dy

)
dv

=
1

2π

∫ ∞

−∞
Sxx(v)W (ω − v)dv.

If W (ω) remains constant in a very short duration around origin, and zero

outside, then one can retain limT→∞E[ST,w(ω; c)] ≈ Sxx(ω).
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• Variance:

Var[ST,w(ω; c)] =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
W (y)W ∗(z)Cov{ST (ω − y; c),ST (ω − z; c)}dydz

Let us examine the impact of the spectral window on the behavior of the

estimation variance of ST,w(ω; c) through an “artificial” example.

Example. Assume that


c(t) = 1 (No data window)

Rxx(τ ) = (N0/2)δ(τ )

W0(ω) = 4 sin2(ω/2)/ω2 and w0(τ ) = (1− |τ |)1{|τ | ≤ 1} Bartlett spectral window

W (ω) = MW0(Mω) = 4 sin2(Mω/2)/(Mω2) and w(τ ) = w0(τ/M)

E[x(t1)x
∗(s1)x∗(t2)x(s2)] = Rxx(t1 − s1)Rxx(s2 − t2) +Rxx(t1 − t2)Rxx(s2 − s1)

An example for E[x(t1)x
∗(s1)x∗(t2)x(s2)] = Rxx(t1− s1)Rxx(s2− t2)+Rxx(t1−

t2)Rxx(s2 − s1) is that x(t) =
∑∞

n=−∞ cne
jnθt for independent complex zero-

mean Gaussian {cn}∞n=−∞ with variance E[|cn|2] = σ2
n and E[c2n] = 0 (Thus,

E[|cn|4] = 2E2[|cn|2]). See the next slide.
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E[x(t1)x
∗(s1)x∗(t2)x(s2)]

= E

[( ∞∑
n=−∞

cne
jnθt1

)( ∞∑
m=−∞

c∗me
−jmθs1

)( ∞∑
k=−∞

c∗ke
−jkθt2

)( ∞∑
�=−∞

c�e
j�θs2

)]

=
∞∑

n=−∞
E[|cn|4]ejnθ(t1−s1−t2+s2) +

∞∑
n=−∞

∞∑
k=−∞,k �=n

E[|cn|2]E[|ck|2]ejnθ(t1−s1)ejkθ(s2−t2)

︸ ︷︷ ︸
n=m�=k=�

+
∞∑

n=−∞

∞∑
m=−∞,m�=n

E[|cn|2]E[|cm|2]ejnθ(t1−t2)ejmθ(s2−s1)

︸ ︷︷ ︸
n=k �=m=�

+

���������������������������∞∑
n=−∞

∞∑
m=−∞,m�=n

E[c2n]E[(c∗m)
2]ejnθ(t1+s2)e−jmθ(s1+t2)

︸ ︷︷ ︸
n=� �=m=k

=

∞∑
n=−∞

∞∑
k=−∞

E[|cn|2]E[|ck|2]ejnθ(t1−s1)ejkθ(s2−t2) +

∞∑
n=−∞

∞∑
m=−∞

E[|cn|2]E[|cm|2]ejnθ(t1−t2)ejmθ(s2−s1)

= Rxx(t1 − s1)Rxx(s2 − t2) +Rxx(t1 − t2)Rxx(s2 − s1),

where

Rxx(τ) = E[x(t+ τ)x∗(t)] = E

[( ∞∑
n=−∞

cne
jnθ(t+τ)

)( ∞∑
m=−∞

c∗me
−jmθt

)]
=

∞∑
n=−∞

E[|cn|2]ejnθτ .

By this, we also obtain

Sxx(ω) =

∞∑
n=−∞

E[|cn|2]δ(ω − nθ) ≈ N0

2
if θ is very small and E[|cn|2] = N0

2
.
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Then,

Cov[ST (ω1; c),ST (ω2; c)]

=
1

4T 2

∫ T

−T

∫ T

−T

∫ T

−T

∫ T

−T

(E[x(t1)x
∗(s1)x∗(t2)x(s2)]− E[x(t1)x

∗(s1)]E[x∗(t2)x(s2)])

e−jω1(t1−s1)ejω2(t2−s2)dt1dt2ds1ds2

=
1

4T 2

∫ T

−T

∫ T

−T

Rxx(t1 − t2)e
−jω1t1ejω2t2dt1dt2 ×

∫ T

−T

∫ T

−T

Rxx(s2 − s1)e
jω1s1e−jω2s2ds2ds1

=
N2

0 sin
2(T (ω1 − ω2))

4T 2(ω1 − ω2)2
,

where∫ T

−T

∫ T

−T

Rxx(t1 − t2)e
−jω1t1ejω2t2dt1dt2 =

∫ T

−T

∫ T

−T

N0

2
δ(t1 − t2)e

−jω1t1ejω2t2dt1dt2

=
N0

2

∫ T

−T

e−j(ω1−ω2)t2dt2

=
N0 sin(T (ω1 − ω2))

(ω1 − ω2)
.
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Var[ST,w(ω; c)]

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
W (y)W ∗(z)Cov{ST (ω − y; c),ST (ω − z; c)}dydz

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

16 sin2(My/2) sin2(Mz/2)

M 2y2z2

(
N2

0 sin
2(T (y − z))

4T 2(y − z)2

)
dydz

=
N2

0

π2T 2M 2

∫ ∞

−∞

sin2(My/2)

y2

∫ ∞

−∞

sin2(Mz/2) sin2(T (y − z))

z2(y − z)2
dzdy

=
N2

0

πTM 2

∫ ∞

−∞

sin2(My/2)

y2

∫ ∞

−∞

sin2(Mz/2)

z2

(
sin2(T (y − z))

πT (y − z)2

)
dzdy

≈ N2
0

16πT

∫ ∞

−∞

4 sin2(My/2)

My2︸ ︷︷ ︸
W (y)

∫ ∞

−∞

4 sin2(Mz/2)

Mz2︸ ︷︷ ︸
W (z)

δ(y − z)dzdy at T large

=
N2

0

16πT

(
4π

3
M

)
=

MN2
0

12T

(
=

Ew

2T
S2
xx(ω), where

{
Sxx(ω) =

N0
2

Ew = 1
2π

∫∞
−∞W 2(ω)dω = 2

3
M

)
,

which decreases to zero as T large, where we use the δ(·) approximation from

Slide 12-48.
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Tradeoff in the selection of spectral window

• Bias: W (ω) remains constant in a very short duration around origin, and zero

outside, in order to have small bias.

• Variance: Var[ST,w(ω; c)] ≈ Ew

2T
S2
xx(ω) at large T , whereEw =

1

2π

∫ ∞

−∞
W 2(ω)dω.

This implies that Ew must be small, compared to T .

Question: For a fixed w0(τ ) with w0(τ ) = 0 for |τ | > 1, define w(τ ) = w0(τ/M);

then W (ω) = MW0(Mω). Can we find an M that results in small bias and small

variance at the same time?

Answer: It is apparent that M shall be large for small bias. However,

Ew =
1

2π

∫ ∞

−∞
W 2(ω)dω =

1

2π

∫ ∞

−∞
M 2W 2

0 (Mω)dω = MEw0

implies that M shall be small for small variance. �

• Hence, a tradeoff between bias and estimate variance in the selection of M

must be made.
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Suggestions for the selection of M

1. The spectral window W (ω) must be positive and its area must equal 2π (as

w(0) = 1). This ensures the positivity and consistency of the estimate. Some

choices of spectral windows are listed below.

w0(τ ) W0(ω) m2

Bartlett (1− |τ |)1{|τ | < 1} 4 sin2(ω/2)/ω2 ∞
Tukey 1

2(1 + cos(πτ ))1{|τ | < 1} π2 sin(ω)/[ω(π2 − ω2)] π2/2

Papoulis [ 1π | sin(τ )| + (1− |τ |) cos(πτ )]1{|τ | < 1} 8π2 cos2(ω/2)/(π2 − ω2) π2

2. The spectral windowW (ω) must go to zero rapidly as ω increases. This reduces

the influence of the distant spectrum to the measured location.

3. A usual measure for duration of W (ω) is the second moment

m2 �
1

2π

∫ ∞

−∞
ω2W (ω)dω =

1

2πM 2

∫ ∞

−∞
ω2W0(ω)dω.

This shall be small for small bias. (Recall that Ew = MEw0 must be small for

small variance of the estimate!)
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• It is hard to find an optimal data window to, say, minimize the bias (cf. Slide

12-50):

E[ST (ω; c)] =

∫ ∞

−∞
Sxx(v) · 1

4πT
|CT (ω − v)|2dv,

where

CT (ω) �
∫ T

−T

c(t)e−jωtdt.

• However, under the condition that Sxx(v) can be well-approximated by parabolic

function, we can show that the truncated cosine data window minimizes the

bias.

Sketch of the proof:

Sxx(w − v) ≈ Sxx(ω − v)|v=0 + v
∂Sxx(ω − v)

∂v

∣∣∣∣
v=0

+
v2

2

∂2Sxx(ω − v)

∂v2

∣∣∣∣
v=0

= Sxx(ω)− vS′
xx(ω) +

v2

2
S′′
xx(ω)
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implies

E[ST (ω; c)] =

∫ ∞

−∞
Sxx(ω − v) · 1

4πT
|CT (v)|2dv

≈
∫ ∞

−∞
Sxx(ω) · 1

4πT
|CT (v)|2dv −

∫ ∞

−∞
vS′

xx(ω) ·
1

4πT
|CT (v)|2dv

+

∫ ∞

−∞

v2

2
S′′
xx(ω) ·

1

4πT
|CT (v)|2dv

= Sxx(ω) +
S′′
xx(ω)

8πT

∫ ∞

−∞
v2|CT (v)|2dv,

if

∫ ∞

−∞

1

4πT
|CT (v)|2dv =

1

2T

∫ T

−T

|c(t)|2dt = 1, and |CT (v)| = |CT (−v)|.

Hence, a data window, which minimizes

1

2π

∫ ∞

−∞
|(jω)CT (ω)|2dω =

∫ T

−T

|c′(t)|2dt

subject to the above constraints, minimizes the bias.
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It can then be shown that under∫ ∞

−∞

1

4πT
|CT (v)|2dv =

1

2T

∫ T

−T

|c(t)|2dt = 1 and |CT (v)|2 = |CT (−v)|2,

the data window that minimizes

1

2π

∫ ∞

−∞
v2|CT (v)|2dv =

∫ T

−T

|c′(t)|2dt

is:

c�(t) =
√
2 cos

( π

2T
t
)
1{|t| ≤ T} ⇔ C�

T (ω) = 4
√
2πT

cos(Tω)

(π2 − 4T 2ω2)
.

This data window is named the truncated cosine data window. �
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Suppose c(t) ≥ 0 for |t| < T , and boundary condition c(T ) = c(−T ) = 0. We

wish to minimize ∫ T

−T

[c′(t)]2dt

subject to ∫ T

−T

c2(t)dt = 2T.

By using Lagrange multipliers technique, we turn to minimize∫ T

−T

[c′(t)]2dt− λ

(∫ ∞

−∞
c2(t)dt− 2T

)
=

∫ T

−T

(
[c′(t)]2 − λc2(t)

)︸ ︷︷ ︸
L(t,c,c′)

dt + 2λT

Euler-Lagrange Equation for Single function of single variable with higher derivatives
The stationary values of the functional

I[f ] =

∫ x1

x0

L(x, f, f ′, . . . , f (k))dx

can be obtained from the Euler-Lagrange equation:

∂L
∂f

− d

dx

(
∂L
∂f ′

)
+

d2

dx2

(
∂L
∂f ′′

)
− · · ·+ (−1)k

dk

dxk

(
∂L
∂f (k)

)
= 0

under fixed boundary conditions for the function itself as well as for the first k − 1 derivatives.
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We have L(t, c, c′) = [c′(t)]2 − λc2(t), which implies

∂L
∂c

− d

dt

(
∂L
∂c′

)
= (−2λc(t))− d

dt
(2c′(t)) = 0 ⇔ c′′(t) + λc(t) = 0

Theorem 8.6 [Tom M. Apostoal, Calculus, pp. 326, Volume 1, 2nd Edition, 1967] The solution of the equation
y′′(x) + by(x) = 0 is

y(x) = c1u1(x) + c2u2(x),

where c1 and c2 are constants determined by the initial condition, and

1. u1(x) = 1 and u2(x) = x if b = 0;

2. u1(x) = ekx and u2(x) = e−kx if b = −k2 < 0;

3. u1(x) = cos(kx) and u2(x) = sin(kx) if b = k2 > 0.

i) c(t) = c1 cos(kt) + c2 sin(kt) with λ = k2.

ii) c(T ) = c(−T ) = 0 ⇒ c1 cos(kT ) + c2 sin(kT ) = c1 cos(kT )− c2 sin(kT ) = 0

⇒ c1 cos(kT ) = c2 sin(kT ) = 0 (Note that we cannot have c1 = c2 = 0!)

iii) Since cos(x) = sin(x) = 0 has no solution, one of c1 and c2 is zero.

Then, c(t) ≥ 0 for |t| ≤ T implies c2 = 0, and hence, k = π
2T .

iv)
∫ T

−T c
2(t)dt = 2T implies c1 =

√
2.
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• It is hard to find an optimal spectral window to, say, minimize the asymptotic

bias (cf. Slide 12-56):

lim
T→∞

E[ST,w(ω)] =
1

2π

∫ ∞

−∞
Sxx(v)W (ω − v)dv.

• However, under the condition that Sxx(v) can be well-approximated by parabolic

function, we can show that the Papoulis spectral window minimizes the asymp-

totic bias.

Sketch of the proof:

Sxx(w − v) ≈ Sxx(ω − v)|v=0 + v
∂Sxx(ω − v)

∂v

∣∣∣∣
v=0

+
v2

2

∂2Sxx(ω − v)

∂v2

∣∣∣∣
v=0

= Sxx(ω)− vS′
xx(ω) +

v2

2
S′′
xx(ω)
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implies

lim
T→∞

E[ST,w(ω)] =
1

2π

∫ ∞

−∞
W (v)Sxx(ω − v)dv

=
1

2π

∫ ∞

−∞
W (v)Sxx(ω)dv − 1

2π

∫ ∞

−∞
W (v)vS′

xx(ω)dv

+
1

2π

∫ ∞

−∞
W (v)

v2

2
S′′
xx(ω)dv

= Sxx(ω) +
1

4π
S′′
xx(ω)

∫ ∞

−∞
v2W (v)dv,

if
1

2π

∫ ∞

−∞
W (v)dv = 1 and W (v) = W (−v).

Hence, a spectral window, which minimizes

m2 =
1

2π

∫ ∞

−∞
v2W (v)dv

subject to the above constraints, minimizes the asymptotic bias.
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It can then be shown that under

1

2π

∫ ∞

−∞
W (v)dv = 1 and W (v) = W (−v) and W (ω) ≥ 0︸ ︷︷ ︸

additional constraint

,

the spectral window that minimizes

m2 =
1

2π

∫ ∞

−∞
v2W (v)dv

is:

W (ω) =
1

2T
|C�

T (ω)|2 = 16π2T
cos2(Tω)

(π2 − 4T 2ω2)2

This is exactly what is obtained in text by assigning M = 2T . You may compare

this solution to the one in Slide 12-65 and you shall find that W (ω) is proportional

to |C�
T (ω)|2.

This spectral window is named the Papoulis spectral window. �
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• Another criterion for the optimality of spectral windows is the minimization of

the MS estimation error defined as:

bias2 + variance = |E[ST,w(ω; c)]− Sxx(ω)|2 + Var[ST,w(ω; c)]

• It is called the ML estimation error because

bias2 + variance = ������������|E[ST,w(ω; c)]|2 − E[ST,w(ω; c)]S
∗
xx(ω)− E[S∗

T,w(ω; c)]Sxx(ω) + |Sxx(ω)|2
+E[|ST,w(ω; c)|2]−������������|E[ST,w(ω; c)]|2

= E[|ST,w(ω; c)− Sxx(ω)|2]
In such case, we may say that ST,w(ω; c) can be well-approximated or well-

modeled by Sxx(ω) + vw(ω; c), where vw(ω; c) is an approximate noise.
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• (For simplicity, we disregard the data window c and spectral window w in this

derivation.)

From Theorem 12-4, we know that for T very large, 1/T is very small. Hence,

we can say that Syy(u, v) and Syy(u,−v) are close to zero for most u and v

considered (i.e., |u+ v| � 1/T and |u− v| � 1/T are true for most u and v).

• Thus, by ST (ω) = Sxx(ω) + v(ω),

E[v(u)v∗(v)] = Cov{ST (u),ST (v)}
=

1

4T 2
Cov{|XT (u)|2, |XT (v)|2}

=
1

4T 2
(S2

yy(u, v) + S2
yy(u,−v)) ≈ 0.
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• When |u+v| � 1
T , Sxx(ω) is almost a constant within the “effective integration

range” of Syy(u,−v). (See below).

E[v(u)v∗(v)] = Cov{ST (u),ST (v)}
=

1

4T 2
Cov{|XT (u)|2, |XT (v)|2}

≈ 1

4T 2
S2
yy(u,−v) (Syy(u, v) ≈ 0 when |u + v| � 1/T from Theorem 12-4)

=
1

4T 2

(∫ ∞

−∞

2

π

sin[T (u− f)] sin[T (v − f)]

(u− f)(v − f)
Sxx(f)df

)2

(From Slide 12-46)

≈ 1

4T 2

(
Sxx(u)

∫ ∞

−∞

2

π

sin[T (u− f)] sin[T (v − f)]

(u− f)(v − f)
df

)2

(Sxx(u) ≈ constant)

=
1

4T 2

(
Sxx(u)

2 sin[T (u− v)]

(u− v)

)2

=
π

T
S2
xx(u)

sin2[T (u− v)]

πT (u− v)2

≈ π

T
S2
xx(u)δ(u− v), (See Slide 12-48.)
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where∫ ∞

−∞

2

π

sin[T (u− f)] sin[T (v − f)]

(u− f)(v − f)
df =

1

2π

∫ ∞

−∞

(
2 sin[T (u− f)]

(u− f)

)(
2 sin[T (v − f)]

(v − f)

)
df

=
1

2π

∫ ∞

−∞

(∫ T

−T

e−j(u−f)t1dt1

)(∫ T

−T

e−j(v−f)t2dt2

)
df

=

∫ T

−T

∫ T

−T

e−j(ut1+vt2)

(
1

2π

∫ ∞

−∞
ejf(t1+t2)df

)
dt1dt2

=

∫ T

−T

∫ T

−T

e−j(ut1+vt2)δ(t1 + t2)dt1dt2

=

∫ T

−T

ej(u−v)t2dt2

=
2 sin[T (u− v)]

(u− v)
.
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The above “rough” derivation formulates, e.g., the following research problem.

Question: Determine the best ∆ that minimizes the MS estimation error for

moving average spectral window of area 1, provided that Sxx(ω − α) ≈ Sxx(ω)−
αS′

xx(ω) + (α2/2)S′′
xx(ω), and ST (ω) ≈ Sxx(ω) + v(ω), where v(ω) is zero mean

with covariance function E[v(u)v∗(v)] = (π/T )S2
xx(u)δ(u− v).

Answer:

• Since

ST,w(ω) =
1

2∆

∫ ∆

−∆

ST (ω−α)dα ≈ 1

2∆

∫ ∆

−∆

Sxx(ω−α)dα+
1

2∆

∫ ∆

−∆

v(ω−α)dα,

we derive

E[ST,w(ω)]− Sxx(ω) ≈ 1

2∆

∫ ∆

−∆

Sxx(ω − α)dα− Sxx(ω)

≈ 1

2∆

∫ ∆

−∆

α2

2
S′′
xx(ω)dα

= S′′
xx(ω)

∆2

6
.
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By observing that

ST,w(ω) =
1

2∆

∫ ω+∆

ω−∆

ST (α)dα ≈ Sxx(ω) +
1

2∆

∫ ω+∆

ω−∆

v(α)dα,

we further derive

Var[ST,w(ω)] = E[|ST,w(ω)− E[ST,w(ω)]|2]

= E

[∣∣∣∣ 1

2∆

∫ ω+∆

ω−∆

v(α)dα

∣∣∣∣2
]

=
1

4∆2

∫ ω+∆

ω−∆

∫ ω+∆

ω−∆

π

T
S2
xx(α)δ(α− β)dαdβ

=
π

4∆2T

∫ ω+∆

ω−∆

S2
xx(α)dα

≈ π

4∆2T
S2
xx(ω)[2∆] (By mean-value theorem)

= S2
xx(ω)

π

2∆T
.
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Hence, we need to find the ∆ that minimizes

S2
xx(ω)

π

2∆T
+ (S′′

xx(ω))
2∆

4

36
,

which implies that ∆∗ =
(
9π

2T

)1/5(
Sxx(ω)

S′′
xx(ω)

)2/5

. �

Remark

• For the optimal ∆∗,

bias =

(
π2

384T 2

)1/5

S4/5
xx (ω)[S′′

xx(ω)]
1/5

and
√
variance =

(
π2

12T 2

)1/5

S4/5
xx (ω)[S′′

xx(ω)]
1/5.

Hence,
bias√
variance

=
1

2
.

In other words, standard deviation is equal to twice of the bias, which is named

two-to-one rule.
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Final remark

• The best ∆∗ is actually a function of ω, which means that the moving average

window size is varying with ω!

Question: Determine the best W (ω) (bandlimited to ∆ and of area 1) that min-

imizes the MS estimation error, provided that Sxx(ω−α) ≈ Sxx(ω)−αS′
xx(ω) +

(α2/2)S′′
xx(ω), and ST (ω) ≈ Sxx(ω)+v(ω), where v(ω) is zero mean with covari-

ance function E[v(u)v∗(v)] = (π/T )S2
xx(u)δ(u− v).

Answer by Priestley:

ST,w(ω) =
3

4∆

∫ ∆

−∆

ST (ω − α)

(
1− α2

∆2

)
dα,

where ∆ =

(
15π

T

)1/5(
Sxx(ω)

S′′
xx(ω)

)2/5

.

The end of Section 12-2 Spectrum Estimation


