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Before we present the “ergodicity” perspective in the textbook, some preliminary
and historical background on this term is given.

Definition (Shift-invariant event for one-sided processes) For a one-
sided random process X = {Xi, Xy, ...} with alphabet X C R, let X* be the
set of all sequences & = (z1, x5, x3, . ..) of real numbers in X. Denote by Fx the
smallest o-field generated by all open sets of X* (i.e., the Borel o-field of X*°).
Then, an event E in Fx is said to be T-tnvariant with respect to the left-shift
(or shift transformation) T : X — X if

TE C F,
where

TE2 {Tx:x € E} and Tz = T(xy,72,23,...) = (T2, T3,...).

e In other words, T is equivalent to “chopping the first component.”
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Example. With

El é{(ajl :173:2:173:3: 17334: 17"')7(331:07332: 1,333:1,334:1,...),
(x1=0,29=0,23=1,xy=1,...)}, (12.1)

we have

TEl = {(331—1 Tro = 1333 ),(
(x1 =0, CE’2_1£C =1,.
= {(561:1,562 156'3_1 ,(

Thus, TEy C Eq, which implies £ is T-invariant.
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Remarks.

e It can be proved that if TE C E, then T°E C TE. By induction, we can
further obtain
... CT°ECT°ECTECE.

e Thus, if an element say (1,0,0,1,0,0,...) is in a T-invariant set F, then all its
left-shift counterparts (i.e., (0,0,1,0,0,1...) and (0,1,0,0,1,0,...)) should
be contained in £.

e As aresult, for a T-invariant set £, an element and all its left-shift counterparts
are either all in £ or all outside E, but cannot be partially inside F.

e Hence, a “T-invariant group” such as one containing
(1,0,0,1,0,0,...), (0,0,1,0,0,1...) and (0,1,0,0,1,0,...)

should be treated as an indecomposable group in T-invariant sets.



Ergodicity based on Shift-invariant Event 124

e Although we are in particular interested in these “T-invariant indecomposable
groups,” it is possible that some single “transient” element, such as (0,0, 1,1,...)
in (12.1), is included in a T-invariant set, and will be excluded after applying
left-shift operation T.

e This however can be resolved by introducing the “pseudo-inverse” operation
T—! (See page 3 of the below reference).
t P. C. Shields, The Ergodic Theory of Discrete Sample Paths, American Mathematical Society, 1991.

e Note that T is a many-to-one mapping (See an example below), so its inverse
operation in general does not exist!

Given X = {0, 1},

T{(0,1,0,1,0,1...)} =T{(1,1,0,1,0,1...)} = {(1,0,1,0,1...)}.

e The “pscudo-inverse” operation T~ is defined as

T'E2{xcXx™ Txc E}.

T-'{(1,0,1,0,1...)} ={(0,1,0,1,0,1...),(1,1,0,1,0,1...)}.
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Definition (Ergodic set) A set is called the ergodic set if
T'E=E.

e [t can be shown that if
T 'E=F,

then
TE =T(T'E)=E,

which in terms infer
oo =T?E=T'E=FE=TE=TE=---.
Thus, this definition excludes all “transient” elements from the ergodic set.

e [t is named the ergodic set because as time goes by (the left-shift operator T
can be regarded as a shift to a future time), the set always stays in the state
that it has been before.
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Ergodic Property (% /&%)
L AR BB EEREN 0 RGN EE AT EFLEHK

REFHAK %%3—?“‘3\}%7@“& e W@ R MIRE SR - Hib&aRE
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Oxford Dictionary - Ergodic. adj. Relating to or denoting systems or processes
with the property that, given sufficient time, they include or impinge on all points
in a given space and can be represented statistically by a reasonably large selection

of points.

Example. Let x denote “don’t-care,” which can be either 1 or 0, and define

Er={(x,%,...,%1,0,1,0,1,0,...), (x,%,...,%,0,1,0,1,0,1,.. ) }.
S— S——

k of them k of them

Then, E/ = Up>oE} is an ergodic set.
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e For two-sided sequences, the two conditions below are equivalent:

T'E=F = TE = E.

Definition (Ergodic process) A process is ergodic if any ergodic set has
probability either 1 or 0.

Example. For an ergodic process, only one of the ergodic sets below can have
probability one:
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e The definition of ergodic processes has nothing to do with stationarity. It
simply states that events that are unaffected by time-shifting (both left- and
right-shifting) must have probability either zero or one.

e Ergodicity implies that all convergent sample averages converge to a constant
(but not necessarily to the ensemble average), and stationarity assures that the
time average converges to a random variable; hence, it is reasonably to expect
that they jointly imply the ultimate time average equals the ensemble average
(See the well-known ergodic theorem by Birkhoff and Khinchin.)

Theorem (Pointwise ergodic theorem) Consider a discrete-time sta-
tionary random process X = {X,,}>°,. For real-valued function f(-) on R
with finite mean (i.e., |E[f(X,)]| < oc0), there exists a random variable Y
such that

1 . N
7}1—>I1<;lo - ; f(X%x) =Y with probability 1.
If, in addition to stationarity, the process is also ergodic, then

1 n
nll_)I{)lo - kz:; f(Xk) = E[f(X1)] with probability 1.
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Remarks.

e In communications theory, one may assume that the source is stationary or
the source s stationary ergodic. But it is rare to see the assumption of the
source being ergodic but non-stationary.

e This is perhaps because an ergodic but non-stationary source not only does
not facilitate the analytical study of communications problems, but may have
limited application in practice.

e From this, we note that assumptions are made either to facilitate the analytical
study of communications problems or to fit a specific need of applications.
Without these two objectives, an assumption becomes of minor interest.

e This justifies that the ergodicity assumption usually comes after stationarity
assumption. A specific example is the pointwise ergodic theorem, where the
random processes considered is presumed to be stationary.
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e The notion of ergodicity is often misinterpreted, since the definition is not very
intuitive,

e [t gets more confused as some engineering texts may provide a definition that
a stationary process satisfying the ergodic theorem is also ergodic. Here is an
example quoted from some text.

Definition. A stationary random process {X,}>2 is called ergodic if for
arbitrary integer k and function f(-) on X* of finite mean,

%Zf(XHla s Xivr) = E[f(Xa, .-, X))
i=1

e This definition somehow implies that if a process is not stationary-ergodic,
then the strong law of large numbers is violated (or the time average does not
converge with probability 1 to its ensemble expectation). But this is not true
(from its origin)!
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General relations of random processes.

e Indeed, the ergodic theorem is indeed a consequence of the original mathemat-
ical definition of ergodicity in terms of the shift-invariant property (See also
pages 174-175 of the below reference).

¥ P. C. Shields, R. M. Gray and L. D. Davisson, Random Processes: A Mathematical Approach for Engineers,

Prentice-Hall, 1986.
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Let us try to clarify the notion of ergodicity by the following remarks.

e The concept of ergodicity does not require stationarity. In other words, a
non-stationary process can be ergodic.

e As mentioned earlier, stationarity and ergodicity imply the time average con-
verges with probability 1 to the ensemble mean. Now if a process is stationary
but not ergodic, then the time average still converges, but possibly not to the
ensemble mean.

Example. Let {A4,}>° _ and {B,}:>__ be two ii.d. binary 0-1 random

n=-—00
variables with

Pr{A, = 0} = Pr{B, = 1} = 1

T
X - A,, itU =1,
B,, ifU =0,

where U is equiprobable binary random variable, and {A,}>%,, {B,}:2; and
U are independent. Then {X,,}5°, is stationary. Is the process ergodic? The

Suppose that

answer 1s negative.



Closing Remarks on Ergodicity 1213

[f the stationary process were ergodic, then from the pointwise ergodic theorem,
its relative frequency would converge to

Pr(X,=1) = Pr(U=1)Pr(X,=1|U =1)+Pr(U =0)Pr(X, =1|U =0)
= Pr(U=1)Pr(4,=1)+Pr(U =0)Pr(B, =1)
1
= 5
However, one should observe that the outputs of (X1, ..., X},) form a Bernoulli

process with relative frequency of 1’s being either 3/4 or 1/4, depending on the
value of U. Therefore,

N
1. - Xn H Y’

where Pr(Y = 1/4) = Pr(Y = 3/4) = 1/2, which contradicts to the ergodic
theorem. O
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e [rom the above example, the pointwise ergodic theorem can actually be made
useful in such a stationary but non-ergodic case, since the estimate with station-
ary ergodic process (either { A} or {B,}>° ) is actually being observed
by measuring the relative frequency (3/4 or 1/4).

e This renders a surprising fundamental result of random processes— ergodic
decomposition theorem: Any stationary process is in fact a mixture of sta-
tionary ergodic processes, and hence one always observes a stationary ergodic
outcome.

Example. One always observe either Ay, As, As, ... or By, By, Bs, ..., de-
pending on the value of U, for which both sequences are stationary ergodic. In
other words, the time-stationary observation X, satisfies

X,=U-A,+(1-0U)- B,.
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e In conclusion, ergodicity is not required for the strong law of large numbers
to be effective. The next question is whether or not stationarity is required.
Again the answer is negative.

e The main concern of the law of large numbers is the convergence of sample
averages to its ensemble expectation.

e [t should be reasonable to expect that random processes could exhibit transient
behavior that violates the stationarity definition, yet the sample average still
converges.

Example. A finite-alphabet time-invariant (but not necessarily stationary)
irreducible Markov chain satisfies the law of large numbers.

e Accordingly, one should not take the notions of stationarity and ergodicity too
seriously (if the main concern is the law of large numbers) since they can be
significantly weakened and still have laws of large numbers holding (i.e., time
averages and relative frequencies have desired and well-defined limits).

The end of Preliminary Introduction of Ergodicity
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Concern:

e Can one estimate the mean E[x(t)] of a WSS process @(t) in terms of time
samples x(t1), ¢(ta), ..., x(ty), -7

Suppose that x(t) is defined over the probability system (S, F, P). Then,

Elae(t)] = /S x(t, OdP(C) or 3 a(t,C)P()

ces

can be estimated by x(t, (1), ®(t, (), x(t,(3), - -! This indicates that one
needs to impractically take a large number of samples at the same time in
order to estimate E[x(t)].

Definition (Mean-ergodic process) A process x(t) is mean-ergodic if for

some constant 7,
E“nT—nlz] — 0 as T — oo,

Where
A 1 g d
Nr = — x(t)at.
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np can then be further approximated by its Riemann integral, using
x(t), x(ts),. .., 2(t,), -

Example 12-1 Is x(t) = ¢ mean-ergodic, where ¢ is a nondegenerate random

variable?
Answer:
1 (7
M=o _Ta:(t)dt = c
Since

Jim Ellng —nl*) = Elle — "] # 0,
— 00

x(t) is not mean-ergodic. O
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This process is stationary since
x(t)=c and x(t—7)=c
have the same statistics for any 7. However,

- (m(tl) + :Iz(tg)n+ o4 x(ty)

< c> — Pr(e < ¢).

S0
:r;(tl) + w(tg) + -+ ZB(tn)

n
converges in distribution (also in probability and with probability 1) to a random

variable ¢. This is not what mean-ergodicity wishes to see. The mean-ergodicity
demands that
:r;(tl) + w(tg) + -+ ZB(tn)
n
converges In mean-sqgaure to a constant c.
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Variance of 7,

o Nefng] = Eln) = ) = g [ [Rustos) = naton.()inds

o If x(t) is WSS, then

Var[nT] = 4T2/ / a:x dtdS _7733
2T T—u
= ( / Ra(u) / dsdu + / R.(u) / dsdu) —
4T —9T —T—u 0 =T

1 2T ’u’
- S Rxx — — | du — 2
o [ et (1= ) du

1 2T ’u’
=37/, Clro(u) ( — —) du.

Lemma A WSS process x(t) is mean-ergodic if, and only if, limp_, o, Var[n,] = 0.
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Theorem 12-1 (Slutsky’s theorem) A WSS process (t) is mean-ergodic if,
and only if,
1
111_1)1”;0 o | Ce(T)dT = 0.

Proof:
e By Cauchy-Schwartz inequality,

Cov[ny, z(0)] < /Var[ng]Varlz(0)].

1 (7
Since Cov[ng, €(0)] = 5T / Cr(T)drT, it is apparent that if Var[n,] — 0,
T
1 (7
Tlglgo ﬁ i Cxx(T)dT = 0.

e On the contrary,
i L [ Oy =0
T1—I>I;O 2T T ze\T)AT =

implies the existence of Tj for a given € > 0 such that

1T
o7 /T Cro(T)dT

< € for every T > T



Slutsky’s Theorem 1221

This indicates that

‘ / tt Coo(T)dT

Accordingly, for 2T > Ty,

< 2te  for every t > Ty.

Varfg] = o e 71—
il = op | e or ) "
|2
. Core(T) (2T — |7|) dT
) Gl =7
|2 2T
= — Clro(T) (/ dt) dr  (See Slide 12-23.)
417 ) o7 7]

1 2T t
= Corp(T)dT | dt
) ([ cetrr)
1 1o t 1 2T t
= 77 0 (/t C’m(T)dT) dt + 172 " (/t Cm;(T)dT) dt
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1 TO t 1 2T t
< -
< 7= ( t]C'm(T)]dT) dt—|—4T2 a /t Coop(T)dT| dt
1 TO t 1 2T
< G0V ) dt + — [ (2te)dt
= a7 ), (/O 0) T) tare fy, 1
T? AT? T2
- —Oa:x 0 - o &
20+ —

which implies limp_, Var[ny] < e. The proof is completed by noting that e
can be made arbitrarily small. O
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Lemma (Sufficient conditions for mean-ergodicity) If

| / Z Coa(T)dT

then WSS x(t) is mean-ergodic.

<oo or lim |Cu(r)| =0,

|7|—00

Proof: Since U Clro(T dT‘ < o0 implies lim;|_,q |Cr(7)| = 0, it suffices to
prove the sufficiency of the latter condition.
For any € > 0, there exists Ty such that |C,.(7)| < € for |7| > Tj. Hence,

I 1 [fo 1
ﬁ/TCm;(T)dT < 5T _T0] o (T)|dT + — o7 T0§|T|<T]C'm(7‘)]d7'
1 [T 1
< o7 _TOC' +(0 )d7+f S edr
= C'm(O)E%—eT_TO —easT — oo.

T T
The proof is completed by noting that € can be made arbitrarily small. O
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Concern:

e Can one estimate the mean E{x[t]} of a discrete WSS process x[t] in terms of
time samples ®[t1], ®[ts], ..., x[t,], -, where t1, to, ... t,, ... are integers?

Definition (Mean-ergodic process) A discrete process x|[t] is mean-ergodic
if for some constant 7,

E[]nT—n]2] — 0 as T — oo,

where

e We can then similarly show that for a discrete WSS a[t],

2T

1 U
Varlng] = g D Onlul (1_2T’+’1)'
u=—2T

Lemma A WSS process x[t| is mean-ergodic if, and only if, limp_,, Var|n,] = 0.
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Theorem 12-2 (Slutsky’s theorem for discrete processes) A discrete
WSS process @[t] is mean-ergodic if, and only if|

T
.1
A 57 2, Cnlr] =0

Lemma (Sufficient conditions for mean-ergodicity) If

lim |Cy.[7]| =0,

|7| =00

then WSS x[t] is mean ergodic.

Example 12-6(a) Suppose x[t] is zero-mean white with autocovariance function
Cypelm] = Polm]. Then, as lim,, o C,pplm| = 0, x[t] is mean-ergodic, and the
estimation variance equals:

Varlny] = —— i Coslu] (1— “ )

2T + 1 Nt

1 i pol (1 M P
2T+1u:_2T 27T+ 1 2T+ 1
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Example 12-6(b) In case C,,[m] = Pa™l for |a| < 1, 2[t] is still mean-ergodic
because liny, o Cyr[m] = 0. Also,

Var(ny]

Q

2T

1 [ul
777 2 Coalt (1_2T+1)

u=-—2T

1 [ul
Pal (1 -
oT + 1 Z ¢ ( 2T+1)

u=-—2T
P(1-a*(2T +1) — 2a + 2a*""?]

1 — a)22T + 1)

when T’ large.

(
P (1+a)
2I'+1)(1—a)
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Examination of Mean-ergodicity in terms of Spectral

Varlng] = = [ Gt (1214 4
> 1

OO 1 Oo c wu 1 oo Sin2(TV) VU
= /Oo (—/OOS (W )ej dw) <%/oo—T2V2 e’ du) du
P A sm (Tv) (1 [ .

L[>~ [~ sm (Tv)
= / / T2, d(w — v)dvdw

1 o sin*(Tw)
= - _OOSM(W)—TQLUQ dw,

where S¢_(w) is the covariance spectrum of WSS a(t).
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Example. If S¢ (w) consists of an impulse at the origin, then x(t) is not mean-
ergodic because

1 [ . sin?(Tw
Varlng] = o Sxaj(w)#dw
I sin?(Tw)
1 [> in*(T
= — Sl(w)wdijkO#OasT—)O.

21 | o T2w?

If process x(t) is regular, then S¢, (w) contains no impulse at w = 0.
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1T L
oy = 57 x(t)dt is a special instance of y(t;Tp) = —/ x(a)da as
T t—=Tj

Ty
nr = y(1527T).
o If x(t) is WSS,
1
Varly(t; Ty)| = / / Crp(u — v)dudv

O t—Ty J1 T()
2 [

= — sdv
T()2 t—1Ty Jt—v— TO
LT ()/ dvds + = TOC()/tsdd

= — xS vaS + —5 zr\S vas
TO2 —Th t—s—1y TO2 0 t—1Ty

_ 10 <5>( H)
To ) g T,

which is only a function of window size Tj.
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Concern:

e Can one estimate the variance of a WSS process () in terms of time samples
w(tl), m(tg), ceey w(tn), cen

Concern with known mean and SSS:

e Can one estimate the variance E[x?(t)] — u? of a SSS process x(t) in terms
of time samples £(t1), €%(ts), ..., x*(t,), -7

e The answer has already been given in previous slides.

Example. For a zero-mean SSS Gaussian process (),

Co2(rT) = Elx?(t+7)x(t)] — Elx*(t + 7)|E[x?(t)]
= \E[az%t + 7)E[x*(t)] + 2E°[x(t + T w(t)l—E[w2(t + 7)| B[z (t)]

<
See the next slide.

= 2C§x(7').

Thus, zero-mean SSS Gaussian x(t) is variance-ergodic if, and only if|
1 [T

. b 2 _
TlglgoQT _TCm(T)dT 0.
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For joint normal variables  and y with zero-mean, the pdf equals:

fio = gmen{ 51 = 1]}

1 { 05:192 — Uy = ang }
— exp § —

2m|2|1/2 2(0i02 —0%,)

%

where > = [;m f;?] . This gives that (z|y) is Gaussian distributed with mean
Ty Y
0wyy/o, and variance (ojo; — 02,)/0,, which implies that
Elz*y’] = E|E[z’y’|y]] = Ely’Elz’|y]]
U:% 5 12ry 2 012:?; 4
= Ely*] + ?E Y]
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Concern with unknown mean and SSS:

e Can one estimate the variance of a (real) SSS process x(t) in terms of time

samples x2(t1), (t2), ..., x*(t,), - ?
1 (7
— First, estimate n; £ — t)dt.
irst, estimate Ny = o _TZB( )

— Then, estimate the variance of x(t) by
Vie 2 [ w) —nai= = [ @0t — o2
= — x(t) — = — x — N7
=57 . Nt 2T | Ui

Remarks

e V1 is a biased estimator, as contrary to

1 [T
V52 5T / x’(t)dt —n? (estimator with known mean)
-7

is an unbiased estimator.
e The estimation variance of V, however, is smaller than that of V' in many

cases, which is the reason that some use V7 instead of V1 even when 7, is
known.
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Concern:
e Can one estimate the autocovariance function of a (real) zero-mean SSS process
x(t) in terms of time samples x(t1), x(t2), ..., x(t,), -7
Equivalent concern:

e Can one estimate the mean of a SSS process x(t + 7)x(t) in terms of time
samples x(t) + 7)x(t1), T(t2 + 7)2(t2), . .., 2(ty +7)x(t)), -7

T
e Answer: Cp(T) = ﬁ/ x(t+ 7)x(t)dt
-7

Example. If x(t) is a Gaussian zero-mean SSS process, then by letting z(t) =
x(t+ N)x(t),
C..(t) = Fle(t+717+ Nzt +1)x(t+ Nx(t)] — Ele(t+ 7+ Nax(t + 7)|Elx(t + Nz (t))
= Cre AN+ 7)Cou( X —7) + C% (7).
Thus, by Theorem 12-1 (cf. Slide 12-20), SSS Gaussian zero-mean @ (t) is covariance-
ergodic if, and only if,
1T
Jim _T[Cm(A +7)Coe(A — 7) + C2.(7)]dT = 0.

In addition, if Cp,(7) — 0 as || — oo, then x() is mean-ergodic, variance-ergodic
and covariance-ergodic.
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Concern:

e Can one estimate the cross-covariance function of two zero-mean jointly SSS
processes @ (t) and y(t) in terms of their samples?

e Since the answer is very similar to other cases, the discussion about cross-
covariance-ergodicity is omitted.
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Theorem (Bussgang’s theorem) The cross-covariance Cy, (7) of system in-
put x(t) and system output y(¢) for a stationary zero-mean Gaussian input and
memoryless system T'(-) is proportional to Cy,(7). Le.,

Ela(t) - g(=(t))]
Rxx(o) ’

ny(tl — t?) — me(tl - t2)

where g(x2) = E[T(z3)).

e By Bussgangs’ theorem, to estimate C,,(7), it suffices to estimate C,,(7) for
some properly chosen system T'(-).

Example. Choose y(t) = sgn|x(t)] (cf. Hard Limiter) for zero-mean Gaussian
SSS @(t). Then,

7Co:(0) 0

Cxw(T) — 2 Oxy(T) — §ny(0)0xy(7_)

and C,,(7) can be estimated by

T

7 /. x(t + 7)sgn|x(t)]dt.
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Concern:

e Can one estimate the cdf Fj,(z) = Pr[a(t) < z] of a SSS process «(t) in terms
of time samples x(t1), x(t2), ..., x(t,), -7

Equivalent concern:

e Can one estimate the mean of a SSS process y(t) = 1{x(t) < x} in terms of
time samples?

e This is exactly the mean-ergodicity.

e Since

Cyy(1) = Ely(t+71)y"(t)] — Ely(t + 7)|Ely*(1))
= Pr{z(t+7) <zand x(t) <z} — Pr{z(t +7) < z} Pr{x(t) < z}
= Fy(z,7;0,7) — F3(2),

a SSS process x(t) is distribution-ergodic if
1 (7

zll—rgoﬁ - Fp(z,2:0,7)dr = F2(x).
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e A corelometer is a physical device measuring the autocorrelation R, (\) of

a (WSS) process x(t).

e Below are two possible structures for correlometer, where one uses a multiplier
and the other uses an adder with squarer. The LPF can be treated as an
integrator.

x(t — N)ax(t)

LPF

2[Ry2(0) + Ryn(N)]

Squarer LPF

|

[@(t = )+ z(t)]




Implementation of Ergodicity Estimation

Michelson interferometer (Corelometer)

e \ =2d/cand ty = l/c, where c is the light speed.

e D is a squarer; hence, z(t) = A*[x(t — tg — \) + x(t — to)]*

Y

_l__ — 1
~a_ WL ____
212
Y
1 b , A= 1= A)
Ml[: Sm— > D
L \ : AX(C — 1)

x(7)

z(t)

LPF T"'

y(2) = 2A%[R(0) + R(A)]

12-39
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e A spectrometer is a physical device measuring the Fourier transform S, (w)
of Ryz(A).
1 o0 1 o0
° E[yz(t)] = —/ Syy(w)dw = — Sm(w)]B(w)]2dw ~ Syr(wp)

2T ) _ oo 2T J_ oo

z(t) ‘B(w) YO IS uarer Y] ppp | Sea(w0)
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Fabry-Pérot interferometer (Spectrometer)

1 o

1 — r2e—j2wd/c - r
n=0

coefficient of the two places P; and P, and c is the light speed in the medium

between the plate (See (a) in the next slide).
e Notably,

e Bw) =

nemi2nwdfe yhere r o 1 is the reflection

1
B(w)|* =
Bl 1 4 r* — 212 cos(2wd/c)

and
1 w EOO: 1 . ", L 1 L c
—f— d(w—nw —cot | m™— | when r where wy = m—.
~ots . 0)=J3 o ’ 0=

So, if S, (w) only overlaps with one impulse in B(w), then B(w) functions like
the ideal single-impulse filter (See (b) in the next slide).
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P\ ——— P,

Light 3 o

<

*——d —-—» Detector

(a)

|B(w)|4

’ i

S(w)

I

)
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30

=3
1
oo
i

2 |- _:g : : f} : B
20 | ;; : .55_ : : : : : : :

151 : : : : : : g g : 1

| B(w)[?

10 £ 3 2 : . g 4

-5 4 3 2 1

0
w/wy

The end of Section 12-1 Ergodicity
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Concern:

e Can one estimate the power spectrum S, (w) of a real WSS process «(t) in
terms of xp(t), where

zr(t) = x(t)pr(t)  pr(t) = { (1) m i ;

Definition (Periodogram) The periodogram of a process is defined as

—jwtdt
S1(w) =37 ‘ /

e The periodogram is the normalized absolute square of the Fourier transform of
the known segment x7(t), i.e.,

Sr(w) = %’XT(CU)\Z Xr(w) = /0" xr(t)e dt.

9]
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Theorem 12-4 lLet y(t) = xp(t) = x(t)pr(t). For WSS x(t), Sr(w) =
(1/(27))|Y (w)]? is an asymptotically unbiased estimator of S, (w).
If, in addition,

Cov{|X 2(u) 2, | X2 (0)?} = Cov{[¥ (w2, [¥ (1)} = 52, (u,0) + 82, (u, ~v),

1

2 —

Var[ST(w)] ~ Sxx(w)a ‘W‘ > T
2S§x(0)7 w =10

Proof: It can be shown that the autocorrelation function of y(t) = pr(t)x(t) is:

Ryy(t1,t2) = Ryu(ts — to)pr(ta)pr(te).
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Hence,

1 [ . .
(_/ Sm(f)ey(htz)fdf) pT(tl)pi}(tg)e_](“1t1+u2t2)dt1dt2

1 o0 . o0 .
(_/ pT(tl)ej(mf)tldtl/ p*T(tg)ej(UZf)thtg) Sm(f)df
1

0

() (1)

(Here, we also show that Sy, (u1,u2) is real! This will be used in Slides 12-51 and 12-73.)

- [ (e neeh )
2sin[T(uz + f)] < k}) Seo(f)df for k large

/N
=
DO
_|_
=
,_/H/_/H
3
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Accordingly, it is fair to say that Sy, (w1, ug) =~ 0 if
k k mk mk
U1—|—?§ —UQ—?OT —UQ+?§U1—?,
which is equivalent to saying that |u;+us| > 1/T. (Le., Sy (w,w) =~ 0if |w| > 1/T")

On the other hand, for 7" large,
> sin?[T(w —
Syy(w, —w) = 2T/ il f)]Sm(f)df

00 WT(W o f)2
~ 2T/ d(w — [)Su(f)df (See the next slide.)
= 2T S, (w).
Consequently, by the lemma in Slide 11-78,
1 1
E[Sr(w)] = ﬁRyy(w,W) = ﬁSyy(w, —w) = Sp(w) as T — oo.
Var[Sr(w)] = Cov{Sr(w), Sr(w)}
1

= Cor{| X ()P, [Xr(w))
1 ) ) [ S (w), w>1/T
= 17l Splwsw) + tgyy(ﬂ_w” ~ { 252 (0), w =0

~0 if w>1/T ~4T2S2, (w) if T large



Spectral Bias

12-48
> sin?(T's) _ sin®(Ts) T sin?(7T's) 1
That/oo T s? dS:Lg—rE(l) Ts: 71 nTs? | = wl's? for s 70
-9 T
implies that lim sin (T's) = 0(s).

T—oo 71 S

T2

e Although it is asymptotic unbias, Sp(w) is still a bias estimate of S, (w) for

finite 7.
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e One can reduce the bias by introducing a data window ¢(¢) to obtain:

2

)

Si(w: c) = % ‘ / Z () (t)e Tt

which is named the | modified periodogram|.

e The modified periodogram is the normalized absolute square of the Fourier
transform of the known segment @1 (t; c) = cp(t)x(t), where cp(t) = c(t)pr(t),
le.,

1 o0 .
Sr(w;c) = ﬁ\XT(w; o Xr(wie) = / a7 (t; c)e ¥ dt.

(0. 9]

e The choice that minimizes the bias of St (w;¢) will be introduced later.
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Let y(t) = ep(t)x(t). Then

Ryy(t1,t2) = Rag(ts — ta)er(ty)cr(te).

Hence,
S,y (U, ug) = / N / N Rao(th — to)ep(tr)Ealty)e 7 mbituta) gt gy,
- / Z (% flelth—t fdf) er(t1) G (ty)e I mtituet2) g gy,
_ / h % / Z er(t)e ™ =Nhgg, / Z Cj}(tz)ej(“Qf)thtz) Sva(f)df
- i:C&@n CH(=us = F)Sual £)df

Consequently, by the lemma in Slide 11-78,
1 1 1

E[ST(U}; C)] == ﬁRyy(w,u)) — ﬁSyy(w’ —w) =

This will be used later in Slide 12-56.

o7 | Sl DICato = NP
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Theorem 11-3. An example of y(t) for the condition that
Cov{[Y (u)*, Y (v)*} = Sy, (u, v) + Sy, (u, —v)

1s real Gaussian with zero mean.

Proof:

o Let Y(u) = A(u) + jB(u) and Y (v) = A(v) + jB(v), where A(u), B(u),
A(v) and B(v) are jointly Gaussian (because y(t) is Gaussian).

e Derive

Cov{|Y (u)*, [Y (v)*}
= E[(A*(u) + B*(u))(A*(v) + B*(v))] — E[A*(u) + B*(u)] E[A*(v) + B*(v)]
— B[A%(u)A%(v)] + E[A%(u)B(v)] + E[B(u)A%(v)] + E[B*(u)B(v)]

—EB[A*(u)|E[A*(v)] — E[A*(u)| E[B*(v)] — E[B*(u)|E[A*(v)] — E[B*(u)|E[B*(v)]

= 2F°[A(u)A(v)] + 2E*[A(u) B(v)] + 2E°[B(u) A(v)] + 2E* B(u)B(v)]

where the last step follow from the fact that

Elz’y’] - Blz’|Ely’] = 2E°[zy]

for any jointly Gaussian (x,y).
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e We further derive

Syy(uv _U)

12-52
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e Since Sy, (u,v) is real due to WSS x(t) (See Slide 12-46),

2C = Sy, (u, —v) + Sy,(u,v)
2D = Syy(u, —v) = Syy(u,v)
2E = 0
2F =0

e Consequently,
AC* +4D° + 4E* +4F* = 25 (u,—v) + 28, (u, ).

[l

Syy(u, v) may be complex under y(t) = x(t)c(t) for general real-valued Gaussian
x(t) (not necessarily WSS) and real ¢(t) (not necessarily symmetric). As such, we
have

Cov{|Y ()%, |Y (v)]} = |Syy(u; —v)|* + |Syy(u; v)|.




Remarks on the Variance 1954

Remarks

e The estimation variance (namely, E[|S7(w;c) — Syp(w)|?]) is larger than
the variance of the estimate (namely, Var[Sp(w; ¢)|) for every T', but their
difference will decrease to zero as T' — oo, if the estimator is asymptotically
unbiased.

E[|St(w;c) = Sua(w)[] - Var[ST( )]
= ElSrtwe]l"] — Sua(w) E[ST(w; )] — S7u(w) E[St(w; )] + | Saa(w)]”
—El|Sr{wre)]l'] + | E| ST (w; )]

= |E[Sr(w;c)] — Sa:x(w)‘ :

e Fact without formal proof: The estimation variance can not be made zero
even if T is large, and is asymptotically lower-bounded by S? (w).

e Fact without formal proof: Hence, the use of data window does not help much
in decreasing either the estimation variance or the variance of the estimate (in
asymptotic sense).
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Smoothed Spectrum

e One way to improve the estimation variance is to smooth the spectrum:
1 (0.¢}
Stw(w;c) = —/ W(y)Sr(w —y;c)dy
2T J_ o

at the price of a slightly larger bias. Notably, St(w;c) is a biased estimator
for finite 7.

e [t can be anticipated that:

1 o0 ,
STw(TiC) = 5 | ST,w(w; c)e’"dw

1
= — . ij
(27r/ Wiy)Sr(w—y;c )dy) e’ dw

= 13 / Wiy / Sr(w —y; ) dwdy, u = w —y

_ (% /_ ) W(y)eﬂdey) (% /_ Z Sr(u c)eﬂ“du)

= w(T)s7(T; ),

where w(7) is called the lag window with the property w(0) = 1, and its
Fourier transform W (w) is called the spectral window.
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Bias and variance of St ,(w;c)

o Bias:
B[St u(w;c)] = / W (y)E[St(w —y;c)ldy

- / Wiy ( ([ 8ut0) oplCrto =y = v)Pav) ay

=/ s +(v) (MT/ W (y)|Cr(w —y —v)\zdy) dv.

Hence, under certain condltlon that makes valid the bounded convergence the-

orem, and using limy_, 4—\C’T(w)]2 = §(w), we obtain

1 > 5
Tlgl’;OE[STw(w c)] = o (/OOW ngoﬁ‘CT(w_ Yy —v)| dy) dv
1 (0.9]
=5/ ( OOVV y)o(w —y —v)dy)dv
1 OO
=) Sez(V)W(w — v)dv.

If W(w) remains constant in a very short duration around origin, and zero
outside, then one can retain limyp_,o E[S7.4(w;c)] & Spp(w).
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e Variance:

Var[ S, (w;c)] = %ﬂ/oo /OO W (y)W*(z)Cov{Sr(w — y;c), Sr(w — z;¢) }dydz

Let us examine the impact of the spectral window on the behavior of the
estimation variance of St.,(w;c) through an “artificial” example.

Example. Assume that

4

c(t) =1 (No data window)

Ruel(r) = (No/2)5(7)

{ Wo(w) = 4sin*(w/2)/w? and wy(7) = (1 — |7])1{|7] < 1} Bartlett spectral window
W(w) = MWy(Mw) = 4sin*(Mw/2)/(Mw?) and w(r) = wo(T/M)
E[:L*(tl):r:*(sl)w*(tg)w(SQ)] = Rxx(tl — Sl)Rxx(SQ — tg) + Rxm(tl — tg)Rxx(Sg — 81)

\

An example for Elz(t1)x*(s1)x* (t2)x(s2)] = Rax(ts — 81) Rux(s2 — t2) + Ruw(t1 —
to)Rur(so — s1) is that x(t) = Y07 e,/ for independent complex zero-
mean Gaussian {c,}°° _ with variance E[|c,|?] = 02 and E[c?] = 0 (Thus,

E||c,|Y] = 2E?]|c,|?]). See the next slide.
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Elz(t)z(s1)x" (t2)@(s2)]

0o oo 0o oo
( Z cnejn9t1) ( Z c* ejm951) ( Z c%’;e]’k‘gtz) ( Z 056][052)]
n=—00 m=—00 k=—o0 f=—00
_ Z Ech|4]ejn6)(t1—51—t2+s2) + Z Z Ech|2]E[|ck|Q]ana(tl_sl)ejkg(SQ_tQ)

n=—00 n=—00 k=—o00,k#n
N~ -

= F

+ Z Z Ellca |2 E|cn|2]edt —t) gimbls=s1) | Z Z pnb{TiF52) o —jm0(s1+t2)

T—ee = €9 SMFEN,

n*k;émff n=~#m=k
0o 0o

_ Z Z E’Cn’ ‘C ‘ ]egnetl s1 ejkf)sz t2) + Z Z E’Cn’ ‘C Hegnf)tl t2) ymé)(sz 51)

n=—00 k=—00 n=-—00 M=—00
- Rzz(tl - Sl)Raxv(SQ - t2) + Ra:a:(tl - t2>Rzz(32 - 31>’

where

R, (1) = Elx(t+ 7)x*(t)] =

( i cnejne(t+7)> ( i c;kne—jmt‘)t)] _ i E[|cn|2]€jn0T.

n=—oo m=—0o0 n=—oo

By this, we also obtain

w) = Z Elle*)o(w — nb) =~ 70 if 0 is very small and E[|e,|*] = =2.

n=—oo
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Then,

COV[ST (wr;¢), ST(ws; c

-/ / / / (s1)a (R)a(s2)] — Ele(t)a” ()] Fle” (2)(5:))

& —jwi(ti=s1) €]w2 (t2=52) dtldthSlng

— 4T2/ / wo(th — to)e —Jwrttielwata i dt, x / / vo(S2 — S1) 63“1316 19252 g0 5
N2

sin?(T(wy — wy))
4T2(W1 — w2)2 ’

where

T pT
/ / Ra:x(tl — t2)€_jw1t1€jw2t2dt1dt2 — / / _5 t — tg —]wltlengtht dtg
T J-T

_ _/ —j(w1 w2)t2dt
2 J_r

_ Ny sin(T'(wy — wg)).

(w1 — wa)
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— L h /OO W (y)W*(z)Cov{Sr(w — y; c), Sr(w — z; ¢) }dydz

1 > 16sin*(My/2) sin*(Mz/2) [ NZsin*(T(y — z)) dud

- L e (M) e

Ny / sin?(My/2) /OO sin®(M z/2) sin(T'(y — Z))dzd

) - ¥ 2y — 2)? ’

N /Oo sin2(My/2)/ sin?(M z/2) (sm (T(y — z))) Dod

o Y2 o 2 7T (y — z)? Y

Ng [ 4sin®(My/2) [ 4sin*(Mz/2)

W/OO Myy? / M 22
W(y) w(2)

NZ (4r MN? Ey Syo(w) = 20
1677 ( 3 ) 12T o Sac(); where

Q

Oy — z)dzdy at T large

— 00 \{ J/

7

which decreases to zero as T' large, where we use the 0(+) approximation from
Slide 12-48.

E, = % ffooo W2(w)dw
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Tradeoff in the selection of spectral window

e Bias: W (w) remains constant in a very short duration around origin, and zero
outside, in order to have small bias.

1 ©.¢)
e Variance: Var|S7,(w;c)] = —TSix( w) at large T, where E,, = 2—/ W2 (w)dw.
™ —0

This implies that £, must be small, compared to 7"

Question: For a fixed wy(7) with wy(7) = 0 for |7| > 1, define w(7) = wo(r/M);
then W(w) = MWy(Mw). Can we find an M that results in small bias and small
variance at the same time?

Answer: It is apparent that M shall be large for small bias. However,

E, / W2 (w — MZWOZ(Mcu)dw:MEwO

implies that M shall be small for small variance. O

e Hence, a tradeoff between bias and estimate variance in the selection of M
must be made.
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Suggestions for the selection of M

1. The spectral window W (w) must be positive and its area must equal 27 (as
w(0) = 1). This ensures the positivity and consistency of the estimate. Some
choices of spectral windows are listed below.

wy(T) Wy(w) ms

Bartlett (1—|r)r{|r| < 1} 4sin*(w/2)/w? 00
Tukey (1 + cos(mr))1{|7| < 1} 7 sin(w)/|w(7? — w?)] | 7%/2
Papoulis | [2] sin(7)] + (1 — |7]) cos(w7)|1{|7| < 1} | 872 cos*(w/2)/(m? — w?) | =*

2. The spectral window W (w) must go to zero rapidly as w increases. This reduces
the influence of the distant spectrum to the measured location.

3. A usual measure for duration of W (w) is the second moment

A L[ 1 * o,
my = o _Oow W(w)dw = YT _Oow Wo(w)dw.

This shall be small for small bias. (Recall that E,, = M E},, must be small for
small variance of the estimate!)
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e It is hard to find an optimal data window to, say, minimize the bias (cf. Slide
12-50):

E[Sp(w:c)] = / " S - MLTyOT(w — o)|2dv,

0

where

Cr(w) = / ' c(t)e ¥ dt.

=T

e However, under the condition that S, (v) can be well-approximated by parabolic
function, we can show that the truncated cosine data window minimizes the
bias.

Sketch of the proof:

0Sye(w —v)
Ov

v? 0°S.p(w — )
T 2
0 2 Ov -

Spp(W —v) & Spp(w—0)|,_q+ v

v=

2
= Suul(w) = VS (@) + 5 ()
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implies
o

BlSt(wio) = [

: B O
/ Suuft) - ] Cr(v) P / 08/ () - | Cr(o) P

©.¢] —0o0

1
Sez(w —v) - H‘CT(U)‘QdU

Q

+/°O”—25"<>irc<>rzd
g Pa W T AU

(0.9]

- Sip(w) [, 2
= Suulw) + 222 /_ W2|Cor(v)|2do,

9]

. S| ) B 1 T 0 B
it /mmm(v)\ do =57 [ lelt)Pdt = 1. and (Cr(w)] = [Cr(=o)]

Hence, a data window, which minimizes

T

(o) () [P = / () Pdi

=T

1 ©.¢]
2T )

subject to the above constraints, minimizes the bias.
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[t can then be shown that under

00 1 1 T
| mFlCrPdr =5z [ Pt =1 and (Crw) = (=)
the data window that minimizes

T

v2\C’T(v)\2dv—/ ' (t)|%dt

=T

1 (0.¢}
2T J_ o
1S:
cos(Tw)
(w2 — 4T%wW?)

E(t) = /2 cos (%t) [t < T} & Co(w) = 425 T

This data window is named the truncated cosine data window. ]
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Suppose ¢(t) > 0 for [t| < T, and boundary condition ¢(T') = ¢(—=T) = 0. We

wish to minimize .
|
a7

/ ) cA(t)dt = 2T.

g
By using Lagrange multipliers technique, we turn to minimize

/ ) [ (t)Pdt — X ( / N A(t)dt — 2T) — / ' ([ — AA(t)) dt + 2XT

= 00 —T N~ d
L(t,c,d)

subject to

Euler-Lagrange Equation for Single function of single variable with higher derivatives
The stationary values of the functional

1] = / L@ o fe . f®)da

can be obtained from the Euler-Lagrange equation:

0L _d (oLy & (0L . pd (0L _ g
of dx \Of dz2 \ O f" dzk \afk) )

under fixed boundary conditions for the function itself as well as for the first £k — 1 derivatives.
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We have L(t, ¢, ) = [ (t)]* — Ac(t), which implies

%_f _ % (%) — (—2\e(t)) — %(25(15)) =0 & (1) + Aelt) = 0

Theorem 8.6 [Tom M. Apostoal, Calculus, pp. 326, Volume 1, 2nd Edition, 1967] The solution of the equation
y"(x) + by(z) =0 is
y(z) = crui(x) + coua(x),

where ¢; and ¢y are constants determined by the initial condition, and
1. wi(z) =1 and ug(x) =z if b = 0;
2. ui(x) = e and ug(x) = e ** if b = —k? < 0;

3. ui(z) = cos(kz) and uz(x) = sin(kz) if b = £ > 0.

i) c(t) = c1 cos(kt) + casin(kt) with A = k2.
it) ¢(T) = c(=T) =0 = cycos(kT) + cosin(kT) = ¢1 cos(kT) — cosin(kT) =0
= ¢y cos8(kT) = cosin(kT) = 0 (Note that we cannot have ¢; = ¢y = 0!)
i11) Since cos(x) = sin(z) = 0 has no solution, one of ¢; and ¢y is zero.
Then, ¢(t) > 0 for [¢t| < T implies ¢; = 0, and hence, k = 5.
iv) ffT A(t)dt = 2T implies ¢; = v/2.
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e It is hard to find an optimal spectral window to, say, minimize the asymptotic
bias (cf. Slide 12-56):

lim E[Sy(w) = — / " S ()W (w — v)d.

T—o00 2 — 00

e However, under the condition that S, (v) can be well-approximated by parabolic
function, we can show that the Papoulis spectral window minimizes the asymp-
totic bias.

Sketch of the proof:

IS, (w — ) N v? 9 S(w —v)
ov veg 2 ov? V0
2
= Sualw) = 05,(w) + TS (w)

Spp(W —v) & Spp(w—0)|,_q+ v
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implies

lim E[S7,(w)] = / W (v)See(w — v)dv

T—0o0
= /W S ( v——/ W (v)vS, (w)dv
/ W (v S” (w)dv

— S(w) + s"( ) /_ V2 (0)do,

L L[
if o /OO W (v)dv =1 and W(v) = W(—v).

Hence, a spectral window, which minimizes

1 0
my = —/ v W (v)dv
2T ) _ oo

subject to the above constraints, minimizes the asymptotic bias.
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[t can then be shown that under
1 o0
— W(w)dv=1 and W(v)=W/(—v) and Ww)>0 |,
27 — 00 N———

additional constraint
the spectral window that minimizes
1 o]
my = — v W (v)dv
2T J_ oo

1S:
cos?(Tw)

(7-‘-2 _ 4T2w2)2

1 &
W(w) = ﬁ]CT(w)\Q = 167°T

This is exactly what is obtained in text by assigning M = 27T". You may compare
this solution to the one in Slide 12-65 and you shall find that W (w) is proportional
to |C&(w)|?.

This spectral window is named the Papoulis spectral window. O




LMS Spectral Windows 1271

e Another criterion for the optimality of spectral windows is the minimization of
the MS estimation error defined as:

bias? 4 variance = |E[S7.,(w;¢)] — Spe(w)|” 4 Var[Sz.,(w; ¢)]

e [t is called the ML estimation error because
bias® + variance = |E[Sz{wie)]]” — E[Stu(w;)]Sk,(w) — E[ST.,(w; ¢)]Spa(w) + [Spa(w)[
‘|‘EHST,w(w; C)F] —|E w W, €
= EHST,M(WQ c) — wa(w)m

In such case, we may say that St (w;c) can be well-approximated or well-
modeled by Sy, (w) + vy (w; €), where v, (w; ¢) is an approximate noise,
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e (For simplicity, we disregard the data window ¢ and spectral window w in this
derivation.)

From Theorem 12-4, we know that for T" very large, 1/7T is very small. Hence,
we can say that Sy, (u,v) and Sy, (u, —v) are close to zero for most u and v
considered (i.e., [u+v| > 1/T and |u —v| > 1/T are true for most u and v).

e Thus, by Sp(w) = Sy (w) + v(w),
Elv(u)v*(v)] = COV{ST( ), St(v)}

— 47;2(30\/{])(T( w)?, | X r(v)[*}
= L ) + 850 0.
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e When |u+v| >

range” of Sy, (u

Elv(u)v*(v)]

o
Y

Q

%, Sz (w) is almost a constant within the “effective integration

,—v). (See below),

COV{ST( ) ST(U)}

4?Cov{\XT( W)l 1 Xr(0))

@S?fy(u —v)  (Syy(u,v) =~ 0 when |u + v| > 1/T from Theorem 12-4)

)
w (/s

sin|[T'(v — )] P
1 N sin[T(u — f)]sin[T(v — f)] .\~ T
177 (Sa:x( )/ooﬂ- (w—f)(o—f) df) (Spz(u) tant)
BN ; 2sin[T(u — v) 2
AT? (Sm( ) (u —v) )

sin?[T'(u — v)]
T ralt) 7T (u — v)?
— 52 (u)d(u —v), (See Slide 12-48.)
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where
/OO gsin[T(u — f)] Sin[T(U — f)]
o T (u—f)v—f)

df =

12-74

() ()
- /_ ) ( /_ ) ej(uf)tldtl) ( /_ e iv= thtQ) df

D
~ ~
[
~ ~

—j(utq+vts) i/oo ejf(t1+t2)df dt,dts
2T J_ o

_j(ut1+vt2)5(t1 T t2)dt1dt2

D
~ ~
~ ~

T
ej(u—v)thtz

-7
2sin[T(u — v)]
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The above “rough” derivation formulates, e.g., the following research problem.

Question: Determine the best A that minimizes the MS estimation error for
moving average spectral window of area 1, provided that S, (w — @) & Syp(w) —
aS! (w)+ (?/2)S" (w), and S7(w) & Spp(w) + v(w), where v(w) is zero mean
with covariance function Ev(u)v*(v)] = (7/T)S%,(u)d(u — v).

Answer:
e Since
1 A 1 A 1[4
Stwlw) = oA /A Sr(w—a)da ~ NN Sm(w—oz)da%—ﬂ /Av(w—oz)doz,
we derive
1 A
E[STu(w)] — Spp(w) = — Spr(w — a)da — S, (W)
’ YANY N
1 A o2 .
~ ﬂ . ?Sa:x(W)dOé
AQ

6



LMS Spectral Windows 1276

By observing that

1 w+A 1 w+A
/ Sr(a)da ~ S, (w) + —/ v(a)da,

ST,w(w) = ﬂ R

we further derive

Var[Stu(w)] = E[|St.u(w) — E[Stu(w)]|]

1 w+A 2
= K ﬂ/ v(a)da
w+A )
— 4A2 /wA fsxx _B)dadﬂ

w+A )
:4A2T/ Seal@)dex

1 AQTS;%J;( w)[2A]  (By mean-value theorem)
2 7T
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Hence, we need to find the A that minimizes

2Zl4

St g T (Shw) 55,

2AT

- * o\ 1/ S, () 2/5
which implies that A* = (ﬁ) ( S (w)) :

Remark

e For the optimal A*,

vios = (7 )1/5 SAICAt

38472 o
and
72 \ /P
V variance = (12T2> SA5(w)[S! (W),
Hence,

bias 1

Vvariance 2

12-77

In other words, standard deviation is equal to twice of the bias, which is named

two-to-one rule.
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Final remark

e The best A* is actually a function of w, which means that the moving average
window size is varying with w!

Question: Determine the best W (w) (bandlimited to A and of area 1) that min-
imizes the MS estimation error, provided that S, (w — a) = Sy (w) — S, (w) +
(?/2)8” (w), and S7(w) ~ S;p(w) + v(w), where v(w) is zero mean with covari-
ance function Ev(u)v*(v)] = (7/T)S%,(u)d(u — v).

Answer by Priestley:

3 [ o’
Stw(w) = A /A Sr(w—a) (1 - E) da,

157\ 1 / Spu(w)\ P
where A = (T) (S” (w)) .

Tx

The end of Section 12-2 Spectrum Estimation




