Chapter 11 Spectral Representation

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

11-1 Factorization and Innovations

Concern (for continuous-time processes)

• How to represent a real WSS process $\boldsymbol{x}(t)$ as a response of a *minimum-phase* system $L(\omega)$ with a white input $\boldsymbol{i}(t)$ of unit power?

Definition (Minimum-phase system) A system is called *minimum-phase* if both $L(\omega)$ and $1/L(\omega)$ are causal and stable.

(A system is stable if a bounded input (BI) always induces a bounded output (BO). As a result, a linear system is stable in the BIBO sense if all poles of the system are in the strict left half of the *s*-plane.)

Definition (Causal filter) An causal filter is one whose output depends only on past and present inputs.

• A process that can be represented as a response of a *minimum-phase* system $L(\omega)$ with a white input i(t) of unit power is called *regular*.

Oxford Dictionary - **Regular**. adj. Recurring at uniform intervals. Done or happening frequently.

• A formal definition of regular processes is given below.

Definition (Regular processes) A process $\boldsymbol{x}(t)$ is regular if

$$S_{xx}(\omega) = |\mathbf{L}(\omega)|^2$$

where L(s) $(s = j\omega)$ is analytic in the right-hand plane $\operatorname{Re}\{s\} > 0$.

• Roughly speaking, a function is analytic if its function values are determinate and finite (never indeterminate or infinity).

<u>11-1 Factorization and Innovations</u>

Filter with minimum group delay

- For all causal and stable systems that have the same magnitude response, the minimum phase system has the *minimum group delay*.
- Hence, a more appropriate name for *minimum-phase system* should be the "*minimum group delay*" system.
- We will come back to (provide a proof for) this later.

Some observations about regular process $\boldsymbol{x}(t)$

•
$$R_{ii}(\tau) = \delta(\tau) \Rightarrow S_{ii}(\omega) = 1.$$

- $S_{xx}(\omega) = |\mathbf{L}(\omega)|^2 S_{ii}(\omega) = |\mathbf{L}(\omega)|^2$.
- \bullet So,

$$\boldsymbol{x}(t) = \int_{-\infty}^{\infty} \mathbf{1}(\tau) \boldsymbol{i}(t-\tau) d\tau,$$

where $L(\omega)$ is *minimum-phase*, which is determined in terms of the desired real, positive, even, finite-area $S_{xx}(\omega)$, and $l(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} L(\omega) e^{j\omega\tau} d\omega$.

Innovation: i(t) is called the *innovation* of x(t).

Innovation Filter: $L(\omega)$ is called the *innovation filter* of $\boldsymbol{x}(t)$.

Whitening Filter: $1/L(\omega)$ is called the *whitening filter* of $\boldsymbol{x}(t)$.

Lemma (Paley-Wiener condition) A process $\boldsymbol{x}(t)$ is regular if the Paley-Wiener condition holds, i.e.,

$$\int_{-\infty}^{\infty} \frac{\left|\log S_{xx}(\omega)\right|}{1+\omega^2} d\omega < \infty.$$

- Hence, a BL process violates the Paley-Wiener condition.
- Paley-Wiener condition is only **sufficient**.
- We thus cannot prove that a BL process is not regular by showing it violates the Paley-Wiener condition.

Definition (Bandlimited processes) A process $\boldsymbol{x}(t)$ is called *bandlimited* (BL) if $\bar{S}_{xx}(\omega) = 0$ for $|\omega| > \sigma$, and $\bar{R}_{xx}(0) < \infty$.

Rational Spectra

How to find $L(\omega)$ such that $|L(\omega)|^2 = S(\omega)$ for a given real, positive, even, finite-area $S(\omega)$.

- Observation 1: $S(\omega) = S(-\omega)$ implies that $S(\omega)$ is a function of ω^2 .
- Observation 2: $L(\omega)$ can be easily determined if $S(\omega)$ is a rational spectrum.

Definition (Rational spectra) A rational spectrum is the ratio of two polynomials in ω^2 :

$$S(\omega) = \frac{A(\omega^2)}{B(\omega^2)},$$

where A(x) and B(x) are both polynomials of x.

- Let
$$s = j\omega$$
. Then, $S(s) = A(-s^2)/B(-s^2)$.

- Observe that if s_i is a root (either zero or pole) of S(s), $-s_i$ is also a root of S(s). Also, the roots of S(s) are either real or complex conjugate.
- Then, roots of S(s) are symmetric with respect to the **imaginary axis**. So we can separate them into two groups: **Left** group that consists of all roots with $\operatorname{Re}\{s_i\} < 0$, and the **right** group that consists of all roots with $\operatorname{Re}\{s_i\} > 0$. (How to take care of those roots with $\operatorname{Re}\{s_i\} = 0$?)
- We can accordingly form L(s) by the ratio of two polynomials with the left roots of S(s).

Rational Spectra

Example 11-1
$$S(\omega) = \frac{N}{\alpha^2 + \omega^2}$$
.
Solution: $S(s) = \frac{N}{\alpha^2 - s^2} = \frac{N}{(|\alpha| + s)(|\alpha| - s)} \Rightarrow L(s) = \frac{\sqrt{N}}{|\alpha| + s}$
 $\Rightarrow L(\omega) = \frac{\sqrt{N}}{|\alpha| + j\omega} \quad \left(\Rightarrow |L(\omega)|^2 = \left|\frac{\sqrt{N}}{|\alpha| + j\omega}\right|^2 = \frac{N}{\alpha^2 + \omega^2} = S(\omega)\right)$

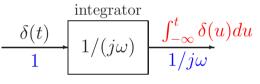
Example 11-2
$$S(\omega) = \frac{49 + 25\omega^2}{9 + 10\omega^2 + \omega^4}$$
.
Solution: $S(s) = \frac{49 - 25s^2}{9 - 10s^2 + s^4} = \frac{(7 + 5s)(7 - 5s)}{(1 + s)(3 + s)(1 - s)(3 - s)}$
 $\Rightarrow L(s) = \frac{7 + 5s}{(1 + s)(3 + s)} \left(S(s) = L(s)L(-s)\right)$
 $\Rightarrow L(\omega) = \frac{7 + 5j\omega}{(1 + j\omega)(3 + j\omega)}$
 $\left(\Rightarrow |L(\omega)|^2 = \left|\frac{7 + 5j\omega}{(1 + j\omega)(3 + j\omega)}\right|^2 = \frac{49 + 25\omega^2}{9 + 10\omega^2 + \omega^4} = S(\omega)\right)$

1

Example 11-1

$$\begin{aligned} (\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{L}(\omega) e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sqrt{N}}{|\alpha| + j\omega} e^{j\omega\tau} d\omega \\ &= \sqrt{N} e^{-|\alpha|\tau} \int_{-\infty}^{\tau} \delta(u) du \\ &= \begin{cases} \sqrt{N} e^{-|\alpha|\tau}, \ \tau > 0 \\ 0, \ \tau < 0 \end{cases} \end{aligned}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sqrt{N}}{|\alpha| + j\omega} e^{j\omega\tau} d\omega = \sqrt{N} e^{-|\alpha|\tau} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{j\omega'} e^{j\omega'\tau} d\omega' \right)$$
for $j\omega' = |\alpha| + j\omega$.



Example 11-2

$$\begin{aligned} \mathbf{l}(\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{L}(\omega) e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{7 + 5j\omega}{(1 + j\omega)(3 + j\omega)} e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{1}{1 + j\omega} + \frac{4}{3 + j\omega} \right) e^{j\omega\tau} d\omega \\ &= \begin{cases} e^{-\tau} + 4e^{-3\tau}, \ \tau > 0 \\ 0, \ \tau < 0 \end{cases} \end{aligned}$$

Example 11-1

$$\begin{aligned} \mathbf{1}_{\text{whitening}}(\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\mathbf{L}(\omega)} e^{j\omega\tau} d\omega & \underbrace{a(t)}_{A(\omega)} & \underbrace{j\omega}_{A(\omega)(j\omega)} \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\alpha| + j\omega}{\sqrt{N}} e^{j\omega\tau} d\omega \\ &= \frac{|\alpha|}{\sqrt{N}} \delta(\tau) + \frac{1}{2\pi\sqrt{N}} \int_{-\infty}^{\infty} (j\omega) e^{j\omega\tau} d\omega \end{aligned}$$

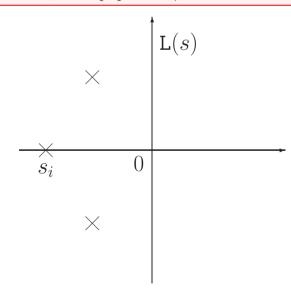
Example 11-2

$$\begin{aligned} \mathbf{l}_{\text{whitening}}(\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\mathbf{L}(\omega)} e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{(1+j\omega)(3+j\omega)}{7+5j\omega} e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{5} \left(\frac{3+4(j\omega)+(j\omega)^2}{1.4+j\omega} \right) e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{5} \left(-\frac{0.64}{1.4+j\omega} + 2.6+j\omega \right) e^{j\omega\tau} d\omega \\ &= -0.128 e^{-1.4\tau} \mathbf{1} \{\tau > 0\} + 0.52 \,\delta(\tau) + \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{5} (j\omega) e^{j\omega\tau} d\omega \end{aligned}$$

Definition (Minimum-phase system) A system is called *minimum-phase* if both $L(\omega)$ and $1/L(\omega)$ are causal and stable.

Definition (Causal filter) A causal filter is one whose output depends only on past and present inputs.

Observation A system is minimum-phase if functions L(s) and 1/L(s) are analytic in the right-hand plane $\operatorname{Re}\{s\} > 0$. (I.e., no poles and zeros satisfy $\operatorname{Re}\{s\} > 0$.)



Implicitly, the above figure implies that $l(\tau) \to 0$ as $\tau \to \infty$. See the two examples in the previous slide.

Example 11-3
$$S(\omega) = \frac{25}{\omega^4 + 1}$$
.
Solution: $S(s) = \frac{25}{s^4 + 1} = \frac{25}{(s^2 + \sqrt{2}s + 1)(s^2 - \sqrt{2}s + 1)}$
 $\Rightarrow L(s) = \frac{5}{s^2 + \sqrt{2}s + 1} \quad \left(S(s) = L(s)L(-s)\right)$
 $\Rightarrow L(\omega) = \frac{5}{-\omega^2 + j\sqrt{2}\omega + 1}$
 $\left(\Rightarrow |L(\omega)|^2 = \left|\frac{5}{-\omega^2 + j\sqrt{2}\omega + 1}\right|^2 = \frac{25}{(1 - \omega^2)^2 + 2\omega^2} = S(\omega)\right)$
 $\Rightarrow 1(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} L(\omega)e^{j\omega\tau}d\omega$
 $= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{5}{1 - \omega^2 + j\sqrt{2}\omega}e^{j\omega\tau}d\omega$
 $= \begin{cases} 5\sqrt{2}\sin(\tau/\sqrt{2})e^{-\tau/\sqrt{2}}, \ \tau > 0\\ 0, \ \tau < 0 \end{cases}$

11-9

Minimum-Phase Discrete-Time Processes

Concern (for discrete-time processes)

• How to represent a real **discrete** WSS process $\boldsymbol{x}[t]$ as a response of a **discrete** minimum-phase system $L[e^{j\omega}]$ with a **discrete** white input $\boldsymbol{i}[t]$ of unit power?

Definition (Minimum-phase system) A discrete system is called *minimum-phase* if both $L[e^{j\omega}]$ and $1/L[e^{j\omega}]$ are causal and stable. (A system is stable if a bounded input (BI) always induces a bounded output (BO). As a result, a linear system is stable in the BIBO sense if all poles of the system are inside the unit circle in the z-plane.)

Definition (Causal filter) A causal filter is one whose output depends only on past and present inputs.

- A (discrete) process that can be represented as a response of a *minimum-phase* system $L[e^{j\omega}]$ with a white input i[t] of unit power is called *regular*.
- A formal definition of (discrete) regular processes is given below.

Definition (Discrete regular processes) A process x[t] is regular if

$$S_{xx}[\omega] = |\mathbf{L}[e^{j\omega}]|^2$$

where L[z] $(z = e^{j\omega})$ is analytic for |z| > 1.

• Roughly speaking, a function is analytic if its function values are determinate and finite (never indeterminate or infinity).

Minimum-Phase Discrete-Time Processes

11-11

Some observations about $\boldsymbol{x}[t]$ so defined

• $R_{ii}[\tau] = \delta[\tau] \Rightarrow S_{ii}[\omega] = 1$, where $\delta[\tau] = \begin{cases} 1, \ \tau = 0\\ 0, \ \tau \neq 0 \end{cases}$ is the Kronecker delta function.

•
$$S_{xx}[\omega] = |\mathbf{L}[e^{j\omega}]|^2 S_{ii}[\omega] = |\mathbf{L}[e^{j\omega}]|^2$$
.

• So,

$$\boldsymbol{x}[t] = \sum_{\tau=-\infty}^{\infty} \mathbf{1}[\tau] \boldsymbol{i}[t-\tau],$$

where $\mathbf{L}[e^{j\omega}]$ is minimum-phase, determined in terms of the desired *real*, *positive*, *even*, *finite-area* $S_{xx}[\omega]$, and $\mathbf{l}[\tau] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{L}[e^{j\omega}] e^{j\omega\tau} d\omega$.

Conveniently, we will sometimes write $L[e^{j\omega}]$ as $L[\omega]$. These two expressions are actually equivalent.

Innovation: i[t] is called the *innovations* of x[t].

Innovation Filter: $L[\omega]$ is called the *innovation filter* of x[t].

Whitening Filter: $1/L[\omega]$ is called the *whitening filter* of $\boldsymbol{x}[t]$.

Lemma (Paley-Wiener condition) A process $\boldsymbol{x}[t]$ is regular if the Paley-Wiener condition holds, i.e.,

$$\int_{-\pi}^{\pi} \left| \log S_{xx}[\omega] \right| d\omega < \infty.$$

If $S_{xx}[\omega]$ is an integrable function, then the above condition reduces to

$$\int_{-\pi}^{\pi} \log(S_{xx}[\omega]) d\omega > -\infty$$

• Obviously, $\int_{-\pi}^{\pi} |\log S_{xx}[\omega]| d\omega < \infty$ implies $\int_{-\pi}^{\pi} \log(S_{xx}[\omega]) d\omega > -\infty$. We need to prove the converse is also true if $S_{xx}[\omega]$ integrable.

$$\begin{split} \mathbf{Claim} & \int_{-\pi}^{\pi} |S[\omega]| d\omega < \infty \text{ and } \int_{-\pi}^{\pi} \log(S[\omega]) d\omega > -\infty \Rightarrow \int_{-\pi}^{\pi} |\log S[\omega]| d\omega < \infty. \\ Proof: & \text{By} \\ & \int_{\{\omega \in [-\pi,\pi): S[\omega] < 1\}} \log(S[\omega]) d\omega = \int_{-\pi}^{\pi} \log(S[\omega]) d\omega - \int_{\{\omega \in [-\pi,\pi): S[\omega] \geq 1\}} \log(S[\omega]) d\omega, \\ & \text{we derive:} \\ & \int_{-\pi}^{\pi} |\log(S[\omega])| d\omega = \int_{\{\omega \in [-\pi,\pi): S[\omega] < 1\}} |\log(S[\omega])| d\omega + \int_{\{\omega \in [-\pi,\pi): S[\omega] \geq 1\}} |\log(S[\omega])| d\omega \\ & = -\int_{\{\omega \in [-\pi,\pi): S[\omega] < 1\}} \log(S[\omega]) d\omega + \int_{\{\omega \in [-\pi,\pi): S[\omega] \geq 1\}} \log(S[\omega]) d\omega \\ & = -\int_{-\pi}^{\pi} \log(S[\omega]) d\omega + 2\int_{\{\omega \in [-\pi,\pi): S[\omega] \geq 1\}} \log(S[\omega]) d\omega \\ & \leq -\int_{-\pi}^{\pi} \log(S[\omega]) d\omega + 2\int_{\{\omega \in [-\pi,\pi): S[\omega] \geq 1\}} (S[\omega] - 1) d\omega \\ & \leq -\int_{-\pi}^{\pi} \log(S[\omega]) d\omega + 2\int_{-\pi}^{\pi} (|S[\omega]| + 1) d\omega < \infty. \\ \\ & \Box \end{split}$$

Theorem (Page 424 in textbook: Chapter 9) There exists a unique function \sim

$$H[z] = \sum_{k=0}^{\infty} h[k] z^{-k}$$
 for $h[0] > 0$ and $|z| > 1$

that is analytic together with its inverse in |z| > 1 satisfying

$$\sum_{k=0}^{\infty} |h[k]|^2 < \infty \text{ and } S[\omega] = |H[e^{-j\omega}]|^2 \ a.e.,$$

if, and only if, $S[\omega]$ as well as $\log(S[\omega])$ are integrable functions over $[-\pi, \pi)$, where

$$H[e^{-j\omega}] = \lim_{r \downarrow 1} H[re^{-j\omega}]$$

is defined as the exterior radial limit of H[z] on the unit circle.

Rational Spectra for Discrete-Time Processes 11-15

How to find $L[\omega]$ such that $|L[\omega]|^2 = S[\omega]$ for a real, positive, even, finite-area $S[\omega]$.

- Observation 1: $S[\omega] (= S[e^{j\omega}] = S[e^{-j\omega}]) = S[-\omega]$ implies that $S[\omega]$ is a function of $\cos(\omega) = (e^{j\omega} + e^{-j\omega})/2$.
- Observation 2: $L[\omega]$ can be easily determined if $S[\omega]$ is a rational spectrum.

Definition (Rational spectra) A rational spectrum is the ratio of two polynomials in $\cos(\omega)$:

$$S[\omega] = \frac{A(\cos(\omega))}{B(\cos(\omega))},$$

where A(x) and B(x) are both polynomials of x.

- Let $z = e^{j\omega}$. Then, $S[z] = A((z + z^{-1})/2)/B((z + z^{-1})/2)$.
- Observe that if z_i is a root (zero or pole) of S[z], $1/z_i$ is also a root of S[z]. Also, the roots of S[z] are either real or complex conjugate.
- Then, the roots of S[z] are symmetric with respect to the **unit circle**. So we can separate them into two groups: **Inside** group that consists of all roots with |z| < 1, and the **outside** group that consists of all roots with |z| > 1.
- Form L[z] by the ratio of two polynomials with the **inside** roots of S[z].

Rational Spectra for Discrete-Time Processes

Example 11-4
$$S[\omega] = \frac{5 - 4\cos(\omega)}{10 - 6\cos(\omega)}$$
.
Solution: $S[z] = \frac{5 - 2(z + z^{-1})}{10 - 3(z + z^{-1})} = \frac{2(1 - (1/2)z^{-1})}{3(1 - (1/3)z^{-1})} \cdot \frac{2(1 - (1/2)z)}{3(1 - (1/3)z)}$
 $\Rightarrow L[z] = \frac{2(1 - (1/2)z^{-1})}{3(1 - (1/3)z^{-1})} \quad \left(S[z] = L[z]L[1/z]\right)$
 $\Rightarrow L[\omega] = \frac{2(1 - (1/2)e^{-j\omega})}{3(1 - (1/3)e^{-j\omega})}$
 $\left(\Rightarrow |L[\omega]|^2 = \left|\frac{2(1 - (1/2)e^{-j\omega})}{3(1 - (1/3)e^{-j\omega})}\right|^2 = S[\omega]\right)$

$$\begin{aligned} \mathbf{1}[\tau] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{L}[\omega] e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{2(1 - (1/2)e^{-j\omega})}{3(1 - (1/3)e^{-j\omega})} e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 - \frac{1/3}{1 - (1/3)e^{-j\omega}} \right) e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 - 3^{-1} \left[1 + 3^{-1}e^{-j\omega} + 3^{-2}e^{-j2\omega} + \cdots \right] \right) e^{j\omega\tau} d\omega \\ &= \begin{cases} 0, & \tau < 0 \\ 1 - 3^{-1}, & \tau = 0 \\ -3^{-(1+\tau)}, & \tau > 0 \end{cases} \end{aligned}$$

$$\begin{aligned} \mathbf{l}_{\text{whitening}}[\tau] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{\mathbf{L}[\omega]} e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{3(1 - (1/3)e^{-j\omega})}{2(1 - (1/2)e^{-j\omega})} e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 + \frac{1/2}{1 - (1/2)e^{-j\omega}} \right) e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 + 2^{-1} \left[1 + 2^{-1}e^{-j\omega} + 2^{-2}e^{-j2\omega} + \cdots \right] \right) e^{j\omega\tau} d\omega \\ &= \begin{cases} 0, & \tau < 0 \\ 1 + 2^{-1}, & \tau = 0 \\ 2^{-(1+\tau)}, & \tau > 0 \end{cases} \end{aligned}$$

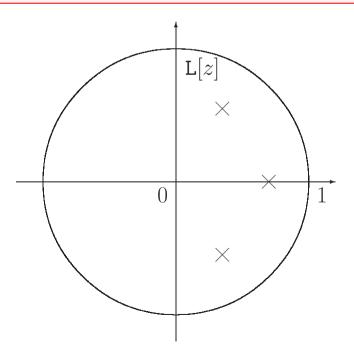
11-18

Rational Spectra for Discrete-Time Processes

Definition (Minimum-phase system) A system is called *minimum-phase* if both $L[\omega]$ and $1/L[\omega]$ are causal and stable.

Definition (Causal filter) A causal filter is one whose output depends only on past and present inputs.

Observation A discrete system is minimum-phase if functions L[z] and 1/L[z] are analytic in the exterior |z| > 1 of the unit circle.



Filter with minimum group delay

- For all causal and stable systems that have the same magnitude response, the minimum phase system has the *minimum group delay*.
- Hence, a more appropriate name for *minimum-phase system* is the "*minimum group delay*" system.

Delay of a filter: What is a proper definition for filter delay?

$$\mathbf{x}[t] \qquad \mathbf{L}[\omega] = e^{-j\omega n} \qquad \mathbf{y}[t] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\mathbf{X}[\omega] e^{-j\omega n} \right) e^{j\omega t} d\omega = \mathbf{x}[t-n]$$

Hence, the delay of a filter can be "defined" as:

$$-\frac{d}{d\omega}\left(\arg\{\mathbf{L}[\omega]\}\right) = -\frac{d}{d\omega}\left(-\omega n\right) = n.$$

The filter is named *minimum phase* due to that it minimizes the "**phase change**."

Example: Delay of a filter with a single zero

$$\boldsymbol{x}[t]$$
 $\boldsymbol{L}[z] = 1 - z_i z^{-1}$ $\boldsymbol{y}[t] = \boldsymbol{x}[t] - z_i \boldsymbol{x}[t-1]$

$$\begin{aligned} -\frac{d}{d\omega} \left(\arg\{1 - z_i e^{-j\omega}\} \right) &= -\frac{d}{d\omega} \left(\arg\{|z_i|^{-1} - e^{-j(\omega - \arg\{z_i\})}\} \right) \\ &= -\frac{d}{d\omega} \left(\arg\{|z_i|^{-1} - \cos(\omega - \arg\{z_i\}) + j\sin(\omega - \arg\{z_i\})\} \right) \\ &= -\frac{d}{d\omega} \left(\tan^{-1} \left[\frac{\sin(\omega - \arg\{z_i\})}{|z_i|^{-1} - \cos(\omega - \arg\{z_i\})} \right] \right) \quad \text{See the next Slide.} \\ &= \frac{|z_i| - \cos(\omega - \arg\{z_i\})}{|z_i| + |z_i|^{-1} - 2\cos(\omega - \arg\{z_i\})}. \end{aligned}$$

Apparently, the choice between $z_i = |z_i|e^{j \arg\{z_i\}}$ and $1/z_i^* = |z_i|^{-1}e^{j \arg\{z_i\}}$ (or z_i^* and $1/z_i$), which minimizes the *filter delay*, is the one lying in the interior of unit circle since

$$-\frac{d}{d\omega}\left(\arg\{1-z_ie^{-j\omega}\}\right) = \frac{|z_i| + \text{fixed}}{\text{fixed}}$$

$$\frac{d}{d\omega} \left(\tan^{-1} \left[\frac{\sin(\omega - \arg\{z_i\})}{|z_i|^{-1} - \cos(\omega - \arg\{z_i\})} \right] \right)^{\frac{d}{d\omega} \tan^{-1} \left(\frac{a}{b}\right) = \frac{ba' - ab'}{a^2 + b^2}}{a^2 + b^2} \right] \\
= \frac{\left[|z_i|^{-1} - \cos(\omega - \arg\{z_i\}) \right] \left(\frac{d}{d\omega} [\sin(\omega - \arg\{z_i\})] \right)}{\sin^2(\omega - \arg\{z_i\}) + [|z_i|^{-1} - \cos(\omega - \arg\{z_i\})]^2} \\
- \frac{\sin(\omega - \arg\{z_i\}) \left(\frac{d}{d\omega} [|z_i|^{-1} - \cos(\omega - \arg\{z_i\})] \right)}{\sin^2(\omega - \arg\{z_i\}) + [|z_i|^{-1} - \cos(\omega - \arg\{z_i\})]^2} \\
= \frac{\left[|z_i|^{-1} - \cos(\omega - \arg\{z_i\}) \right] \cos(\omega - \arg\{z_i\}) - \sin^2(\omega - \arg\{z_i\})}{1 - 2|z_i|^{-1} \cos(\omega - \arg\{z_i\}) + |z_i|^{-2}} \\
= \frac{|z_i|^{-1} \cos(\omega - \arg\{z_i\}) - 1}{1 - 2|z_i|^{-1} \cos(\omega - \arg\{z_i\}) + |z_i|^{-2}} \\
= \frac{\cos(\omega - \arg\{z_i\}) - |z_i|}{|z_i| - 2\cos(\omega - \arg\{z_i\}) + |z_i|^{-1}}$$

Example. Take $|z_i| = \frac{1}{2}$ and $\arg\{z_i\} = \frac{\pi}{3}$.



• The figure shows that

$$\frac{|z_i| - \cos(\omega - \arg\{z_i\})}{|z_i| + |z_i|^{-1} - 2\cos(\omega - \arg\{z_i\})} \quad \text{and} \quad \frac{|z_i^*| - \cos(\omega - \arg\{z_i^*\})}{|z_i^*| + |z_i^*|^{-1} - 2\cos(\omega - \arg\{z_i^*\})}$$

are identical except with some shift.

• The figure shows that the phase change corresponding to z_i is always smaller than that corresponding to $1/z_i$ (and of course, to $1/z_i^*$). So, the choice between $z_i = |z_i|e^{j \arg\{z_i\}}$ and $1/z_i = |z_i|^{-1}e^{-j \arg\{z_i\}}$, which minimizes the *filter delay*, is the one lying in the interior of unit circle.

11 - 24

Delay of a filter with multiple zeros $L[z] = \prod_i (1 - z_i z^{-1})$

$$x[t]$$
 $1-z_1z^{-1}$ \longrightarrow $1-z_iz^{-1}$ \longrightarrow $y[t]$

Choose half of the zeros, among all the zero-pairs (one in inside group and one in outside group) of the target S[z] = L[z]L[1/z], such that the group delay is minimized.

Apparently, the choice of all zeros in the inside group will satisfy the need.

Delay of a filter with a single pole

$$\boldsymbol{x}[t]$$
 $\boldsymbol{L}[z] = 1/(1 - p_i z^{-1})$ $\boldsymbol{y}[t] = \boldsymbol{x}[t] + p_i \boldsymbol{y}[t-1]$

$$\mathbf{L}[e^{j\omega}] = \frac{1 - p_i^* e^{j\omega}}{|1 - p_i e^{-j\omega}|^2} \Rightarrow \arg\left\{\mathbf{L}[e^{j\omega}]\right\} = \arg\left\{1 - p_i^* e^{j\omega}\right\}$$

and

$$-\frac{d}{d\omega} \left(\arg\{1 - p_i^* e^{j\omega}\} \right) = \frac{|p_i^*| - \cos(\omega + \arg\{p_i^*\})}{|p_i^*| + |p_i^*|^{-1} - 2\cos(\omega + \arg\{p_i^*\})}.$$

Again, the choice between $p_i^* = |p_i^*| e^{j \arg\{p_i^*\}}$ and $1/p_i = |p_i^*|^{-1} e^{j \arg\{p_i^*\}}$ (or p_i and $1/p_i^*$), which minimizes the *filter delay*, is the one lying in the interior of unit circle since

$$-\frac{d}{d\omega} \left(\arg\{1 - p_i^* e^{j\omega}\} \right) = \frac{|p_i^*| + \text{fixed}}{\text{fixed}}.$$

All the conclusions for zeros can be applied to poles.

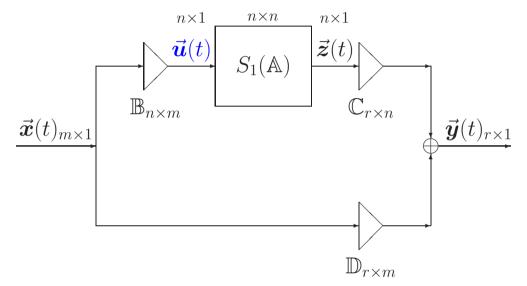
Delay of a filter with multiple zeros and multiple poles

$$\mathbf{L}[z] = \frac{\prod_{i}(1 - z_{i}z^{-1})}{\prod_{k}(1 - p_{k}z^{-1})}$$

Choose half of the zeros and poles, among all the zero-pairs and pole-pairs (one in inside group and one in outside group) of the desired S[z] = L[z]L[1/z] such that the group delay is minimized.

Apparently, the choice of all zeros and poles in the inside group will satisfy the need.

The end of Section 11-1 Factorization and Innovations



A system with state variables

• Consider a system with input $\vec{x}(t)$ and output $\vec{y}(t)$, in which their relationship is defined through an internal state variable $\vec{z}(t)$ as:

$$\begin{cases} \frac{d}{dt}\vec{z}(t) = \mathbb{A}\vec{z}(t) + \vec{u}(t) = \mathbb{A}\vec{z}(t) + \mathbb{B}\vec{x}(t) & (*) \\ \vec{y}(t) = \mathbb{C}\vec{z}(t) + \mathbb{D}\vec{x}(t) \end{cases}$$

The relationship between input $\vec{u}(t)$ and output $\vec{z}(t)$ of the subsystem S_1 is given by (*).

Terminology

• The order of the system is defined as the dimension of the state variable $\vec{z}(t)$, which is n in our case.

Derivation of the impulse response

• The impulse response of the subsystem S_1 can be derived from relationship

$$\vec{\boldsymbol{z}}(t)_{n\times 1} = \int_{-\infty}^{\infty} \phi(\alpha)_{n\times n} \vec{\boldsymbol{u}}(t-\alpha)_{n\times 1} d\alpha \text{ equivalently } \vec{\boldsymbol{z}}(s)_{n\times 1} = \phi(s)_{n\times n} \vec{\boldsymbol{u}}(s)_{n\times 1}$$

Taking the Laplace transform of both sides of Eq. (*) yields:

$$s\vec{z}(s)_{n\times 1} = \mathbb{A}_{n\times n}\vec{z}(s)_{n\times 1} + \vec{u}(s)_{n\times 1}$$

$$\Rightarrow s\phi(s)_{n\times n}\vec{u}(s)_{n\times 1} = \mathbb{A}_{n\times n}\phi(s)_{n\times n}\vec{u}(s)_{n\times 1} + \vec{u}(s)_{n\times 1}$$

$$\Rightarrow s\Phi(s)_{n\times n} - \mathbb{A}_{n\times n}\Phi(s)_{n\times n} = \mathbb{I}_{n\times n}$$

$$\Rightarrow \Phi(s)_{n\times n} = (s\mathbb{I}_{n\times n} - \mathbb{A}_{n\times n})^{-1}$$

$$\Rightarrow \phi(t)_{n\times n} = \exp\{\mathbb{A}_{n\times n}t\} \quad t > 0.$$

where \mathbb{I} is the identity matrix.

$$e^{\mathbb{A}t} \triangleq \begin{cases} \mathbb{S}e^{\Lambda t} \mathbb{S}^{-1} = \mathbb{S} \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix} \mathbb{S}^{-1}, & \text{if } \mathbb{S}^{-1} \text{ exists} \\ \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbb{A}t)^k, & \text{holds no matter whether } \mathbb{S}^{-1} \text{ exists or not} \end{cases}$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of \mathbb{A} , and \mathbb{S} is the matrix with its columns being the linearly independent eigenvectors of \mathbb{A} .

Derivation of the impulse response (continued)

• For the overall system,

$$\vec{\boldsymbol{y}}(t)_{r\times 1} = \mathbb{C}_{r\times n} \vec{\boldsymbol{z}}(t)_{n\times 1} + \mathbb{D}_{r\times m} \boldsymbol{x}(t)_{m\times 1}$$

$$= \int_{-\infty}^{\infty} \mathbb{C}_{r\times n} \phi(\alpha)_{n\times n} \vec{\boldsymbol{u}}(t-\alpha)_{n\times 1} d\alpha + \int_{-\infty}^{\infty} \delta(\alpha) \mathbb{D}_{r\times m} \vec{\boldsymbol{x}}(t-\alpha)_{m\times 1} d\alpha$$

$$= \int_{-\infty}^{\infty} \mathbb{C}_{r\times n} \phi(\alpha)_{n\times n} \mathbb{B}_{n\times m} \vec{\boldsymbol{x}}(t-\alpha)_{m\times 1} d\alpha + \int_{-\infty}^{\infty} \delta(\alpha) \mathbb{D}_{r\times m} \vec{\boldsymbol{x}}(t-\alpha)_{m\times 1} d\alpha$$

$$= \int_{-\infty}^{\infty} (\mathbb{C}_{r\times n} \phi(\alpha)_{n\times n} \mathbb{B}_{n\times m} + \delta(\alpha) \mathbb{D}_{r\times m}) \vec{\boldsymbol{x}}(t-\alpha)_{m\times 1} d\alpha.$$

Hence,

$$h(t)_{r \times m} = \mathbb{C}_{r \times n} \phi(t)_{n \times n} \mathbb{B}_{n \times m} + \delta(t) \mathbb{D}_{r \times m}$$

and

$$H(s)_{r\times m} = \mathbb{C}_{r\times n}\Phi(s)_{n\times n}\mathbb{B}_{n\times m} + \mathbb{D}_{r\times m} = \boxed{\mathbb{C}_{r\times n}\left(s\mathbb{I}_{n\times n} - \mathbb{A}_{n\times n}\right)^{-1}\mathbb{B}_{n\times m} + \mathbb{D}_{r\times m}}.$$

By Theorem 9-4 that tells:

we can infer that,

Example 1

• Suppose
$$r = n = m$$
 and $\mathbb{B}_{n \times n} = \mathbb{C}_{n \times n} = \mathbb{I}_{n \times n}$ and $\mathbb{D}_{n \times n} = \mathbf{0}_{n \times n}$. Then,

$$\begin{cases} \frac{d}{dt} \vec{z}(t) = \mathbb{A}\vec{z}(t) + \vec{u}(t) = \mathbb{A}\vec{z}(t) + \vec{x}(t) \\ \vec{y}(t) = \vec{z}(t) \end{cases}$$

implies

$$\frac{d}{dt}\vec{\boldsymbol{y}}(t) = \mathbb{A}\vec{\boldsymbol{y}}(t) + \vec{\boldsymbol{x}}(t).$$

• Then,

$$H(s)_{n \times n} = \mathbb{C}_{r \times n} \left(s \mathbb{I}_{n \times n} - \mathbb{A}_{n \times n} \right)^{-1} \mathbb{B}_{n \times m} + \mathbb{D}_{r \times m} = \left[\left(s \mathbb{I}_{n \times n} - \mathbb{A}_{n \times n} \right)^{-1} \right].$$

Example 2

• Suppose

$$\boldsymbol{y}^{(n)}(t) + a_1 \boldsymbol{y}^{(n-1)}(t) + \dots + a_n \boldsymbol{y}(t) = \boldsymbol{x}(t).$$

• By assuming that $\vec{z}(t) = [\boldsymbol{y}(t), \boldsymbol{y}^{(1)}(t), \cdots, \boldsymbol{y}^{(n-1)}(t)]^{\mathsf{T}}$, the system can be equivalently transformed to:

$$\begin{cases} \frac{d}{dt}\vec{z}(t) = \underbrace{\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}}_{\mathbb{A}} \vec{z}(t) + \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}}_{\mathbb{B}} \boldsymbol{x}(t)$$

• Hence,

$$H(s)_{r \times m} = \boxed{\mathbb{C}_{r \times n} (s\mathbb{I}_{n \times n} - \mathbb{A}_{n \times n})^{-1} \mathbb{B}_{n \times m} + \mathbb{D}_{r \times m}}_{= \mathbb{C}_{1 \times n} (s\mathbb{I}_{n \times n} - \mathbb{A}_{n \times n})^{-1} \mathbb{B}_{n \times 1}}$$

$$= \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} s & -1 & 0 & \cdots & 0 \\ 0 & s & -1 & \cdots & 0 \\ 0 & 0 & s & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \cdots & s + a_1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$= \frac{1}{s^n + a_1 s^{n-1} + \cdots + a_n}.$$

Definition (Finite-order processes) A (WSS) process $\boldsymbol{x}(t)$ is of finite order if its innovation filter is a rational function of s, i.e.,

$$\mathbf{L}(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n} = \frac{N(s)}{D(s)},$$

satisfying that N(s) and D(s) are Hurwitz polynomials.

A Hurwitz polynomial is a polynomial whose zeros are located in the left half-plane of the complex plane, namely, the real part of every zero is negative.

Autocorrelation function of finite-order process $\boldsymbol{x}(t)$

- Let $\{s_i\}_{i=1}^n$ be the roots of D(s), and assume m < n.
- Then, L(s) can be expanded into partial fractions as:

$$\mathbf{L}(s) = \sum_{i=1}^{n} \frac{\gamma_i}{s - s_i} \quad \text{and} \quad \mathbf{1}(\tau) = \sum_{i=1}^{n} \gamma_i e^{s_i \tau} \int_{-\infty}^{\tau} \delta(u) du.$$
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\gamma_i}{j\omega - s_i} e^{j\omega \tau} d\omega = \gamma_i e^{s_i \tau} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{j\omega'} e^{j\omega' \tau} d\omega' \right) \text{ for } j\omega' = j\omega - s_i.$$
See Slide 11-6.

Finite-Order Processes

• We can then derive:

$$\begin{split} S_{xx}(s) &= \mathsf{L}(s)\mathsf{L}(-s) \\ &= \left(\sum_{i=1}^{n} \frac{\gamma_i}{s - s_i}\right) \left(\sum_{k=1}^{n} \frac{\gamma_k}{-s - s_k}\right) \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\gamma_i \gamma_k}{(s - s_i)(-s - s_k)} \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\frac{-\gamma_i \gamma_k / (s_i + s_k)}{s - s_i} + \frac{-\gamma_i \gamma_k / (s_i + s_k)}{-s - s_k}\right) \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{-\gamma_i \gamma_k / (s_i + s_k)}{s - s_i} + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{-\gamma_i \gamma_k / (s_i + s_k)}{-s - s_k} \\ &= \sum_{i=1}^{n} \frac{\alpha_i}{s - s_i} + \sum_{k=1}^{n} \frac{\alpha_k}{-s - s_k} \triangleq S_{xx}^+(s) + S_{xx}^+(-s), \end{split}$$

where

$$\alpha_k = \gamma_k \sum_{i=1}^n \frac{\gamma_i}{-s_k - s_i} = \gamma_k \operatorname{L}(-s_k).$$

Finite-Order Processes

• This gives that:

$$R_{xx}^{+}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{xx}^{+}(\omega) e^{j\omega\tau} d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\sum_{i=1}^{n} \frac{\alpha_{i}}{j\omega - s_{i}} \right) e^{j\omega\tau} d\omega$$
$$= \begin{cases} \sum_{i=1}^{n} \alpha_{i} e^{s_{i}\tau}, \ \tau > 0\\ 0, \ \tau < 0 \end{cases}$$

and

$$R_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{xx}(\omega) e^{j\omega\tau} d\omega$$

= $\frac{1}{2\pi} \int_{-\infty}^{\infty} (S_{xx}^{+}(\omega) + S_{xx}^{+}(-\omega)) e^{j\omega\tau} d\omega$
= $R_{xx}^{+}(\tau) + R_{xx}^{+}(-\tau)$
= $R_{xx}^{+}(|\tau|)$ (for $\tau \neq 0$)

Example 11-5 $L(s) = 1/(s + \alpha)$

Solution:

$$S_{xx}(s) = \frac{1}{(s+\alpha)(-s+\alpha)} = \frac{1/(2\alpha)}{s+\alpha} + \frac{1/(2\alpha)}{-s+\alpha}.$$

Then,

$$R_{xx}(\tau) = \frac{1}{2\alpha} e^{-\alpha|\tau|}.$$

Example 11-6 x''(t) + 3x'(t) + 2x(t) = i(t).

Solution

$$\mathbf{L}(s) = \frac{1}{s^2 + 3s + 2} = \frac{1}{s+1} + \frac{-1}{s+2}$$

$$\Rightarrow S_{xx}(s) = \mathbf{L}(s)\mathbf{L}(-s) = \frac{1}{(s^2 + 3s + 2)(s^2 - 3s + 2)} = \frac{s/12 + 1/4}{s^2 + 3s + 2} + \frac{-s/12 + 1/4}{s^2 - 3s + 2}.$$

Hence,

$$S_{xx}^{+}(s) = \frac{1/6}{s+1} + \frac{(-1/12)}{s+2} \Rightarrow R_{xx}(\tau) = R_{xx}^{+}(|\tau|) = \frac{1}{6}e^{-|\tau|} - \frac{1}{12}e^{-2|\tau|}.$$

Given

$$\boldsymbol{x}(t) = \int_{-\infty}^{\infty} \mathbf{1}(\tau) \boldsymbol{i}(t-\tau) d\tau,$$

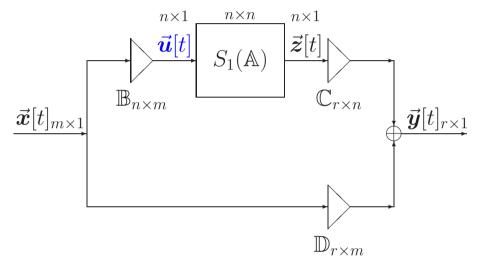
we derive

$$\begin{aligned} R_{xx}(\tau) &= E[\mathbf{x}(t+\tau)\mathbf{x}(t)] \\ &= E\left[\left(\int_{-\infty}^{\infty} \mathbf{1}(u)\mathbf{i}(t+\tau-u)du\right)\left(\int_{-\infty}^{\infty} \mathbf{1}(v)\mathbf{i}(t-v)dv\right)\right] \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \mathbf{1}(u)\mathbf{1}(v)E\left[\mathbf{i}(t+\tau-u)\mathbf{i}(t-v)\right]dudv \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \mathbf{1}(u)\mathbf{1}(v)\delta(\tau-u+v)dudv \\ &= \int_{-\infty}^{\infty}\mathbf{1}(v)\mathbf{1}(\tau+v)dv\left(=\int_{-\infty}^{\infty}\mathbf{1}(-v)\mathbf{1}(\tau-v)dv=\mathbf{1}(-\tau)*\mathbf{1}(\tau)\right) \end{aligned}$$

Thus,

$$R_{xx}(-\tau) = \int_{-\infty}^{\infty} \mathbb{1}(v)\mathbb{1}(-\tau+v)dv$$
$$= \int_{-\infty}^{\infty} \mathbb{1}(u+\tau)\mathbb{1}(u)du \quad (u=-\tau+v) = R_{xx}(\tau)$$

Discrete Finite-Order System



A system with state variables

• Consider a system with input $\vec{x}[t]$ and output $\vec{y}[t]$, in which their relationship is defined through an internal state variable $\vec{z}[t]$ as:

$$\begin{cases} \vec{z}[t+1] = \mathbb{A}\vec{z}[t] + \vec{u}[t] = \mathbb{A}\vec{z}[t] + \mathbb{B}\vec{x}[t] \qquad (*) \\ \vec{y}[t] = \mathbb{C}\vec{z}[t] + \mathbb{D}\vec{x}[t] \end{cases}$$

The relationship between input $\vec{u}[t]$ and output $\vec{z}[t]$ of the subsystem S_1 is given by (*).

Discrete Finite-Order Systems

Terminology

• The order of the system is defined as the dimension of the state variable $\vec{z}[t]$, which is n in our case.

Derivation of the impulse response

• The impulse response of the subsystem S_1 can be derived from relationship

$$\vec{\boldsymbol{z}}[t]_{n\times 1} = \sum_{\alpha=-\infty}^{\infty} \phi[\alpha]_{n\times n} \vec{\boldsymbol{u}}[t-\alpha]_{n\times 1} \text{ equivalently } \vec{\boldsymbol{z}}[z]_{n\times 1} = \phi[z]_{n\times n} \vec{\boldsymbol{u}}[z]_{n\times 1}$$

Taking the z-transform of both sides of (*) yields:

$$\begin{aligned} z\vec{z}[z]_{n\times 1} &= \mathbb{A}_{n\times n}\vec{z}[z]_{n\times 1} + \vec{u}[z]_{n\times 1} \\ \Rightarrow &z\phi[z]_{n\times n}\vec{u}[z]_{n\times 1} = \mathbb{A}_{n\times n}\phi[z]_{n\times n}\vec{u}[z]_{n\times 1} + \vec{u}[z]_{n\times 1} \\ \Rightarrow &z\Phi[z]_{n\times n} - \mathbb{A}_{n\times n}\Phi[z]_{n\times n} = \mathbb{I}_{n\times n} \\ \Rightarrow &\Phi[z]_{n\times n} = (z\mathbb{I}_{n\times n} - \mathbb{A}_{n\times n})^{-1} \\ \Rightarrow &\phi[t]_{n\times n} = \exp\left\{\mathbb{A}_{n\times n}t\right\}.\end{aligned}$$

where \mathbb{I} is the identity matrix.

Discrete Finite-Order Systems

Derivation of the impulse response (continued)

• For the overall system,

$$\vec{\boldsymbol{y}}[t]_{r\times 1} = \mathbb{C}_{r\times n}\vec{\boldsymbol{z}}[t]_{n\times 1} + \mathbb{D}_{r\times m}\boldsymbol{x}[t]_{m\times 1}$$

$$= \sum_{\alpha=-\infty}^{\infty} \mathbb{C}_{r\times n}\phi[\alpha]_{n\times n}\vec{\boldsymbol{u}}[t-\alpha]_{n\times 1} + \sum_{\alpha=-\infty}^{\infty}\delta[\alpha]\mathbb{D}_{r\times m}\vec{\boldsymbol{x}}[t-\alpha]_{m\times 1}$$

$$= \sum_{\alpha=-\infty}^{\infty} \mathbb{C}_{r\times n}\phi[\alpha]_{n\times n}\mathbb{B}_{n\times m}\vec{\boldsymbol{x}}[t-\alpha]_{m\times 1} + \sum_{\alpha=-\infty}^{\infty}\delta[\alpha]\mathbb{D}_{r\times m}\vec{\boldsymbol{x}}[t-\alpha]_{m\times 1}$$

$$= \sum_{\alpha=-\infty}^{\infty} \left(\mathbb{C}_{r\times n}\phi[\alpha]_{n\times n}\mathbb{B}_{n\times m} + \delta[\alpha]\mathbb{D}_{r\times m}\right)\vec{\boldsymbol{x}}[t-\alpha]_{m\times 1}.$$

Hence,

$$h[t]_{r \times m} = \mathbb{C}_{r \times n} \phi[t]_{n \times n} \mathbb{B}_{n \times m} + \delta[t] \mathbb{D}_{r \times m}$$

and

$$H[z]_{r\times m} = \mathbb{C}_{r\times n}\Phi[z]_{n\times n}\mathbb{B}_{n\times m} + \mathbb{D}_{r\times m} = \boxed{\mathbb{C}_{r\times n}\left(z\mathbb{I}_{n\times n} - \mathbb{A}_{n\times n}\right)^{-1}\mathbb{B}_{n\times m} + \mathbb{D}_{r\times m}}.$$

Definition (Discrete finite-order processes) A (WSS) discrete process $\boldsymbol{x}[t]$ is of finite order if its innovation filter is a rational function of z, i.e.,

$$\mathbf{L}[z] = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}} = \frac{N[z]}{D[z]}$$

satisfying that the roots of N[z] and D[z] are within the unit circle.

Autocorrelation function of discrete finite-order process $\boldsymbol{x}[t]$

- Let $\{z_i\}_{i=1}^n$ be the roots of D[z], and assume $m \leq n$.
 - We allow m = n with $z_1 = 0$ in some practical case. In such case, $\frac{\gamma_1}{1-z_1z^{-1}}$ below is equal to $\gamma_1 = b_n/a_n$.
 - Here, we further assume that $z_i \neq 0$ for $i \geq 2$.
- Then, L[z] can be expanded into partial fractions as:

$$\mathbf{L}[z] = \sum_{i=1}^{n} \frac{\gamma_i}{1 - z_i z^{-1}} \text{ and } \mathbf{l}(\tau) = \gamma_1 \delta[\tau] \mathbf{1}\{z_1 = 0\} + \gamma_1 z_1^{\tau} \mathbf{1}\{\tau \ge 0\} \mathbf{1}\{z_1 \neq 0\} + \sum_{i=2}^{n} \gamma_i z_i^{\tau} \mathbf{1}\{\tau \ge 0\}.$$

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{\gamma_i}{1-z_ie^{-j\omega}}e^{j\omega\tau}d\omega = \frac{1}{2\pi}\int_{-\pi}^{\pi}\gamma_i\left(1+z_ie^{-j\omega}+z_i^2e^{-j2\omega}+\cdots\right)e^{j\omega\tau}d\omega.$$

Discrete Finite-Order Processes

• We can then derive (and correct (11-37) in text) that:

$$\begin{split} S_{xx}[z] &= \mathbf{L}[z]\mathbf{L}[z^{-1}] \\ &= \left(\sum_{i=1}^{n} \frac{\gamma_i}{1 - z_i z^{-1}}\right) \left(\sum_{k=1}^{n} \frac{\gamma_k}{1 - z_k z}\right) \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\gamma_i \gamma_k}{(1 - z_i z^{-1})(1 - z_k z)} \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\frac{\gamma_i \gamma_k / (1 - z_i z_k)}{1 - z_i z^{-1}} + \frac{\gamma_i \gamma_k / (1 - z_i z_k)}{1 - z_k z} - \frac{\gamma_i \gamma_k}{1 - z_i z_k}\right) \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\gamma_i \gamma_k / (1 - z_i z_k)}{1 - z_i z^{-1}} + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\gamma_i \gamma_k / (1 - z_i z_k)}{1 - z_k z} - \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\gamma_i \gamma_k}{1 - z_i z_k} \\ &= \sum_{i=1}^{n} \frac{\alpha_i}{1 - z_i z^{-1}} + \sum_{k=1}^{n} \frac{\alpha_k}{1 - z_k z} - \sum_{i=1}^{n} \alpha_i = S_{xx}^+[z] + S_{xx}^+[1/z] - \sum_{i=1}^{n} \alpha_i, \end{split}$$

where

$$\alpha_k = \gamma_k \sum_{i=1}^n \frac{\gamma_i}{1 - z_i z_k} = \gamma_k \mathbb{L}[z_k^{-1}].$$

Discrete Finite-Order Processes

• This gives that:

$$R_{xx}^{+}[\tau] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xx}^{+}[e^{j\omega}] e^{j\omega\tau} d\omega$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{i=1}^{n} \frac{\alpha_{i}}{1 - z_{i}e^{-j\omega}} \right) e^{j\omega\tau} d\omega$
= $\begin{cases} \alpha_{1}\delta[\tau] \mathbf{1}\{z_{1} = 0\} + \alpha_{1}z_{1}^{\tau} \mathbf{1}\{z_{1} \neq 0\} + \sum_{i=2}^{n} \alpha_{i}z_{i}^{\tau}, \ \tau \geq 0 \\ 0, & \tau < 0 \end{cases}$

and

$$R_{xx}[\tau] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xx}[e^{j\omega}] e^{j\omega\tau} d\omega$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(S_{xx}^{+}[e^{j\omega}] + S_{xx}^{+}[e^{-j\omega}] - \sum_{i=1}^{n} \alpha_{i} \right) e^{j\omega\tau} d\omega$
= $R_{xx}^{+}[\tau] + R_{xx}^{+}[-\tau] - \delta[\tau] R_{xx}^{+}[0]$
= $R_{xx}^{+}[|\tau|].$

Autoregressive Processes

Definition (AR processes) The discrete (finite-order) process $\boldsymbol{x}[t]$ is called autoregressive (AR) if its innovation filter is of the form:

$$\mathbf{L}[z] = \frac{b_0}{1 + a_1 z^{-1} + \dots + a_n z^{-n}}$$

Remarks

• For AR processes,

$$\boldsymbol{x}[t] + a_1 \boldsymbol{x}[t-1] + \dots + a_n \boldsymbol{x}[t-n] = b_0 \boldsymbol{i}[t].$$
(11.1)

- It is named AR because the output will continue indefinitely in an self-regressive fashion only with one excitation.
- Since $\boldsymbol{x}[t-m]$ can be completely determined by

$$\boldsymbol{x}[t-m-1]$$
 up to $\boldsymbol{x}[t-m-n]$ and $\boldsymbol{i}[t-m],$

it only depends on

$$i[t-m], i[t-m-1], i[t-m-2], \dots$$

Accordingly under the assumption that $\boldsymbol{x}[t]$ is WSS,

$$R_{xi}[-m] = E\{x[t-m]i[t]\} = E\{x[t-m]\}E\{i[t]\} = 0 \text{ for } m > 0.$$

Autoregressive Processes

• By multiplying i[t] followed by taking expectation of both sides of (11.1), we obtain:

$$R_{xi}[0] + a_1 R_{xi}[-1] + a_2 R_{xi}[-2] + \dots + a_n R_{xi}[-n] = R_{xi}[0] = b_0.$$

• By multiplying $\boldsymbol{x}[t-m]$ for $0 \le m \le n$ followed by taking expectation of both sides of (11.1), we obtain:

$$\begin{array}{rcl} \times \boldsymbol{x}[t] & : & R_{xx}[0] + a_1 R_{xx}[-1] + \dots + a_n R_{xx}[-n] & = & b_0^2 \\ \times \boldsymbol{x}[t-1] & : & R_{xx}[1] + a_1 R_{xx}[0] + \dots + a_n R_{xx}[-n+1] & = & 0 \\ & \vdots & \vdots & & \vdots & & \vdots \\ \times \boldsymbol{x}[t-n] & : & R_{xx}[n] + a_1 R_{xx}[n-1] + \dots + a_n R_{xx}[0] & = & 0, \end{array}$$

or equivalently,

$$\begin{bmatrix} R_{xx}[0] & R_{xx}[-1] & R_{xx}[-2] & \cdots & R_{xx}[-n] \\ R_{xx}[1] & R_{xx}[0] & R_{xx}[-1] & \cdots & R_{xx}[-n+1] \\ R_{xx}[2] & R_{xx}[1] & R_{xx}[0] & \cdots & R_{xx}[-n+2] \\ \vdots & \vdots & \ddots & \vdots \\ R_{xx}[n] & R_{xx}[n-1] & R_{xx}[n-2] & \cdots & R_{xx}[0] \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} b_0^2 \\ 0 \\ 0 \\ \vdots \\ a_n \end{bmatrix}.$$

This is named the *Yule-Walker* equations.

The Yule-Walker equations can be used to determine a_1, \dots, a_n and b_0 for known $R_{xx}[m]$, or to determine $R_{xx}[m]$ recursively for known a_1, \dots, a_n and b_0 .

Autoregressive Processes

Example 11-7 x[t] - ax[t-1] = bi[t].

Solution:

•
$$L[z] = \frac{b}{1 - az^{-1}} \Rightarrow z_1 = a \text{ and } \gamma_1 = b \text{ and } \alpha_1 = \gamma_1 L[1/z_1] = b^2/(1 - a^2).$$

• Then,
$$R_{xx}[\tau] = \alpha_1 z_1^{|\tau|} = \frac{b^2}{1-a^2} a^{|\tau|}.$$

If a > 1, then $b(1 + az^{-1} + a^2z^{-2} + \cdots)$ does not converge unless |z| < 1/|a|; hence,

$$\frac{b}{1-az^{-1}} = b\left(1+az^{-1}+a^2z^{-2}+\cdots\right)$$

is not valid for $|z| = |e^{j\omega}| = 1$. In short, an AR process with roots outside the unit circle is not stationary!

Two cases that are not included in Slide 11-43:

- 1. Case of m = 0 and $b_0 = 0$, such as the autoregressive processes with line spectrum.
- 2. Case of m > n, such as the moving average processes.

These will be covered in next few slides.

Line Spectra

Definition (Line spectra) A line spectrum only consists of lines, i.e.,

$$S(\omega) = 2\pi \sum_{i} \sigma_i^2 \delta(\omega - \omega_i)$$

• The autocorrelation function of a process with line spectrum is:

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(2\pi \sum_{i} \sigma_{i}^{2} \delta(\omega - \omega_{i}) \right) e^{j\omega\tau} d\omega = \sum_{i} \sigma_{i}^{2} e^{j\omega_{i}\tau}.$$

• An exemplified process that results in a line spectrum is:

$$\boldsymbol{x}(t) = \sum_{i} \boldsymbol{c}_{i} e^{j\omega_{i}t},$$

where $\{\boldsymbol{c}_i\}$ are uncorrelated with zero mean, and $\sigma_i^2 = E\{|\boldsymbol{c}_i|^2\}$.

Definition (Discrete line spectra) A line spectrum for discrete processes only consists of lines, i.e.,

$$S[\omega] = 2\pi \sum_{i} \sigma_i^2 \delta(\omega - \omega_i) \text{ for } -\pi \le \omega < \pi,$$

where each $-\pi \leq \omega_i < \pi$.

• The autocorrelation function of a discrete process with line spectrum is:

$$R[\tau] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(2\pi \sum_{i} \sigma_{i}^{2} \delta(\omega - \omega_{i}) \right) e^{j\omega\tau} d\omega = \sum_{i} \sigma_{i}^{2} e^{j\omega_{i}\tau}.$$

• An exemplified process that results in a line spectrum is:

$$oldsymbol{x}[t] = \sum_i oldsymbol{c}_i e^{j\omega_i t},$$

where $\{c_i\}$ are uncorrelated with zero mean, and $\sigma_i^2 = E\{|c_i|^2\}$.

Example of AR processes with line spectra

• Suppose that

$$oldsymbol{x}[t] = \sum_{i=1}^n oldsymbol{c}_i e^{j\omega_i t},$$

where $\{c_i\}$ are real and uncorrelated with zero mean and variance $\sigma_i^2 = E\{c_i^2\}$, and each $-\pi \leq \omega_i < \pi$.

- Let $z_i = e^{j\omega_i}$.
- Find a_1, a_2, \ldots, a_n such that

$$\begin{bmatrix} 1 & z_1^{-1} & z_1^{-2} & \cdots & z_1^{-n} \\ 1 & z_2^{-1} & z_2^{-2} & \cdots & z_2^{-n} \\ 1 & z_3^{-1} & z_3^{-2} & \cdots & z_3^{-n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & z_n^{-1} & z_n^{-2} & \cdots & z_n^{-n} \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Then

$$\boldsymbol{x}[t] + a_1 \boldsymbol{x}[t-1] + a_2 \boldsymbol{x}[t-2] + \dots + a_n \boldsymbol{x}[t-n] \\ = \sum_{i=1}^n \boldsymbol{c}_i z_i^t \left(1 + a_1 z_i^{-1} + \dots + a_n z_i^{-n} \right) = 0.$$

Specifically, if n = 2, we require

$$D(z_1) = 1 + a_1 z_1^{-1} + a_2 z_1^{-2} = 0$$

$$D(z_2) = 1 + a_1 z_2^{-1} + a_2 z_2^{-2} = 0$$

Then, $a_1 = -(z_1 + z_2)$ and $a_2 = z_1 z_2$. If n = 3, we require

$$D(z_1) = 1 + a_1 z_1^{-1} + a_2 z_1^{-2} + a_3 z_1^{-3} = 0$$

$$D(z_2) = 1 + a_1 z_2^{-1} + a_2 z_2^{-2} + a_3 z_2^{-3} = 0$$

$$D(z_3) = 1 + a_1 z_3^{-1} + a_2 z_3^{-2} + a_3 z_3^{-3} = 0$$

Then, $a_1 = -(z_1 + z_2 + z_3)$, $a_2 = z_1 z_2 + z_1 z_3 + z_2 z_3$ and $a_3 = -z_1 z_2 z_3$. In fact, $D(z) = \prod_{i=1}^n (1 - z_i z^{-1})$.

• This turns out to be a special case of the AR processes for which $b_0 = 0$ and $D(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_n z^{-n}$. It is usually referred to as the predictable process.

Definition (Predictable process) A process is called *predictable* if its present value can be determined by its past.

lacksquare

Autocorrelation and line power spectrum of $\boldsymbol{x}[t]$

$$R_{xx}[\tau] = E\left[\left(\sum_{i=1}^{n} \boldsymbol{c}_{i} e^{j\omega_{i}(t+\tau)}\right) \left(\sum_{k=1}^{n} \boldsymbol{c}_{k}^{*} e^{-j\omega_{k}t}\right)\right]$$
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} E\left[\boldsymbol{c}_{i} \boldsymbol{c}_{k}^{*}\right] e^{j\omega_{i}(t+\tau)} e^{-j\omega_{k}t}$$
$$= \sum_{i=1}^{n} \sigma_{i}^{2} e^{j\omega_{i}\tau}$$

and for $-\pi \leq \omega < \pi$,

$$S_{xx}[\omega] = \sum_{\tau=-\infty}^{\infty} R_{xx}[\tau] e^{-j\omega\tau} = \sum_{\tau=-\infty}^{\infty} \sum_{i=1}^{n} \sigma_i^2 e^{j\omega_i\tau} e^{-j\omega\tau}$$
$$= \sum_{i=1}^{n} \sigma_i^2 \sum_{\tau=-\infty}^{\infty} e^{-j(\omega-\omega_i)\tau} = 2\pi \sum_{i=1}^{n} \sigma_i^2 \delta(\omega-\omega_i). \quad \text{(Line spectral)}$$

where $\sum_{\tau=-\infty}^{\infty} e^{-j(\omega-\omega_i)\tau} = \sum_{\tau=-\infty}^{\infty} 2\pi \cdot \delta(\omega-\omega_i+2\pi\tau).$

Moving Average Processes

Definition (MA processes) The discrete process $\boldsymbol{x}[t]$ is called moving average (MA) if its innovation filter is of the form:

$$L[z] = b_0 + b_1 z^{-1} + \dots + b_m z^{-m}.$$

Autocorrelation function of MA processes

• For an MA process,

$$\boldsymbol{x}[t] = b_0 \boldsymbol{i}[t] + b_1 \boldsymbol{i}[t-1] + \dots + b_m \boldsymbol{i}[t-m].$$

• Hence, the symmetric autocorrelation function (i.e., $R_{xx}[\tau] = R_{xx}[-\tau]$) equals

$$R_{xx}[\tau] = E\{\boldsymbol{x}[t+\tau]\boldsymbol{x}[t]\}$$

$$= E\left\{\left(\sum_{i=0}^{m} b_i \boldsymbol{i}[t+\tau-i]\right)\left(\sum_{k=0}^{m} b_k \boldsymbol{i}[t-k]\right)\right\}$$

$$= \sum_{i=0}^{m} \sum_{k=0}^{m} b_i b_k E\{\boldsymbol{i}[t+\tau-i]\boldsymbol{i}[t-k]\} = \sum_{i=0}^{m} \sum_{k=0}^{m} b_i b_k \delta[\tau-i+k]$$

$$= \begin{cases}\sum_{k=0}^{m-\tau} b_{k+\tau} b_k, \text{ for } 0 \le \tau \le m\\ 0, \text{ for } \tau > m\end{cases}$$

Autoregressive Moving Average Processes

11 - 55

Definition (ARMA processes) The discrete process $\boldsymbol{x}[t]$ is called autoregressive moving average (ARMA) if its innovation filter is of the form:

$$\mathbf{L}[z] = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}} = \frac{N[z]}{D[z]}$$

• The analysis of the ARMA processes has been done; so we omit it. See the slides after Slide 11-43.

The end of Section 11-2 Finite-Order Systems and State Variables

11-3 Fourier Series and Karhunen-Loève Expansions 11-56

Question: Given that $\omega_0 = 2\pi/T$,

$$\hat{\boldsymbol{x}}(t) = \sum_{n=-\infty}^{\infty} \boldsymbol{c}_n e^{jn\omega_0 t}$$
 and $\boldsymbol{c}_n = \frac{1}{T} \int_0^T \boldsymbol{x}(t) e^{-jn\omega_0 t} dt$,

whether does $\hat{\boldsymbol{x}}(t)$ well approximate the WSS $\boldsymbol{x}(t)$?

Theorem $\hat{\boldsymbol{x}}(t)$ equals $\boldsymbol{x}(t)$ for 0 < t < T in the MS sense, i.e.,

$$E[|\hat{\boldsymbol{x}}(t) - \boldsymbol{x}(t)|^2] = 0$$

for 0 < t < T.

Proof: Observe that for 0 < t < T,

$$\begin{split} E[|\hat{\boldsymbol{x}}(t)|^{2}] &= E\left[\left(\sum_{n=-\infty}^{\infty} \boldsymbol{c}_{n} e^{jn\omega_{0}t}\right) \left(\sum_{m=-\infty}^{\infty} \boldsymbol{c}_{m}^{*} e^{-jm\omega_{0}t}\right)\right] \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[\boldsymbol{c}_{n} \boldsymbol{c}_{m}^{*}\right] e^{jn\omega_{0}t} e^{-jm\omega_{0}t} \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \left(\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} E\left[\boldsymbol{x}(u)\boldsymbol{x}^{*}(v)\right] e^{-jn\omega_{0}u} e^{jm\omega_{0}v} du dv\right) e^{jn\omega_{0}t} e^{-jm\omega_{0}t} \end{split}$$

(continued)

$$\begin{split} \left(E[|\hat{\boldsymbol{x}}(t)|^{2}]\right) &= \int_{0}^{T} \int_{0}^{T} R_{xx}(u-v) \left(\frac{1}{T} \sum_{n=-\infty}^{\infty} e^{jn\omega_{0}(t-u)}\right) \left(\frac{1}{T} \sum_{m=-\infty}^{\infty} e^{jm\omega_{0}(v-t)}\right) dudv \\ &= \int_{0}^{T} \int_{0}^{T} R_{xx}(u-v) \left(\sum_{n=-\infty}^{\infty} \delta(t-u+nT)\right) \left(\sum_{m=-\infty}^{\infty} \delta(v-t+mT)\right) dudv \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \int_{0}^{T} \int_{0}^{T} R_{xx}(u-v)\delta(t-u+nT)\delta(v-t+mT)dudv \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \int_{0}^{T} R_{xx}(t+nT-v)\mathbf{1}\{0 < t+nT < T\}\delta(v-t+mT)dv \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{xx}((n+m)T)\mathbf{1}\{0 < t+nT < T\}\mathbf{1}\{0 < t-mT < T\} \\ &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{xx}((n+m)T)\mathbf{1}\left\{-\frac{t}{T} < n < 1-\frac{t}{T} \text{ and } \frac{t}{T} - 1 < m < \frac{t}{T}\right\} \\ &= R_{xx}(0) = E[|\boldsymbol{x}(t)|^{2}], \end{split}$$

11 - 57

and

$$\begin{split} E[\hat{\boldsymbol{x}}(t)\boldsymbol{x}^{*}(t)] &= E\left[\left(\sum_{n=-\infty}^{\infty} \boldsymbol{c}_{n}e^{jn\omega_{0}t}\right)\boldsymbol{x}^{*}(t)\right] \\ &= \sum_{n=-\infty}^{\infty} E[\boldsymbol{c}_{n}\boldsymbol{x}^{*}(t)]e^{jn\omega_{0}t} \\ &= \sum_{n=-\infty}^{\infty} E\left[\left(\frac{1}{T}\int_{0}^{T}\boldsymbol{x}(s)e^{-jn\omega_{0}s}ds\right)\boldsymbol{x}^{*}(t)\right]e^{jn\omega_{0}t} \\ &= \int_{0}^{T} E[\boldsymbol{x}(s)\boldsymbol{x}^{*}(t)]\left(\frac{1}{T}\sum_{n=-\infty}^{\infty}e^{jn\omega_{0}(t-s)}\right)ds \\ &= \int_{0}^{T} R_{xx}(s-t)\left(\sum_{n=-\infty}^{\infty}\delta(t-s+nT)\right)ds \\ &= \sum_{n=-\infty}^{\infty} R_{xx}(nT)\mathbf{1}\{0 < t+nT < T\} \quad (\text{i.e.}, \frac{t}{T}-1 < -n < \frac{t}{T}) \\ &= R_{xx}(0) \end{split}$$

11-58

Similarly,

$$\begin{split} E[\hat{\boldsymbol{x}}^{*}(t)\boldsymbol{x}(t)] &= E\left[\left(\sum_{n=-\infty}^{\infty} \boldsymbol{c}_{n}^{*}e^{-jn\omega_{0}t}\right)\boldsymbol{x}(t)\right] \\ &= \sum_{n=-\infty}^{\infty} E[\boldsymbol{c}_{n}^{*}\boldsymbol{x}(t)]e^{-jn\omega_{0}t} \\ &= \sum_{n=-\infty}^{\infty} E\left[\left(\frac{1}{T}\int_{0}^{T}\boldsymbol{x}^{*}(s)e^{jn\omega_{0}s}ds\right)\boldsymbol{x}(t)\right]e^{-jn\omega_{0}t} \\ &= \int_{0}^{T} E[\boldsymbol{x}(t)\boldsymbol{x}^{*}(s)]\left(\frac{1}{T}\sum_{n=-\infty}^{\infty} e^{jn\omega_{0}(s-t)}\right)ds \\ &= \int_{0}^{T} R_{xx}(t-s)\left(\sum_{n=-\infty}^{\infty} \delta(s-t+nT)\right)ds \\ &= \sum_{n=-\infty}^{\infty} R_{xx}(nT)\mathbf{1}\{0 < t-nT < T\} \quad (\text{i.e., } \frac{t}{T}-1 < n < \frac{t}{T}) \\ &= R_{xx}(0) \end{split}$$

11-59

Hence,

$$E[|\hat{\boldsymbol{x}}(t) - \boldsymbol{x}(t)|^{2}] = E[|\hat{\boldsymbol{x}}(t)|^{2}] - E[\hat{\boldsymbol{x}}(t)\boldsymbol{x}^{*}(t)] - E[\hat{\boldsymbol{x}}^{*}(t)\boldsymbol{x}(t)] + E[|\boldsymbol{x}(t)|^{2}]$$

= $R_{xx}(0) - R_{xx}(0) - R_{xx}(0) + R_{xx}(0)$
= 0.

_	л.

Remarks

- It is tricky to say the theorem holds at t = 0 (respectively, t = T) since $\int_0^T \delta(s) ds$ or (respectively, $\int_0^T \delta(s T) ds$) is actually indeterminate.
- It can be similarly proved that if $\boldsymbol{x}(t)$ is MS-periodic with period T,

$$E[|\hat{\boldsymbol{x}}(t) - \boldsymbol{x}(t)|^2] = 0$$
 for a.e. $t \in \Re$.

Definition A process $\boldsymbol{x}(t)$ is called *MS periodic* if $E[|\boldsymbol{x}(t+T) - \boldsymbol{x}(t)|^2] = 0$

for every t.

Theorem 9-1 A process $\boldsymbol{x}(t)$ is *MS periodic* if, and only if, its autocorrelation function is *doubly periodic*, namely,

 $R_{xx}(t_1 + mT, t_2 + nT) = R_{xx}(t_1, t_2)$ for every integer m and n.

• In addition, for a MS-periodic WSS process $\boldsymbol{x}(t)$,

$$\left\{ \boldsymbol{c}_{n} = \frac{1}{T} \int_{0}^{T} \boldsymbol{x}(t) e^{-jn\omega_{0}t} dt \right\}_{n=-\infty}^{\infty}$$

are uncorrelated with zero-mean except possibly non-zero-mean at n = 0.

• These remarks are summarized into the next theorem.

Theorem 11-1 For a MS-periodic (with period T) WSS process $\boldsymbol{x}(t)$, $\hat{\boldsymbol{x}}(t)$ equals $\boldsymbol{x}(t)$ in the MS sense, i.e., $E[|\hat{\boldsymbol{x}}(t) - \boldsymbol{x}(t)|^2] = 0$.

In addition, $\{c_n\}_{n=-\infty}^{\infty}$ are uncorrelated with zero mean except possibly for n = 0. **Proof:** It remains to prove that $\{c_n\}_{n=-\infty}^{\infty}$ are uncorrelated with zero mean except possibly for n = 0.

For an MS-periodic WSS $\boldsymbol{x}(t)$,

$$E[\boldsymbol{c}_n] = \frac{1}{T} \int_0^T E[\boldsymbol{x}(t)] e^{-jn\omega_0 t} dt = \mu_x \delta[n], \quad (\text{because } \omega_0 = T/(2\pi))$$

and

$$E[\mathbf{c}_{n}\mathbf{c}_{m}^{*}] = E\left[\left(\frac{1}{T}\int_{0}^{T}\mathbf{x}(t)e^{-jn\omega_{0}t}dt\right)\left(\frac{1}{T}\int_{0}^{T}\mathbf{x}(s)e^{-jn\omega_{0}s}ds\right)^{*}\right]$$

$$= \frac{1}{T^{2}}\int_{0}^{T}\int_{0}^{T}E\left[\mathbf{x}(t)\mathbf{x}^{*}(s)\right]e^{-jn\omega_{0}t}e^{jm\omega_{0}s}dtds$$

$$= \frac{1}{T^{2}}\int_{0}^{T}\int_{0}^{T}R_{xx}(t-s)e^{-jn\omega_{0}t}e^{jm\omega_{0}s}dtds, \quad u = t-s$$

$$= \frac{1}{T^{2}}\int_{0}^{T}\int_{-s}^{T-s}R_{xx}(u)e^{-jn\omega_{0}(u+s)}e^{jm\omega_{0}s}duds$$

$$= \left(\frac{1}{T}\int_{0}^{T}e^{-j(n-m)\omega_{0}s}ds\right)\left(\frac{1}{T}\int_{0}^{T}R_{xx}(u)e^{-jn\omega_{0}u}du\right)$$

$$= \delta[n-m]\left(\frac{1}{T}\int_{0}^{T}R_{xx}(u)e^{-jn\omega_{0}u}du\right) \quad (\text{since } \omega_{0} = T/(2\pi))$$

11-63

Remarks

- $\{\boldsymbol{c}_n\}_{n=-\infty}^{\infty}$ may not be uncorrelated if $\boldsymbol{x}(t)$ is not MS-periodic!
- Even if $\boldsymbol{x}(t)$ is MS-periodic, $\{\boldsymbol{c}_n\}_{n=-\infty}^{\infty}$ may not be uncorrelated when the chosen T is not the MS-period for $\boldsymbol{x}(t)$.
- Concern: Can we find an alternative expression for $\boldsymbol{x}(t)$ for which the coefficients are guaranteed to be **uncorrelated**?

Answer: Karhunen-Loève Expansions.

Question: Given a set of orthonormal functions $\{\varphi_n(t)\}_{n=-\infty}^{\infty}$ over [0, T), define

$$\hat{\boldsymbol{x}}(t) = \sum_{n=-\infty}^{\infty} \boldsymbol{c}_n \varphi_n(t) \text{ and } \boldsymbol{c}_n = \int_0^T \boldsymbol{x}(t) \varphi_n^*(t) dt.$$

Whether does $\hat{\boldsymbol{x}}(t)$ well approximate $\boldsymbol{x}(t)$?

Theorem $\{\boldsymbol{c}_n\}_{n=-\infty}^{\infty}$ are orthogonal, if $\int_0^T R_{xx}(t,s)\varphi_n(s)ds = \lambda_n\varphi_n(t)$

for some λ_n for every n.

For MS-periodic WSS process $\boldsymbol{x}(t)$ with MS-period T,

$$\int_{0}^{T} R_{xx}(t-s) \left(\frac{1}{\sqrt{T}}e^{jn\omega_{0}s}\right) ds = \int_{t-T}^{t} R_{xx}(u) \frac{1}{\sqrt{T}}e^{jn\omega_{0}(t-u)} du$$
$$= \frac{1}{\sqrt{T}}e^{jn\omega_{0}t} \int_{0}^{T} R_{xx}(u)e^{-jn\omega_{0}u} du = \lambda_{n} \left(\frac{1}{\sqrt{T}}e^{jn\omega_{0}t}\right),$$
where $\omega_{0} = 2\pi/T$ and $\lambda_{n} = \int_{0}^{T} R_{xx}(u)e^{-jn\omega_{0}u} du.$

Proof:

$$\begin{split} E[\boldsymbol{c}_{n}\boldsymbol{c}_{m}^{*}] &= E\left[\left(\int_{0}^{T}\boldsymbol{x}(t)\varphi_{n}^{*}(t)dt\right)\left(\int_{0}^{T}\boldsymbol{x}(s)\varphi_{m}^{*}(s)ds\right)^{*}\right] \\ &= \int_{0}^{T}\int_{0}^{T}E\left[\boldsymbol{x}(t)\boldsymbol{x}^{*}(s)\right]\varphi_{n}^{*}(t)\varphi_{m}(s)dtds \\ &= \int_{0}^{T}\left(\int_{0}^{T}R_{xx}(t,s)\varphi_{m}(s)ds\right)\varphi_{n}^{*}(t)dt \\ &= \int_{0}^{T}\lambda_{m}\varphi_{m}(t)\varphi_{n}^{*}(t)dt \\ &= \lambda_{m}\delta[m-n]. \end{split}$$

Remarks

• $\{\varphi_n(t)\}_{n=-\infty}^{\infty}$ and $\{\lambda_n\}_{n=-\infty}^{\infty}$ are respectively called the eigenfunctions and eigenvalues of $R_{xx}(t,s)$.

• For a random process $\boldsymbol{x}(t)$, projection λ_n is real and non-negative for every n.

Proof:

$$E\left[\left|\int_{0}^{T} \boldsymbol{x}(t)\varphi_{n}^{*}(t)dt\right|^{2}\right] = E\left[\left(\int_{0}^{T} \boldsymbol{x}(t)\varphi_{n}^{*}(t)dt\right)\left(\int_{0}^{T} \boldsymbol{x}^{*}(s)\varphi_{n}(s)ds\right)\right]$$

$$= \int_{0}^{T} \left(\int_{0}^{T} R_{xx}(t,s)\varphi_{n}(s)ds\right)\varphi_{n}^{*}(t)dt$$

$$= \int_{0}^{T} \lambda_{n}\varphi_{n}(t)\varphi_{n}^{*}(t)dt$$

$$= \lambda_{n}.$$

• $R_{xx}(t,t) = \sum_{n=-\infty}^{\infty} \lambda_n |\varphi_n(t)|^2$ for $0 \le t < T$. (Property of the eigen-system)

Theorem $E[|\hat{x}(t) - x(t)|^2] = 0$ for 0 < t < T.

Proof: Observe that

$$E[|\hat{\boldsymbol{x}}(t)|^{2}] = E\left[\left(\sum_{n=-\infty}^{\infty} \boldsymbol{c}_{n}\varphi_{n}(t)\right)\left(\sum_{m=-\infty}^{\infty} \boldsymbol{c}_{m}^{*}\varphi_{m}^{*}(t)\right)\right]$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[\boldsymbol{c}_{n}\boldsymbol{c}_{m}^{*}\right]\varphi_{n}(t)\varphi_{m}^{*}(t)$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \lambda_{m}\delta[m-n]\varphi_{n}(t)\varphi_{m}^{*}(t) \quad \text{(because } \{\boldsymbol{c}_{n}\} \text{ orthogonal)}$$
$$= \sum_{n=-\infty}^{\infty} \lambda_{n}|\varphi_{n}(t)|^{2} \quad \left(=R_{xx}(t,t)\right)$$

and

$$E[\hat{\boldsymbol{x}}(t)\boldsymbol{x}^{*}(t)] = E\left[\left(\sum_{n=-\infty}^{\infty} \boldsymbol{c}_{n}\varphi_{n}(t)\right)\boldsymbol{x}^{*}(t)\right]$$

$$= \sum_{n=-\infty}^{\infty} E[\boldsymbol{c}_{n}\boldsymbol{x}^{*}(t)]\varphi_{n}(t)$$

$$= \sum_{n=-\infty}^{\infty} E\left[\left(\int_{0}^{T}\boldsymbol{x}(s)\varphi_{n}^{*}(s)ds\right)\boldsymbol{x}^{*}(t)\right]\varphi_{n}(t)$$

$$= \sum_{n=-\infty}^{\infty} \left(\int_{0}^{T} R_{xx}(t,s)\varphi_{n}(s)ds\right)^{*}\varphi_{n}(t)$$

$$= \sum_{n=-\infty}^{\infty} \lambda_{n}^{*}\varphi_{n}^{*}(t)\varphi_{n}(t)$$

$$= \sum_{n=-\infty}^{\infty} \lambda_{n}^{*}|\varphi_{n}(t)|^{2} = \sum_{n=-\infty}^{\infty} \lambda_{n}|\varphi_{n}(t)|^{2} \quad (\lambda_{n} \text{ real and non-negative})$$

Similarly,

$$E[\hat{\boldsymbol{x}}^*(t)\boldsymbol{x}(t)] = \sum_{n=-\infty}^{\infty} \lambda_n |\varphi_n(t)|^2.$$

Hence,

$$E[|\hat{\boldsymbol{x}}(t) - \boldsymbol{x}(t)|^2] = E[|\hat{\boldsymbol{x}}(t)|^2] - E[\hat{\boldsymbol{x}}(t)\boldsymbol{x}^*(t)] - E[\hat{\boldsymbol{x}}^*(t)\boldsymbol{x}(t)] + E[|\boldsymbol{x}(t)|^2]$$

$$= \sum_{n=-\infty}^{\infty} \lambda_n |\varphi_n(t)|^2 - \sum_{n=-\infty}^{\infty} \lambda_n |\varphi_n(t)|^2 - \sum_{n=-\infty}^{\infty} \lambda_n |\varphi_n(t)|^2 + R_{xx}(t,t)$$

$$= R_{xx}(t,t) - \sum_{n=-\infty}^{\infty} \lambda_n |\varphi_n(t)|^2,$$

which equals zero by property of the eigen-system.

Mercer's Theorem tells that
$$R_{xx}(t,s) = \sum_{n=-\infty}^{\infty} \lambda_n \varphi_n(t) \varphi_n^*(s).$$

Example 11-10: Wiener process. Suppose

- $\boldsymbol{n}[0,0)=0,$
- $\boldsymbol{n}[t_1, t_2)$ is Gaussian distributed with mean zero and variance $\alpha(t_2 t_1)$,
- and $\boldsymbol{n}[t_1, t_2)$ and $\boldsymbol{n}[t_3, t_4)$ are independent if $[t_1, t_2)$ and $[t_3, t_4)$ are non-overlapping intervals.

Please determine the Karhunen-Loève expansion of real process $\boldsymbol{x}(t) \triangleq \boldsymbol{n}[0, t)$.

Answer:

$$R_{xx}(t_{1}, t_{2}) = E[\boldsymbol{x}(t_{1})\boldsymbol{x}^{*}(t_{2})]$$

$$= E[\boldsymbol{n}[0, t_{1})\boldsymbol{n}[0, t_{2})]$$

$$= E[(\boldsymbol{n}[0, t_{\min}) + \boldsymbol{n}[t_{\min}, t_{\max})) \boldsymbol{n}[0, t_{\min})]$$

$$= E[\boldsymbol{n}^{2}[0, t_{\min})] + E[\boldsymbol{n}[t_{\min}, t_{\max})\boldsymbol{n}[0, t_{\min})]$$

$$= E[\boldsymbol{n}^{2}[0, t_{\min})] + E[\boldsymbol{n}[t_{\min}, t_{\max})] E[\boldsymbol{n}[0, t_{\min})]$$

$$= \alpha \min\{t_{1}, t_{2}\},$$

where $t_{\min} \triangleq \min\{t_1, t_2\}$ and $t_{\max} \triangleq \{t_1, t_2\}$.

$$\int_{0}^{T} R_{xx}(t,s)\varphi(s)ds = \lambda\varphi(t) \Leftrightarrow \alpha \int_{0}^{T} \min\{t,s\}\varphi(s)ds = \lambda\varphi(t)$$

$$\Leftrightarrow \alpha \int_{0}^{t} s\varphi(s)ds + \alpha t \int_{t}^{T} \varphi(s)ds = \lambda\varphi(t) \quad \text{(a1)}$$

$$\Leftrightarrow \begin{cases} \alpha \int_{t}^{T} \varphi(s)ds = \lambda\varphi'(t) \quad \text{(a2)} \\ \lambda\varphi''(t) + \alpha\varphi(t) = 0 \end{cases} \text{ with initially } \begin{cases} (a1) \varphi(0) = 0 \\ (a2) \varphi'(T) = 0 \end{cases}$$

Theorem 8.6 [Tom M. Apostoal, *Calculus*, pp. 326, Volume 1, 2nd Edition, 1967] The solution of the equation y''(x) + by(x) = 0 is

$$y(x) = c_1 u_1(x) + c_2 u_2(x),$$

where c_1 and c_2 are constants determined by initial conditions, and 1. $u_1(x) = 1$ and $u_2(x) = x$ if b = 0;

2.
$$u_1(x) = e^{kx}$$
 and $u_2(x) = e^{-kx}$ if $b = -k^2 < 0$;

3.
$$u_1(x) = \cos(kx)$$
 and $u_2(x) = \sin(kx)$ if $b = k^2 > 0$.

• Consequently, $\varphi_n(t) = c_1 \cos(t\sqrt{\alpha/\lambda_n}) + c_2 \sin(t\sqrt{\alpha/\lambda_n})$, and the two initial conditions give that $c_1 = 0$ ($\varphi_n(0) = 0$) and $T\sqrt{\alpha/\lambda_n} = (2k_n + 1)\pi/2$ for integer k_n ($\varphi'_n(T) = 0$). Moreover,

$$\int_{0}^{T} \varphi_{n}^{2}(t) dt = \int_{0}^{T} c_{2}^{2} \sin^{2} \left(\frac{(2k_{n}+1)\pi}{2T} t \right) dt$$
$$= \int_{0}^{1} c_{2}^{2} \sin^{2} \left(\frac{(2k_{n}+1)\pi}{2} u \right) T du = \frac{T}{2} c_{2}^{2} = 1$$

gives that $c_2 = \sqrt{2/T}$.

• To sum up,

$$\varphi_n(t) = \sqrt{\frac{2}{T}} \sin\left(\frac{(2k_n+1)\pi}{2T}t\right), \quad \lambda_n = \frac{4\alpha T^2}{(2k_n+1)^2\pi^2},$$

and

$$\int_{0}^{T} \varphi_{n}(t)\varphi_{m}^{*}(t)dt = \int_{0}^{T} \frac{2}{T} \sin\left(\frac{(2k_{n}+1)\pi}{2T}t\right) \sin\left(\frac{(2k_{m}+1)\pi}{2T}t\right) dt$$
$$= \int_{0}^{1} 2\sin\left(\frac{(2k_{n}+1)\pi}{2}u\right) \sin\left(\frac{(2k_{m}+1)\pi}{2}u\right) du$$
$$= \int_{0}^{1} \cos[(k_{n}-k_{m})\pi u] du - \int_{0}^{1} \cos[(k_{n}+k_{m}+1)\pi u] du$$
$$= \delta[k_{n}-k_{m}] - \delta[k_{n}+k_{m}+1]$$
$$= \begin{cases} 1, \quad k_{n} = k_{m} \text{ (equivalently } (2k_{n}+1) = (2k_{m}+1)) \\ -1, \quad (2k_{n}+1) = -(2k_{m}+1) \\ 0, \quad \text{otherwise.} \end{cases}$$

So, it only requires to take those k_n 's that make $(2k_n + 1)$ strictly positive. This concludes that the Winner process $\boldsymbol{x}(t)$ for $t \in [0, T)$ can be written as a sum of sine waves:

$$\boldsymbol{x}(t) = \sqrt{\frac{2}{T}} \sum_{n=0}^{\infty} \boldsymbol{c}_n \sin\left(\frac{(2n+1)\pi}{2T}t\right)$$

and

$$\boldsymbol{c}_n = \sqrt{\frac{2}{T}} \int_0^T \boldsymbol{x}(t) \sin\left(\frac{(2n+1)\pi}{2T}t\right) dt.$$

By assigning $\tilde{\boldsymbol{c}}_n = \boldsymbol{c}_n \sqrt{2/T}$, we can simplify the expression as: $\boldsymbol{x}(t) = \sum_{n=0}^{\infty} \tilde{\boldsymbol{c}}_n \sin\left(\frac{(2n+1)\pi}{2T}t\right)$ and $\tilde{\boldsymbol{c}}_n = \frac{2}{T} \int_0^T \boldsymbol{x}(t) \sin\left(\frac{(2n+1)\pi}{2T}t\right) dt.$

Example. Suppose $\boldsymbol{x}(t)$ is WSS. Then, from

$$\int_{-\infty}^{\infty} R_{xx}(t-s)\varphi_{\lambda}(s)ds = \lambda \,\varphi_{\lambda}(t),$$

we know that the Fourier transform $\Phi_{\lambda}(\omega)$ of eigenfunction $\varphi_{\lambda}(t)$ and eigenvalue λ should satisfy:

$$S_{xx}(\omega)\Phi_{\lambda}(\omega) = \lambda \Phi_{\lambda}(\omega).$$

This implies

$$(S_{xx}(\omega) - \lambda) \Phi_{\lambda}(\omega) = 0.$$

Suppose $S_{xx}(\omega) = \lambda$ only at $\omega = u$. (There could be other value of ω such as $\omega = v$ that also makes $S_{xx}(v) = \lambda$. We would treat this case as the eigenvalue λ has several eigenfunctions.)

Then, $\Phi_{\lambda}(\omega) = \sqrt{2\pi}\delta(\omega - u)$ is an eigenfunction corresponding to eigenvalue λ , which implies

$$\varphi_{\lambda}(t) = \frac{1}{\sqrt{2\pi}} e^{jut}.$$

Hence,

$$\boldsymbol{x}(t) = \int_{-\infty}^{\infty} \boldsymbol{c}_{\lambda} \varphi_{\lambda}(t) d\lambda = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \boldsymbol{c}_{\lambda} e^{j \, u(\lambda) \, t} d\lambda$$

and

$$\boldsymbol{c}_{\lambda} = \int_{-\infty}^{\infty} \boldsymbol{x}(t) \varphi_{\lambda}^{*}(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \boldsymbol{x}(t) e^{-jut} dt.$$

We can redenote \boldsymbol{c}_{λ} by $\frac{1}{\sqrt{2\pi}}\boldsymbol{X}(u)$ and yield:

$$\boldsymbol{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \boldsymbol{X}(u) e^{jut} du$$
 and $\boldsymbol{X}(u) = \int_{-\infty}^{\infty} \boldsymbol{x}(t) e^{-jut} dt$.

11-76

- This example justifies the viewpoint that the Fourier transform of a WSS process is simply the Karhunen-Loève expansion of this random process.
- We will show later that $E[\mathbf{X}(u)\mathbf{X}^*(v)] = 2\pi S_{xx}(u)\delta(u-v)$ (resp. $E[\boldsymbol{c}_{\lambda_1}\boldsymbol{c}^*_{\lambda_2}] = \frac{1}{2\pi}E[\boldsymbol{X}(u)\boldsymbol{X}^*(v)] = S_{xx}(u)\delta(u-v)$ for distinct eigenvalues λ_1 and λ_2).

• The eigenvalue corresponding to eigenvector $\frac{1}{\sqrt{2\pi}}e^{jut}$ is $\sqrt{2\pi}S_{xx}(u)$. (I.e., the eigenvalue corresponding to eigenvector $\frac{1}{\sqrt{2\pi}}e^{j\omega t}$ is $\sqrt{2\pi}S_{xx}(\omega)$.)

• The eigenvectors $\frac{1}{\sqrt{2\pi}}e^{j\omega_1 t}$ and $\frac{1}{\sqrt{2\pi}}e^{j\omega_2 t}$ are orthogonal to each other

(namely,

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{j\omega_1 t} \frac{1}{\sqrt{2\pi}} e^{-j\omega_2 t} dt = \delta(\omega_1 - \omega_2) \).$$

The end of Section 11-3 Fourier Series and Karhunen-Loève Expansions

11-4 Spectral Representation of Random Processes 11-78

• The Fourier transform of a random process $\boldsymbol{x}(t)$ is also a random process, defined as:

$$\boldsymbol{X}(u) \triangleq \int_{-\infty}^{\infty} \boldsymbol{x}(t) e^{-jut} dt.$$

Lemma

- Let $R_{XX}(u_1, u_2)$ and $S_{XX}(\lambda_1, \lambda_2)$ be the autocorrelation function and twodimensional power spectrum of $\boldsymbol{X}(t)$, respectively.
- Let $R_{xx}(t_1, t_2)$ and $S_{xx}(f_1, f_2)$ be the autocorrelation function and twodimensional power spectrum of $\boldsymbol{x}(t)$, respectively.

Then,

$$R_{XX}(u_1, u_2) = S_{xx}(u_1, -u_2)$$
 and $S_{XX}(\lambda_1, \lambda_2) = 4\pi^2 R_{xx}(-\lambda_1, \lambda_2).$

Proof:

$$R_{XX}(u_1, u_2) = E[\mathbf{X}(u_1)\mathbf{X}^*(u_2)]$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[\mathbf{x}(t_1)\mathbf{x}^*(t_2)]e^{-j(u_1t_1-u_2t_2)}dt_1dt_2$
= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(t_1, t_2)e^{-j[u_1t_1+(-u_2)t_2]}dt_1dt_2$
= $S_{xx}(u_1, -u_2)$

and

$$S_{XX}(\lambda_{1},\lambda_{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{XX}(u_{1},u_{2})e^{-j(\lambda_{1}u_{1}+\lambda_{2}u_{2})}du_{1}du_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{xx}(u_{1},-u_{2})e^{-j(\lambda_{1}u_{1}+\lambda_{2}u_{2})}du_{1}du_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{xx}(u_{1},u_{2}')e^{j[(-\lambda_{1})u_{1}+\lambda_{2}u_{2}']}du_{1}du_{2}'$$

$$= 4\pi^{2}R_{xx}(-\lambda_{1},\lambda_{2}).$$

Example (Theorem 11-2: Nonstationary white noise) If

$$R_{xx}(t_1, t_2) = q(t_1)\delta(t_1 - t_2)$$
 with $q(t_1) > 0$,

(which defines the so-called nonstationary white noise) then

$$S_{xx}(f_1, f_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(t_1, t_2) e^{-j(f_1 t_1 + f_2 t_2)} dt_1 dt_2$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} q(t_1) \delta(t_1 - t_2) e^{-j(f_1 t_1 + f_2 t_2)} dt_1 dt_2$$

=
$$\int_{-\infty}^{\infty} q(t_2) e^{-j(f_1 + f_2) t_2} dt_2$$

=
$$Q(f_1 + f_2)$$

$$R_{XX}(u_1, u_2) = S_{xx}(u_1, -u_2) = Q(u_1 - u_2),$$

and

$$S_{XX}(\lambda_1,\lambda_2) = 4\pi^2 R_{xx}(-\lambda_1,\lambda_2) = 4\pi^2 q(-\lambda_1)\delta(-\lambda_1-\lambda_2) = 4\pi^2 q(\lambda_2)\delta(\lambda_1+\lambda_2).$$

From the above derivation, it is apparent that if a nonstationary white noise $\boldsymbol{x}(t)$ has zero mean, then $\boldsymbol{X}(u)$ becomes WSS.

Spectral Representation of Random Processes

Example If $\boldsymbol{x}(t)$ is WSS, then

$$S_{xx}(f_1, f_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(t_1 - t_2) e^{-j(f_1 t_1 + f_2 t_2)} dt_1 dt_2$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(s) e^{-j(f_1 s + f_1 t_2 + f_2 t_2)} ds dt_2$$

=
$$S_{xx}(f_1) \int_{-\infty}^{\infty} e^{-j(f_1 + f_2) t_2} dt_2$$

=
$$2\pi S_{xx}(f_1) \delta(f_1 + f_2).$$

Hence,

$$R_{XX}(u,v) = S_{xx}(u,-v) = 2\pi S_{xx}(u)\delta(u-v) \quad \left(\text{where } S_{xx}(u) \ge 0\right).$$

In summary:

- The Fourier transform of a zero-mean nonstationary white process becomes WSS.
- The Fourier transform of a WSS process becomes nonstationary white.

Spectral Representation of Random Processes 11-82

Example If $\boldsymbol{x}(t)$ is real and WSS, then

$$R_{XX}(u,v) = E[\boldsymbol{X}(u)\boldsymbol{X}^*(v)] = S_{xx}(u,-v) = 2\pi S_{xx}(u)\delta(u-v).$$

Taking $u = \omega$ and $v = -\omega$ for $\omega \neq 0$, together with the fact that $\mathbf{X}(\omega) = \mathbf{X}^*(-\omega)$, yields:

$$R_{XX}(\omega, -\omega) = E[\mathbf{X}(\omega)\mathbf{X}^*(-\omega)]$$

= $E[\mathbf{X}^2(\omega)]$
= $E[\operatorname{Re}\{\mathbf{X}(\omega)\}^2] - E[\operatorname{Im}\{\mathbf{X}(\omega)\}^2] + 2jE[\operatorname{Re}\{\mathbf{X}(\omega)\} \cdot \operatorname{Im}\{\mathbf{X}(\omega)\}]$
 $\left(= 2\pi S_{xx}(\omega)\delta(2\omega)\right) = 0.$

This concludes:

$$E[\operatorname{Re}\{\boldsymbol{X}(\omega)\}^2] = E[\operatorname{Im}\{\boldsymbol{X}(\omega)\}^2] \text{ and } E[\operatorname{Re}\{\boldsymbol{X}(\omega)\} \cdot \operatorname{Im}\{\boldsymbol{X}(\omega)\}] = 0.$$

A windowing filter is of the form $\boldsymbol{h}(\tau;t) = w(t)\delta(\tau)$ that induces

$$\boldsymbol{y}(t) = \boldsymbol{x}(t)w(t) = \int_{-\infty}^{\infty} \underbrace{w(t)\delta(\tau)}_{\boldsymbol{h}(\tau;t)} \boldsymbol{x}(t-\tau)d\tau$$

Example 11-11 $w(t) = \mathbf{1}\{|t| \le T\}$ for WSS $\boldsymbol{x}(t)$.

Fundamental Theorem and Theorem 9-2 For any linear system,

$$\begin{array}{c} \hline R_{xx}(t_1, t_2) & \hline h^*(\tau; t_2) \\ \hline = E[\mathbf{h}^*(\tau; t_2) * R_{xx}(t_1, t_2)] & = E[\mathbf{h}^*(\tau; t_2) * \mathbf{h}(\tau; t_1) * R_{xx}(t_1, t_2)] \\
\end{array}$$

• For the windowing filter,

$$R_{xy}(t_1, t_2) = E[\mathbf{h}^*(\tau; t_2) * R_{xx}(t_1, t_2)]$$

= $E\left[\int_{-\infty}^{\infty} \mathbf{h}^*(\tau; t_2) R_{xx}(t_1, t_2 - \tau) d\tau\right]$
= $w^*(t_2) \int_{-\infty}^{\infty} \delta(\tau) R_{xx}(t_1, t_2 - \tau) d\tau$
= $w^*(t_2) R_{xx}(t_1, t_2)$

and

$$\begin{aligned} R_{yy}(t_1, t_2) &= E[\boldsymbol{h}(\tau; t_1) * R_{xy}(t_1, t_2)] \\ &= E\left[\int_{-\infty}^{\infty} \boldsymbol{h}(\tau; t_1) R_{xy}(t_1 - \tau, t_2) d\tau\right] \\ &= w(t_1) \int_{-\infty}^{\infty} \delta(\tau) R_{xy}(t_1 - \tau, t_2) d\tau \\ &= w(t_1) R_{xy}(t_1, t_2) \\ &\left(= w(t_1) w^*(t_2) R_{xx}(t_1, t_2)\right) \end{aligned}$$

• For the windowing filter,

$$\begin{split} S_{xy}(u_{1}, u_{2}) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xy}(t_{1}, t_{2}) e^{-j(t_{1}u_{1}+t_{2}u_{2})} dt_{1} dt_{2} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w^{*}(t_{2}) R_{xx}(t_{1}, t_{2}) e^{-j(t_{1}u_{1}+t_{2}u_{2})} dt_{1} dt_{2} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w^{*}(t_{2}) \left(\frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{xx}(v_{1}, v_{2}) e^{j(t_{1}v_{1}+t_{2}v_{2})} dv_{1} dv_{2} \right) e^{-j(t_{1}u_{1}+t_{2}u_{2})} dt_{1} dt_{2} \\ &= \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{-jt_{1}(u_{1}-v_{1})} dt_{1} \left(\int_{-\infty}^{\infty} w(t_{2}) e^{-jt_{2}(v_{2}-u_{2})} dt_{2} \right)^{*} \right) S_{xx}(v_{1}, v_{2}) dv_{1} dv_{2} \\ &= \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(2\pi\delta(u_{1}-v_{1})W^{*}(v_{2}-u_{2}) \right) S_{xx}(v_{1}, v_{2}) dv_{1} dv_{2} \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} W^{*}(v_{2}-u_{2}) S_{xx}(u_{1}, v_{2}) dv_{2}, \end{split}$$

and

$$\begin{split} S_{yy}(u_{1},u_{2}) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{yy}(t_{1},t_{2})e^{-j(t_{1}u_{1}+t_{2}u_{2})}dt_{1}dt_{2} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(t_{1})R_{xy}(t_{1},t_{2})e^{-j(t_{1}u_{1}+t_{2}u_{2})}dt_{1}dt_{2} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(t_{1})\left(\frac{1}{4\pi^{2}}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{xy}(v_{1},v_{2})e^{j(t_{1}v_{1}+t_{2}v_{2})}dv_{1}dv_{2}\right)e^{-j(t_{1}u_{1}+t_{2}u_{2})}dt_{1}dt_{2} \\ &= \frac{1}{4\pi^{2}}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} w(t_{1})e^{-jt_{1}(u_{1}-v_{1})}dt_{1}\int_{-\infty}^{\infty} e^{-jt_{2}(u_{2}-v_{2})}dt_{2}\right)S_{xy}(v_{1},v_{2})dv_{1}dv_{2} \\ &= \frac{1}{4\pi^{2}}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(W(u_{1}-v_{1})2\pi\delta(u_{2}-v_{2})\right)S_{xy}(v_{1},v_{2})dv_{1}dv_{2} \\ &= \frac{1}{2\pi}\int_{-\infty}^{\infty} W(u_{1}-v_{1})S_{xy}(v_{1},u_{2})dv_{1} \\ &\left(=\frac{1}{4\pi^{2}}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u_{1}-v_{1})W^{*}(v_{2}-u_{2})S_{xx}(v_{1},v_{2})dv_{1}dv_{2}\right). \end{split}$$

Hence,

$$R_{YY}(u_1, u_2) = S_{yy}(u_1, -u_2)$$

= $\frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u_1 - v_1) W^*(v_2 + u_2) S_{xx}(v_1, v_2) dv_1 dv_2.$

For WSS $\boldsymbol{x}(t)$, $S_{xx}(v_1, v_2) = 2\pi S_{xx}(v_1)\delta(v_1 + v_2)$ (cf. Slide 11-81); this reduces the formula of $R_{YY}(u_1, u_2)$ to:

$$R_{YY}(u_1, u_2) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u_1 - v_1) W^*(v_2 + u_2) 2\pi S_{xx}(v_1) \delta(v_1 + v_2) dv_1 dv_2$$

= $\frac{1}{2\pi} \int_{-\infty}^{\infty} W(u_1 - v_1) W^*(u_2 - v_1) S_{xx}(v_1) dv_1.$

Example 11-11 $w(t) = \mathbf{1}\{|t| \leq T\}$ for WSS $\boldsymbol{x}(t)$. Determine $R_{YY}(u, u)$. **Answer:** We know that $W(\omega) = 2\sin(T\omega)/\omega$. Hence,

$$R_{YY}(u,u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} W(u-v)W^*(u-v)S_{xx}(v)dv$$

= $\frac{1}{2\pi} \int_{-\infty}^{\infty} |W(u-v)|^2 S_{xx}(v)dv$
= $\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\sin^2(T(u-v))}{(u-v)^2} S_{xx}(v)dv.$

Fourier-Stieltjes Representation of WSS processes 11-89

Define

$$\boldsymbol{Z}(\omega) \triangleq \int_{-\infty}^{\omega} \boldsymbol{X}(\alpha) d\alpha$$

where $\boldsymbol{X}(\omega)$ is the Fourier transform of a WSS process $\boldsymbol{x}(t)$.

• By the Fourier-Stieltjes notation,

$$d\boldsymbol{Z}(\omega) = \boldsymbol{X}(\omega)d\omega.$$

Hence,

$$\boldsymbol{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} \boldsymbol{X}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\boldsymbol{Z}(\omega).$$

Properties of $\boldsymbol{Z}(\omega)$

• That $\boldsymbol{x}(t)$ is WSS implies

$$R_{XX}(u,v) = 2\pi S_{xx}(u)\delta(u-v),$$

where $S_{xx}(u) \ge 0$, namely, $\mathbf{X}(u)$ is a nonstationary white process (cf. Slide 11-81).

• Integration of a nonstationary white process is a process with **orthogonal increments**.

Proof:

$$E\{[\mathbf{Z}(\omega_{2}) - \mathbf{Z}(\omega_{1})][\mathbf{Z}(\omega_{4}) - \mathbf{Z}(\omega_{3})]^{*}\}$$

$$= E\left\{\int_{\omega_{1}}^{\omega_{2}} \mathbf{X}(\alpha)d\alpha \cdot \int_{\omega_{3}}^{\omega_{4}} \mathbf{X}^{*}(\beta)d\beta\right\}$$

$$= \int_{\omega_{1}}^{\omega_{2}} \int_{\omega_{3}}^{\omega_{4}} R_{XX}(\alpha,\beta)d\beta d\alpha$$

$$= \int_{\omega_{1}}^{\omega_{2}} \int_{\omega_{3}}^{\omega_{4}} 2\pi S_{xx}(\alpha)\delta(\alpha - \beta)d\beta d\alpha$$

$$= \int_{\omega_{1}}^{\omega_{2}} 2\pi S_{xx}(\alpha)\mathbf{1}\{\omega_{3} < \alpha < \omega_{4}\}d\alpha$$

$$= 0, \text{ if } (\omega_{1}, \omega_{2}) \cap (\omega_{3}, \omega_{4}) = \emptyset.$$

11-91

Theorem (Wold's decomposition for continuous processes) An arbitrary WSS process $\boldsymbol{x}(t)$ can be decomposed into sum of a *regular* process $\boldsymbol{x}_r(t)$ and a *predictable* process $\boldsymbol{x}_p(t)$, for which $\boldsymbol{x}_r(t)$ and $\boldsymbol{x}_p(t)$ are orthogonal.

Definition (Predictable process) A process is called *predictable* if its present value can be determined by its past.

- A (WSS) process is predictable if, and only if, its spectrum consists of lines.
- An example of a predictable process is the discrete AR process with line spectra. See Slide 11-51:

$$\boldsymbol{x}[t] + a_1 \boldsymbol{x}[t-1] + a_2 \boldsymbol{x}[t-2] + \dots + a_n \boldsymbol{x}[t-n] = 0.$$

Theorem (Wold's decomposition for discrete processes) An arbitrary WSS process $\boldsymbol{x}[t]$ can be decomposed into sum of a *regular* process $\boldsymbol{x}_r[t]$ and a *predictable* process $\boldsymbol{x}_p[t]$, for which $\boldsymbol{x}_r[t]$ and $\boldsymbol{x}_p[t]$ are orthogonal.

Proof:

• Form the predictor of $\boldsymbol{x}[t]$ based on its past as:

$$\hat{\boldsymbol{x}}[t] = \sum_{k=1}^{\infty} a_k \boldsymbol{x}[t-k].$$

The optimal $\{a_k\}_{k=1}^{\infty}$ in the MS sense can be obtained through the fact that the MS prediction error

$$\boldsymbol{e}[t] = \boldsymbol{x}[t] - \hat{\boldsymbol{x}}[t]$$

is orthogonal to the data, i.e.,

$$E\{\boldsymbol{e}[t]\boldsymbol{x}^*[t-m]\} = E\left\{\left(\boldsymbol{x}[t] - \sum_{k=1}^{\infty} a_k \boldsymbol{x}[t-k]\right) \boldsymbol{x}^*[t-m]\right\}$$

= 0 for any $m \ge 1$.

This leads to the discrete Wiener-Höpe equation:

$$R_{xx}[m] = \sum_{k=1}^{\infty} a_k R_{xx}[m-k]$$
 for $m > 0$.

In addition, it can be shown that $\boldsymbol{e}[t]$ is a white process.

For
$$\tau > 0$$
,
 $E \{ e[t + \tau] e^*[t] \} = \underbrace{E \{ e[t + \tau] x^*[t] \}}_{=0} - \sum_{m=1}^{\infty} a_m \underbrace{E \{ e[t + \tau] x^*[t - m] \}}_{=0} = 0.$
For $\tau < 0$,
 $E \{ e[t + \tau] e^*[t] \} = (E \{ e[t] e^*[t + \tau] \})^* = 0.$
Hence, $e[t]$ is white.

In summary,

 $\hat{\boldsymbol{x}}[t]$ is the best MS estimate of $\boldsymbol{x}[t]$ in terms of the past of $\boldsymbol{x}[t]$. $\boldsymbol{e}[t] = \boldsymbol{x}[t] - \hat{\boldsymbol{x}}[t]$ is the part of $\boldsymbol{x}[t]$ that remains "unestimated."

• Form the best MS estimator of $\boldsymbol{x}[t]$ in terms of $\boldsymbol{e}[t]$ and its past:

$$oldsymbol{x}_r[t] = \sum_{k=0}^{\infty} w_k oldsymbol{e}[t-k].$$

Again, the error

$$\boldsymbol{x}_{p}[t] = \boldsymbol{x}[t] - \boldsymbol{x}_{r}[t] = \boldsymbol{x}[t] - \sum_{k=0}^{\infty} w_{k} \left(\underbrace{\boldsymbol{x}[t-k] - \sum_{\ell=1}^{\infty} \boldsymbol{x}[t-k-\ell]}_{\boldsymbol{e}[t-k]} \right)$$

should be orthogonal to $\{\boldsymbol{e}[t-k]\}_{k=0}^{\infty}$. Since $\boldsymbol{x}_p[t]$ is a linear combination of $\boldsymbol{x}[t]$ and its past, $\boldsymbol{x}_p[t]$ is orthogonal to $\boldsymbol{e}[t+m]$ for m > 0.

In summary,

$$\begin{cases} \boldsymbol{x}_p[t] \perp \boldsymbol{e}[t-k] & \text{for every integer } k \\ \boldsymbol{x}_r[t] = \sum_{k=0}^{\infty} w_k \boldsymbol{e}[t-k] \end{cases}$$

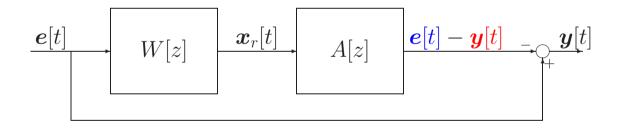
implies $\boldsymbol{x}_p[t] \perp \boldsymbol{x}_r[t]$.

• $\boldsymbol{x}_r[t]$ is obtained by feeding a white input to a causal (and stable) filter; hence, it is regular.

- It remains to prove that $\boldsymbol{x}_p[t]$ is predictable.
 - Define two filters $A[z] = 1 \sum_{k=1}^{\infty} a_k z^{-k}$ and $W[z] = \sum_{k=0}^{\infty} w_k z^{-k}$.

- Define
$$\boldsymbol{y}[t] = \boldsymbol{x}_p[t] - \sum_{k=1}^{\infty} a_k \boldsymbol{x}_p[t-k].$$

- Then, by that $\boldsymbol{e}[t]$ and $\boldsymbol{y}[t]$ are respectively the outputs due to inputs $\boldsymbol{x}[t]$ and $\boldsymbol{x}_p[t]$ through linear filter A[z], we learn that $\boldsymbol{e}[t] - \boldsymbol{y}[t]$ is the output due to input $\boldsymbol{x}_r[t] = \boldsymbol{x}[t] - \boldsymbol{x}_p[t]$ through filter A[z]. Together with that $\boldsymbol{x}_r[t]$ is the output due to input $\boldsymbol{e}[t]$ through filter W[z], we have:



- This summarizes to that $\boldsymbol{y}[t]$ is the output due to input $\boldsymbol{e}[t]$ through filter 1 A[z]W[z]. So, $\boldsymbol{y}[t]$ is completely determined by $\boldsymbol{e}[t]$ and its past.
- However, the definition of $\boldsymbol{y}[t] = \boldsymbol{x}_p[t] \sum_{k=1}^{\infty} a_k \boldsymbol{x}_p[t-k]$ indicates that $\boldsymbol{y}[t]$ is also completely determined by $\boldsymbol{x}_p[t]$ and its past.
- Finally, $\boldsymbol{x}_p[t] \perp \boldsymbol{e}[t-k]$ for every integer k implies $E\{|\boldsymbol{y}[t]|^2\} = 0.$

Further observation on Wold's Decomposition:

• $S_{xx}[e^{j\omega}] = S_{x_rx_r}[e^{j\omega}] + S_{x_px_p}[e^{j\omega}]$, where $S_{x_rx_r}[e^{j\omega}] = |\mathbf{L}[e^{j\omega}]|^2$ for some $\mathbf{L}[e^{j\omega}]$, and $S_p[e^{j\omega}]$ is a line spectrum.

Example 11-12 $\boldsymbol{y}(t) = \boldsymbol{a} \cdot \boldsymbol{x}(t)$ with $E[\boldsymbol{a}] = 0$ and WSS regular $\boldsymbol{x}(t)$ is independent of \boldsymbol{a} . Find Wold's decomposition $\boldsymbol{y}_r(t)$ and $\boldsymbol{y}_p(t)$ of $\boldsymbol{y}(t)$.

Answer:

$$R_{yy}(\tau) = E[\boldsymbol{y}(t+\tau)\boldsymbol{y}^{*}(t)]$$

= $E[\boldsymbol{a}\boldsymbol{x}(t+\tau)\boldsymbol{a}^{*}\boldsymbol{x}^{*}(t)]$
= $\sigma_{a}^{2}R_{xx}(\tau),$

where $\sigma_a^2 = E[aa^*]$. Hence,

$$S_{yy}(\omega) = \sigma_a^2 S_{xx}(\omega) = \sigma_a^2 \left[S_{xx}^c(\omega) + 2\pi |\eta_x|^2 \delta(\omega) \right],$$

where $\eta_x \triangleq E[\boldsymbol{x}(t)]$. Accordingly,

$$S_{yy,r}(\omega) = \sigma_a^2 S_{xx}^c(\omega)$$
 and $S_{yy,p}(\omega) = 2\pi |\eta_x|^2 \sigma_a^2 \delta(\omega)$.

We can then set $\boldsymbol{y}_p(t) = \eta_x \boldsymbol{a}$, and $\boldsymbol{y}_r(t) = \boldsymbol{y}(t) - \eta_x \boldsymbol{a} = \boldsymbol{a}[\boldsymbol{x}(t) - \eta_x].$

Examination of the selected $\boldsymbol{y}_p(t)$ and $\boldsymbol{y}_r(t)$:

- $\boldsymbol{y}_p(t) = \boldsymbol{y}_p(t-\tau)$ for any $\tau \ge 0$; hence, $\boldsymbol{y}_p(t)$ can be determined by its past.
- $E[\boldsymbol{y}_r(t+\tau)\boldsymbol{y}_r^*(t)] = \sigma_a^2 R_{xx}^c(\tau)$, and hence $S_{y_r y_r}(\omega) = \sigma_a^2 S_{xx}^c(\omega)$.
- $E[\boldsymbol{y}_r(t)\boldsymbol{y}_p^*(t)] = E\{\boldsymbol{a}[\boldsymbol{x}(t) \eta_x]\eta_x^*\boldsymbol{a}^*\} = \sigma_a^2\eta_x^*E\{\boldsymbol{x}(t) \eta_x\} = 0.$

Spectral Representation of Discrete Random Processes11-98

• The Fourier transform of a discrete random process $\boldsymbol{x}[t]$ is also a random process defined as:

$$\boldsymbol{X}(u) \triangleq \sum_{t=-\infty}^{\infty} \boldsymbol{x}[t] e^{-jut},$$

which is periodic with period 2π .

Lemma

• Let $R_{XX}(u_1, u_2)$ be the autocorrelation function of $\boldsymbol{X}(t)$.

• Let $S_{xx}[f_1, f_2]$ be the two-dimensional power spectrum of discrete $\boldsymbol{x}[t]$. Then,

$$R_{XX}(u_1, u_2) = S_{xx}[u_1, -u_2]$$
 for $-\pi \le u_1, u_2 < \pi$.

Spectral Representation of Discrete Random Processes11-99

Proof:

$$R_{XX}(u_1, u_2) = E[\mathbf{X}(u_1)\mathbf{X}^*(u_2)]$$

= $\sum_{t_1 = -\infty}^{\infty} \sum_{t_2 = -\infty}^{\infty} E\{\mathbf{x}[t_1]\mathbf{x}^*[t_2]\}e^{-j(u_1t_1 - u_2t_2)}$
= $\sum_{t_1 = -\infty}^{\infty} \sum_{t_2 = -\infty}^{\infty} R_{xx}[t_1, t_2]e^{-j[u_1t_1 + (-u_2)t_2]}$
= $S_{xx}[u_1, -u_2].$

Spectral Representation of Discrete Random Processes11-100

Example If $\boldsymbol{x}[t]$ is WSS, then for $-\pi \leq f_1, f_2 < \pi$,

$$S_{xx}[f_1, f_2] = \sum_{t_1 = -\infty}^{\infty} \sum_{t_2 = -\infty}^{\infty} R_{xx}[t_1 - t_2] e^{-j(f_1 t_1 + f_2 t_2)}$$

=
$$\sum_{t_2 = -\infty}^{\infty} \sum_{s = -\infty}^{\infty} R_{xx}[s] e^{-j(f_1 s + f_1 t_2 + f_2 t_2)}$$

=
$$S_{xx}[f_1] \sum_{t_2 = -\infty}^{\infty} e^{-j(f_1 + f_2) t_2}$$

=
$$2\pi S_{xx}[f_1] \delta(f_1 + f_2).$$

$$2\pi \sum_{n = -\infty}^{\infty} \delta(x + 2\pi n) = \sum_{n = -\infty}^{\infty} e^{-jnx}$$

Hence, for $-\pi \leq u, v < \pi$,

$$R_{XX}(u,v) = S_{xx}[u,-v] = 2\pi S_{xx}[u]\delta(u-v) \quad \left(\text{where } S_{xx}[u] \ge 0\right).$$

Definition (Bispectrum) The bispectrum $\bar{S}_{xxx}(\omega_1, \omega_2)$ of a random process $\boldsymbol{x}(t)$ is the two-dimensional Fourier transform of its third order moment $\bar{R}_{xxx}(u, v) = R_{xxx}(t+u, t+v, t) \triangleq E[\boldsymbol{x}(t+u)\boldsymbol{x}(t+v)\boldsymbol{x}^*(t)]$ in u and v, where $R_{xxx}(t+u, t+v, t)$ is independent of t.

Remarks

- A case that $R_{xxx}(t+u, t+v, t)$ is independent of t is that $\boldsymbol{x}(t)$ is SSS (in which $R_{xx}(t+u, t+v, t)$ only depends on the two differences).
- When only the individual statistics of system input and system output are known, their power spectrums can only be used to determine the system amplitude (of $H(\omega)$)!

$$S_{yy}(\omega) = |H(\omega)|^2 S_{xx}(\omega).$$

• In light of the third-order moments, the *system phase* can be identified.

$$\bar{S}_{yyy}(\omega_1,\omega_2) = \bar{S}_{xxx}(\omega_1,\omega_2)H(\omega_1)H(\omega_2)H^*(\omega_1+\omega_2).$$

$$\begin{split} \bar{S}_{yyy}(\omega_{1},\omega_{2}) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{R}_{yyy}(u,v) e^{-j(u\omega_{1}+v\omega_{2})} du dv \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[\boldsymbol{y}(t+u) \boldsymbol{y}(t+v) \boldsymbol{y}^{*}(t) \right] e^{-j(u\omega_{1}+v\omega_{2})} du dv \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[\left(\int_{-\infty}^{\infty} h(\tau_{1}) \boldsymbol{x}(t+u-\tau_{1}) d\tau_{1} \right) \right. \\ &\left(\int_{-\infty}^{\infty} h(\tau_{2}) \boldsymbol{x}(t+v-\tau_{2}) d\tau_{2} \right) \left(\int_{-\infty}^{\infty} h^{*}(\tau_{3}) \boldsymbol{x}^{*}(t-\tau_{3}) d\tau_{3} \right) \right] \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1}) h(\tau_{2}) h^{*}(\tau_{3}) \bar{R}_{xxx}(u-\tau_{1}+\tau_{3},v-\tau_{2}+\tau_{3}) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1}) h(\tau_{2}) h^{*}(\tau_{3}) \bar{R}_{xxx}(u',v') \\ &= e^{-j(u'\omega_{1}+v\omega_{2})} du dv d\tau_{1} d\tau_{2} d\tau_{3} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1}) h(\tau_{2}) h^{*}(\tau_{3}) \bar{R}_{xxx}(u',v') \\ &= e^{-j(u'\omega_{1}+\tau_{1}\omega_{1}-\tau_{3}\omega_{1}+v'\omega_{2}+\tau_{2}\omega_{2}-\tau_{3}\omega_{2})} du' dv' d\tau_{1} d\tau_{2} d\tau_{3} \\ &= \bar{S}_{xxx}(\omega_{1},\omega_{2}) H(\omega_{1}) H(\omega_{2}) H^{*}(\omega_{1}+\omega_{2}). \end{split}$$

Example If $\boldsymbol{x}(t)$ is a SSS white process, where "white" implies $\bar{R}_{xxx}(u,v) = Q\delta(u)\delta(v)$ and $\bar{S}_{xxx}(\omega_1,\omega_2) = Q$, then

$$\bar{S}_{yyy}(\omega_1,\omega_2) = Q \cdot H(\omega_1)H(\omega_2)H^*(\omega_1+\omega_2),$$

which implies

$$\theta(\omega_1, \omega_2) \triangleq \angle \bar{S}_{yyy}(\omega_1, \omega_2) = \angle H(\omega_1) + \angle H(\omega_2) - \angle H(\omega_1 + \omega_2)$$
$$\triangleq \varphi(\omega_1) + \varphi(\omega_2) - \varphi(\omega_1 + \omega_2).$$

Then

$$\left. \frac{\partial \theta(\omega_1, \omega_2)}{\partial \omega_2} \right|_{\omega_2 = 0} = \varphi'(0) - \varphi'(\omega_1),$$

and

$$\varphi(\omega) - \varphi(0) = \int_0^\omega \varphi'(\omega_1) d\omega_1$$

= $\varphi'(0)\omega - \int_0^\omega \frac{\partial \theta(\omega_1, \omega_2)}{\partial \omega_2} \Big|_{\omega_2 = 0} d\omega_1.$

Note that for a real system, $\varphi(0) = 0$. However, $\varphi'(0)$ may not be zero!

Theorem 11-4 For a real SSS process $\boldsymbol{x}(t)$,

$$R_{XXX}(u,v,\omega) = E[\mathbf{X}(u)\mathbf{X}(v)\mathbf{X}^*(\omega)] = 2\pi \bar{S}_{xxx}(u,v)\delta(u+v-\omega).$$

Proof:

$$E[\mathbf{X}(u)\mathbf{X}(v)\mathbf{X}^{*}(\omega)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[\mathbf{x}(t_{1})\mathbf{x}(t_{2})\mathbf{x}^{*}(t_{3})]e^{-j(ut_{1}+vt_{2}-\omega t_{3})}dt_{1}dt_{2}dt_{3}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{R}_{xxx}(t_{1}-t_{3},t_{2}-t_{3})e^{-j(ut_{1}+vt_{2}-\omega t_{3})}dt_{1}dt_{2}dt_{3}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{R}_{xxx}(s_{1},s_{2})e^{-j(us_{1}+ut_{3}+vs_{2}+vt_{3}-\omega t_{3})}ds_{1}ds_{2}dt_{3}$$

$$= 2\pi \bar{S}_{xxx}(u,v)\delta(u+v-\omega).$$

The end of Section 11-4 Spectral Representation of Random Processes