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11-1 Factorization and Innovations 11-1

Concern (for continuous-time processes)

• How to represent a real WSS process x(t) as a response of a minimum-phase
system L(ω) with a white input i(t) of unit power?

Definition (Minimum-phase system) A system is called minimum-phase
if both L(ω) and 1/L(ω) are causal and stable.
(A system is stable if a bounded input (BI) always induces a bounded output (BO). As a result, a linear system is
stable in the BIBO sense if all poles of the system are in the strict left half of the s-plane.)

Definition (Causal filter) An causal filter is one whose output depends only
on past and present inputs.

• A process that can be represented as a response of a minimum-phase system
L(ω) with a white input i(t) of unit power is called regular.

Oxford Dictionary - Regular. adj. Recurring at uniform intervals. Done or happening frequently.

• A formal definition of regular processes is given below.

Definition (Regular processes) A process x(t) is regular if

Sxx(ω) = |L(ω)|2

where L(s) (s = jω) is analytic in the right-hand plane Re{s} > 0.

• Roughly speaking, a function is analytic if its function values are determinate
and finite (never indeterminate or infinity).



11-1 Factorization and Innovations 11-2

Filter with minimum group delay

• For all causal and stable systems that have the same magnitude response, the
minimum phase system has the minimum group delay.

• Hence, a more appropriate name for minimum-phase system should be the
“minimum group delay” system.

• We will come back to (provide a proof for) this later.

Some observations about regular process x(t)

• Rii(τ ) = δ(τ ) ⇒ Sii(ω) = 1.

• Sxx(ω) = |L(ω)|2Sii(ω) = |L(ω)|2.

• So,

x(t) =

∫ ∞

−∞
l(τ )i(t− τ )dτ,

where L(ω) is minimum-phase, which is determined in terms of the desired

real, positive, even, finite-area Sxx(ω), and l(τ ) =
1

2π

∫ ∞

−∞
L(ω)ejωτdω.
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Innovation: i(t) is called the innovation of x(t).

Innovation Filter: L(ω) is called the innovation filter of x(t).

Whitening Filter: 1/L(ω) is called the whitening filter of x(t).

Lemma (Paley-Wiener condition) A process x(t) is regular if the Paley-
Wiener condition holds, i.e.,

∫ ∞

−∞

|logSxx(ω)|
1 + ω2

dω < ∞.

• Hence, a BL process violates the Paley-Wiener condition.

• Paley-Wiener condition is only sufficient.

• We thus cannot prove that a BL process is not regular by showing it violates
the Paley-Wiener condition.

Definition (Bandlimited processes) A process x(t) is called bandlimited
(BL) if S̄xx(ω) = 0 for |ω| > σ, and R̄xx(0) < ∞.
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How to find L(ω) such that |L(ω)|2 = S(ω) for a given real, positive, even, finite-area S(ω).

• Observation 1: S(ω) = S(−ω) implies that S(ω) is a function of ω2.

• Observation 2: L(ω) can be easily determined if S(ω) is a rational spectrum.

Definition (Rational spectra) A rational spectrum is the ratio of two poly-
nomials in ω2:

S(ω) =
A(ω2)

B(ω2)
,

where A(x) and B(x) are both polynomials of x.

– Let s = jω. Then, S(s) = A(−s2)/B(−s2).

– Observe that if si is a root (either zero or pole) of S(s), −si is also a root
of S(s). Also, the roots of S(s) are either real or complex conjugate.

– Then, roots of S(s) are symmetric with respect to the imaginary axis.
So we can separate them into two groups: Left group that consists of all
roots with Re{si} < 0, and the right group that consists of all roots with
Re{si} > 0. (How to take care of those roots with Re{si} = 0?)

– We can accordingly form L(s) by the ratio of two polynomials with the left
roots of S(s).
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Example 11-1 S(ω) =
N

α2 + ω2
.

Solution: S(s) =
N

α2 − s2
=

N

(|α| + s)(|α|− s)
⇒ L(s) =

√
N

|α| + s

⇒ L(ω) =

√
N

|α| + jω

(
⇒ |L(ω)|2 =

∣∣∣∣∣

√
N

|α| + jω

∣∣∣∣∣

2

=
N

α2 + ω2
= S(ω)

)

✷

Example 11-2 S(ω) =
49 + 25ω2

9 + 10ω2 + ω4
.

Solution: S(s) =
49− 25s2

9− 10s2 + s4
=

(7 + 5s)(7− 5s)

(1 + s)(3 + s)(1− s)(3− s)

⇒ L(s) =
7 + 5s

(1 + s)(3 + s)

(
S(s) = L(s)L(−s)

)

⇒ L(ω) =
7 + 5jω

(1 + jω)(3 + jω)(
⇒ |L(ω)|2 =

∣∣∣∣
7 + 5jω

(1 + jω)(3 + jω)

∣∣∣∣
2

=
49 + 25ω2

9 + 10ω2 + ω4
= S(ω)

)

✷
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Example 11-1

l(τ ) =
1

2π

∫ ∞

−∞
L(ω)ejωτdω

=
1

2π

∫ ∞

−∞

√
N

|α| + jω
ejωτdω

=
√
Ne−|α|τ

∫ τ

−∞
δ(u)du

=

{ √
Ne−|α|τ , τ > 0

0, τ < 0

1

2π

∫ ∞

−∞

√
N

|α|+ jω
ejωτdω =

√
Ne−|α|τ

(
1

2π

∫ ∞

−∞

1

jω′e
jω′τdω′

)

for jω′ = |α| + jω.

✲
δ(t)

1

integrator

1/(jω) ✲
1/jω

∫ t
−∞ δ(u)du

Example 11-2

l(τ ) =
1

2π

∫ ∞

−∞
L(ω)ejωτdω

=
1

2π

∫ ∞

−∞

7 + 5jω

(1 + jω)(3 + jω)
ejωτdω

=
1

2π

∫ ∞

−∞

(
1

1 + jω
+

4

3 + jω

)
ejωτdω

=

{
e−τ + 4e−3τ , τ > 0
0, τ < 0
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Example 11-1

lwhitening(τ ) =
1

2π

∫ ∞

−∞

1

L(ω)
ejωτdω

=
1

2π

∫ ∞

−∞

|α| + jω√
N

ejωτdω

=
|α|√
N
δ(τ ) +

1

2π
√
N

∫ ∞

−∞
(jω)ejωτdω

✲
a(t)

A(ω)

differentiator

jω ✲
A(ω)(jω)

a′(t)

Example 11-2

lwhitening(τ ) =
1

2π

∫ ∞

−∞

1

L(ω)
ejωτdω

=
1

2π

∫ ∞

−∞

(1 + jω)(3 + jω)

7 + 5jω
ejωτdω

=
1

2π

∫ ∞

−∞

1

5

(
3 + 4(jω) + (jω)2

1.4 + jω

)
ejωτdω

=
1

2π

∫ ∞

−∞

1

5

(
− 0.64

1.4 + jω
+ 2.6 + jω

)
ejωτdω

= −0.128e−1.4τ1 {τ > 0} + 0.52 δ(τ ) +
1

2π

∫ ∞

−∞

1

5
(jω) ejωτdω
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Definition (Minimum-phase system) A system is called minimum-phase
if both L(ω) and 1/L(ω) are causal and stable.

Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

Observation A system is minimum-phase if functions L(s) and 1/L(s) are ana-
lytic in the right-hand plane Re{s} > 0.
(I.e., no poles and zeros satisfy Re{s} > 0.)

L(s)

✲

✻

#❅
si 0

#❅

❅#

Implicitly, the above figure implies that l(τ ) → 0 as τ → ∞. See the two examples
in the previous slide.
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Example 11-3 S(ω) =
25

ω4 + 1
.

Solution: S(s) =
25

s4 + 1
=

25

(s2 +
√
2s + 1)(s2 −

√
2s + 1)

⇒ L(s) =
5

s2 +
√
2s + 1

(
S(s) = L(s)L(−s)

)

⇒ L(ω) =
5

−ω2 + j
√
2ω + 1

(
⇒ |L(ω)|2 =

∣∣∣∣
5

−ω2 + j
√
2ω + 1

∣∣∣∣
2

=
25

(1− ω2)2 + 2ω2
= S(ω)

)

⇒ l(τ ) =
1

2π

∫ ∞

−∞
L(ω)ejωτdω

=
1

2π

∫ ∞

−∞

5

1− ω2 + j
√
2ω

ejωτdω

=

{
5
√
2 sin(τ/

√
2)e−τ/

√
2, τ > 0

0, τ < 0

✷
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Concern (for discrete-time processes)

• How to represent a real discreteWSS process x[t] as a response of a discrete
minimum-phase system L[ejω] with a discrete white input i[t] of unit power?

Definition (Minimum-phase system)A discrete system is calledminimum-
phase if both L[ejω] and 1/L[ejω] are causal and stable.
(A system is stable if a bounded input (BI) always induces a bounded output (BO). As a result, a linear system is
stable in the BIBO sense if all poles of the system are inside the unit circle in the z-plane.)

Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

• A (discrete) process that can be represented as a response of aminimum-phase
system L[ejω] with a white input i[t] of unit power is called regular.

• A formal definition of (discrete) regular processes is given below.

Definition (Discrete regular processes) A process x[t] is regular if

Sxx[ω] = |L[ejω]|2

where L[z] (z = ejω) is analytic for |z| > 1.

• Roughly speaking, a function is analytic if its function values are determinate
and finite (never indeterminate or infinity).
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Some observations about x[t] so defined

• Rii[τ ] = δ[τ ]⇒ Sii[ω] = 1, where δ[τ ] =

{
1, τ = 0
0, τ ̸= 0

is the Kronecker delta function.

• Sxx[ω] = |L[ejω]|2Sii[ω] = |L[ejω]|2.

• So,

x[t] =
∞∑

τ=−∞
l[τ ]i[t− τ ],

where L[ejω] is minimum-phase, determined in terms of the desired real, posi-

tive, even, finite-area Sxx[ω], and l[τ ] =
1

2π

∫ π

−π
L[ejω]ejωτdω.

Conveniently, we will sometimes write L[ejω] as L[ω]. These two expressions are
actually equivalent.
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Innovation: i[t] is called the innovations of x[t].

Innovation Filter: L[ω] is called the innovation filter of x[t].

Whitening Filter: 1/L[ω] is called the whitening filter of x[t].

Lemma (Paley-Wiener condition) A process x[t] is regular if the Paley-
Wiener condition holds, i.e.,

∫ π

−π
|logSxx[ω]| dω < ∞.

If Sxx[ω] is an integrable function, then the above condition reduces to
∫ π

−π
log(Sxx[ω])dω > −∞.

• Obviously,

∫ π

−π
|log Sxx[ω]| dω < ∞ implies

∫ π

−π
log(Sxx[ω])dω > −∞.

We need to prove the converse is also true if Sxx[ω] integrable.
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Claim

∫ π

−π
|S[ω]|dω < ∞ and

∫ π

−π
log(S[ω])dω > −∞ ⇒

∫ π

−π
|logS[ω]| dω < ∞.

Proof: By
∫

{ω∈[−π,π):S[ω]<1}
log(S[ω])dω =

∫ π

−π
log(S[ω])dω −

∫

{ω∈[−π,π):S[ω]≥1}
log(S[ω])dω,

we derive:
∫ π

−π
| log(S[ω])|dω =

∫

{ω∈[−π,π):S[ω]<1}
| log(S[ω])|dω +

∫

{ω∈[−π,π):S[ω]≥1}
| log(S[ω])|dω

= −
∫

{ω∈[−π,π):S[ω]<1}
log(S[ω])dω +

∫

{ω∈[−π,π):S[ω]≥1}
log(S[ω])dω

= −
∫ π

−π
log(S[ω])dω + 2

∫

{ω∈[−π,π):S[ω]≥1}
log(S[ω])dω

≤ −
∫ π

−π
log(S[ω])dω + 2

∫

{ω∈[−π,π):S[ω]≥1}
(S[ω]− 1)dω

≤ −
∫ π

−π
log(S[ω])dω + 2

∫ π

−π
(|S[ω]| + 1)dω < ∞.

✷
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Theorem (Page 424 in textbook: Chapter 9) There exists a unique
function

H[z] =
∞∑

k=0

h[k]z−k for h[0] > 0 and |z| > 1

that is analytic together with its inverse in |z| > 1 satisfying

∞∑

k=0

|h[k]|2 < ∞ and S[ω] = |H[e−jω]|2 a.e.,

if, and only if, S[ω] as well as log(S[ω]) are integrable functions over [−π, π),
where

H[e−jω] = lim
r↓1

H[re−jω]

is defined as the exterior radial limit of H[z] on the unit circle.
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How to find L[ω] such that |L[ω]|2 = S[ω] for a real, positive, even, finite-area S[ω].

• Observation 1: S[ω]
(
= S[ejω] = S[e−jω]

)
= S[−ω] implies that S[ω] is a

function of cos(ω) = (ejω + e−jω)/2.

• Observation 2: L[ω] can be easily determined if S[ω] is a rational spectrum.

Definition (Rational spectra) A rational spectrum is the ratio of two poly-
nomials in cos(ω):

S[ω] =
A(cos(ω))

B(cos(ω))
,

where A(x) and B(x) are both polynomials of x.

– Let z = ejω. Then, S[z] = A((z + z−1)/2)/B((z + z−1)/2).

– Observe that if zi is a root (zero or pole) of S[z], 1/zi is also a root of S[z].
Also, the roots of S[z] are either real or complex conjugate.

– Then, the roots of S[z] are symmetric with respect to the unit circle.
So we can separate them into two groups: Inside group that consists of all
roots with |z| < 1, and the outside group that consists of all roots with
|z| > 1.

– Form L[z] by the ratio of two polynomials with the inside roots of S[z].
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Example 11-4 S[ω] =
5− 4 cos(ω)

10− 6 cos(ω)
.

Solution: S[z] =
5− 2(z + z−1)

10− 3(z + z−1)
=

2(1− (1/2)z−1)

3(1− (1/3)z−1)
· 2(1− (1/2)z)

3(1− (1/3)z)

⇒ L[z] =
2(1− (1/2)z−1)

3(1− (1/3)z−1)

(
S[z] = L[z]L[1/z]

)

⇒ L[ω] =
2(1− (1/2)e−jω)

3(1− (1/3)e−jω)
(

⇒ |L[ω]|2 =
∣∣∣∣
2(1− (1/2)e−jω)

3(1− (1/3)e−jω)

∣∣∣∣
2

= S[ω]

)
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l[τ ] =
1

2π

∫ π

−π
L[ω]ejωτdω

=
1

2π

∫ π

−π

2(1− (1/2)e−jω)

3(1− (1/3)e−jω)
ejωτdω

=
1

2π

∫ π

−π

(
1− 1/3

1− (1/3)e−jω

)
ejωτdω

=
1

2π

∫ π

−π

(
1− 3−1

[
1 + 3−1e−jω + 3−2e−j2ω + · · ·

])
ejωτdω

=

⎧
⎨

⎩

0, τ < 0
1− 3−1, τ = 0
−3−(1+τ), τ > 0
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lwhitening[τ ] =
1

2π

∫ π

−π

1

L[ω]
ejωτdω

=
1

2π

∫ π

−π

3(1− (1/3)e−jω)

2(1− (1/2)e−jω)
ejωτdω

=
1

2π

∫ π

−π

(
1 +

1/2

1− (1/2)e−jω

)
ejωτdω

=
1

2π

∫ π

−π

(
1 + 2−1

[
1 + 2−1e−jω + 2−2e−j2ω + · · ·

])
ejωτdω

=

⎧
⎨

⎩

0, τ < 0
1 + 2−1, τ = 0
2−(1+τ), τ > 0

✷



Rational Spectra for Discrete-Time Processes 11-19

Definition (Minimum-phase system) A system is called minimum-phase
if both L[ω] and 1/L[ω] are causal and stable.

Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

Observation A discrete system is minimum-phase if functions L[z] and 1/L[z]
are analytic in the exterior |z| > 1 of the unit circle.

L[z]

✲

✻

#❅
10

#❅

❅#
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Filter with minimum group delay

• For all causal and stable systems that have the same magnitude response, the
minimum phase system has the minimum group delay.

• Hence, a more appropriate name forminimum-phase system is the “minimum
group delay” system.

Delay of a filter: What is a proper definition for filter delay?

✲x[t]
L[ω] = e−jωn ✲y[t] =

1

2π

∫ π

−π

(
X [ω]e−jωn

)
ejωtdω = x[t− n]

Hence, the delay of a filter can be “defined” as:

− d

dω
(arg{L[ω]}) = − d

dω
(−ωn) = n.

The filter is namedminimum phase due to that it minimizes the “phase change.”
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Example: Delay of a filter with a single zero

✲x[t]
L[z] = 1− ziz−1 ✲y[t] = x[t]− zix[t− 1]

See the next Slide.

− d

dω

(
arg{1− zie

−jω}
)

= − d

dω

(
arg
{
|zi|−1 − e−j(ω−arg{zi})

})

= − d

dω

(
arg
{
|zi|−1 − cos(ω − arg{zi}) + j sin(ω − arg{zi})

})

= − d

dω

(
tan−1

[
sin(ω − arg{zi})

|zi|−1 − cos(ω − arg{zi})

])

=
|zi|− cos(ω − arg{zi})

|zi| + |zi|−1 − 2 cos(ω − arg{zi})
.

Apparently, the choice between zi = |zi|ej arg{zi} and 1/z∗i = |zi|−1ej arg{zi} (or z∗i
and 1/zi), which minimizes the filter delay, is the one lying in the interior of unit
circle since

− d

dω

(
arg{1− zie

−jω}
)

=
|zi| + fixed

fixed
.
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d
dω tan

−1
(
a
b

)
= b a′−a b′

a2+b2d

dω

(
tan−1

[
sin(ω − arg{zi})

|zi|−1 − cos(ω − arg{zi})

])

=
[|zi|−1 − cos(ω − arg{zi})]

(
d
dω [sin(ω − arg{zi})]

)

sin2(ω − arg{zi}) + [|zi|−1 − cos(ω − arg{zi})]2

−
sin(ω − arg{zi})

(
d
dω [|zi|

−1 − cos(ω − arg{zi})]
)

sin2(ω − arg{zi}) + [|zi|−1 − cos(ω − arg{zi})]2

=
[|zi|−1 − cos(ω − arg{zi})] cos(ω − arg{zi})− sin2(ω − arg{zi})

1− 2|zi|−1 cos(ω − arg{zi}) + |zi|−2

=
|zi|−1 cos(ω − arg{zi})− 1

1− 2|zi|−1 cos(ω − arg{zi}) + |zi|−2

=
cos(ω − arg{zi})− |zi|

|zi|− 2 cos(ω − arg{zi}) + |zi|−1
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Example. Take |zi| = 1
2 and arg{zi} = π

3 .

− d
dω

(
arg{1− zie−jω}

)

−1

0

1

2

3

−10 −5 0 π/3−π/3 5 10

ω

zi
1/zi
1/z∗i
z∗i

• The figure shows that
|zi|−cos(ω−arg{zi})

|zi|+|zi|−1−2 cos(ω−arg{zi})
and

|z∗i |−cos(ω−arg{z∗i })
|z∗i |+|z∗i |−1−2 cos(ω−arg{z∗i })

are identical except with some shift.

• The figure shows that the phase change corresponding to zi is always smaller
than that corresponding to 1/zi (and of course, to 1/z∗i ). So, the choice between
zi = |zi|ej arg{zi} and 1/zi = |zi|−1e−j arg{zi}, which minimizes the filter delay,
is the one lying in the interior of unit circle.
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Delay of a filter with multiple zeros L[z] =
∏

i(1− ziz−1)

✲x[t]
1− z1z−1 ✲ . . . ✲ 1− ziz−1 ✲ . . . ✲ y[t]

Choose half of the zeros, among all the zero-pairs (one in inside group and one
in outside group) of the target S[z] = L[z]L[1/z], such that the group delay is
minimized.

Apparently, the choice of all zeros in the inside group will satisfy the need.
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Delay of a filter with a single pole

✲x[t]
L[z] = 1/(1− piz−1) ✲y[t] = x[t] + piy[t− 1]

L[ejω] =
1− p∗i e

jω

|1− pie−jω|2 ⇒ arg
{
L[ejω]

}
= arg

{
1− p∗i e

jω
}

and

− d

dω

(
arg{1− p∗i e

jω}
)

=
|p∗i |− cos(ω + arg{p∗i})

|p∗i | + |p∗i |−1 − 2 cos(ω + arg{p∗i})
.

Again, the choice between p∗i = |p∗i |ej arg{p
∗
i } and 1/pi = |p∗i |−1ej arg{p

∗
i } (or pi and

1/p∗i ), which minimizes the filter delay, is the one lying in the interior of unit circle
since

− d

dω

(
arg{1− p∗i e

jω}
)

=
|p∗i | + fixed

fixed
.

All the conclusions for zeros can be applied to poles.
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Delay of a filter with multiple zeros and multiple poles

L[z] =

∏
i(1− ziz−1)∏
k(1− pkz−1)

Choose half of the zeros and poles, among all the zero-pairs and pole-pairs (one in
inside group and one in outside group) of the desired S[z] = L[z]L[1/z] such that
the group delay is minimized.

Apparently, the choice of all zeros and poles in the inside group will satisfy the
need.

The end of Section 11-1 Factorization and Innovations
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✲
x⃗(t)m×1

✲

#
#

❅
❅ ✲
u⃗(t)

n×1

Bn×m

S1(A)

n×n

✲
z⃗(t)

n×1

#
#

❅
❅ ✲

Cr×n
❄⊕ ✲
y⃗(t)r×1

✲

#
#

❅
❅ ✲

Dr×m

✻

A system with state variables

• Consider a system with input x⃗(t) and output y⃗(t), in which their relationship
is defined through an internal state variable z⃗(t) as:

⎧
⎨

⎩

d

dt
z⃗(t) = Az⃗(t) + u⃗(t) = Az⃗(t) + Bx⃗(t) (∗)

y⃗(t) = Cz⃗(t) + Dx⃗(t)

The relationship between input u⃗(t) and output z⃗(t) of the subsystem S1 is
given by (∗).
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Terminology

• The order of the system is defined as the dimension of the state variable z⃗(t),
which is n in our case.

Derivation of the impulse response

• The impulse response of the subsystem S1 can be derived from relationship

z⃗(t)n×1 =
∫∞
−∞ φ(α)n×nu⃗(t− α)n×1dα equivalently z⃗(s)n×1 = φ(s)n×nu⃗(s)n×1 .

Taking the Laplace transform of both sides of Eq. (∗) yields:

sz⃗(s)n×1 = An×nz⃗(s)n×1 + u⃗(s)n×1

⇒ sφ(s)n×nu⃗(s)n×1 = An×nφ(s)n×nu⃗(s)n×1 + u⃗(s)n×1

⇒ sΦ(s)n×n − An×nΦ(s)n×n = In×n

⇒ Φ(s)n×n = (sIn×n − An×n)
−1

⇒ φ(t)n×n = exp {An×nt} t > 0.

where I is the identity matrix.
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eAt !

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SeΛtS−1 = S

⎡

⎢⎢⎢⎢⎣

eλ1t 0 · · · 0

0 eλ2t · · · 0
... ... . . . ...

0 0 · · · eλnt

⎤

⎥⎥⎥⎥⎦
S−1, if S−1 exists

∞∑

k=0

1

k!
(At)k, holds no matter whether

S−1 exists or not

where λ1, λ2, . . ., λn are the eigenvalues of A, and S is the matrix with its columns
being the linearly independent eigenvectors of A.
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Derivation of the impulse response (continued)

• For the overall system,

y⃗(t)r×1 = Cr×nz⃗(t)n×1 + Dr×mx⃗(t)m×1

=

∫ ∞

−∞
Cr×nφ(α)n×nu⃗(t− α)n×1dα +

∫ ∞

−∞
δ(α)Dr×mx⃗(t− α)m×1dα

=

∫ ∞

−∞
Cr×nφ(α)n×nBn×mx⃗(t− α)m×1dα +

∫ ∞

−∞
δ(α)Dr×mx⃗(t− α)m×1dα

=

∫ ∞

−∞
(Cr×nφ(α)n×nBn×m + δ(α)Dr×m) x⃗(t− α)m×1dα.

Hence,
h(t)r×m = Cr×nφ(t)n×nBn×m + δ(t)Dr×m

and

H(s)r×m = Cr×nΦ(s)n×nBn×m+Dr×m = Cr×n (sIn×n − An×n)
−1 Bn×m + Dr×m .
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By Theorem 9-4 that tells:
⎧
⎨

⎩

Sxy(ω)m×r = Sxx(ω)m×mH†(ω)r×m

Syy(ω)r×r = H(ω)r×mSxy(ω)m×r

= H(ω)r×mSxx(ω)m×mH†(ω)r×m

we can infer that,
⎧
⎨

⎩

Sxy(s)m×r = Sxx(s)m×mH†(−s)r×m

Syy(s)r×r = H(s)r×mSxy(s)m×r

= H(s)r×mSxx(s)m×mH†(−s)r×m
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Example 1

• Suppose r = n = m and Bn×n = Cn×n = In×n and Dn×n = 0n×n. Then,
⎧
⎨

⎩

d

dt
z⃗(t) = Az⃗(t) + u⃗(t) = Az⃗(t) + x⃗(t)

y⃗(t) = z⃗(t)

implies
d

dt
y⃗(t) = Ay⃗(t) + x⃗(t).

• Then,

H(s)n×n = Cr×n (sIn×n − An×n)
−1Bn×m + Dr×m = (sIn×n − An×n)

−1 .
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Example 2

• Suppose
y(n)(t) + a1y

(n−1)(t) + · · · + any(t) = x(t).

• By assuming that z⃗(t) = [y(t),y(1)(t), · · · ,y(n−1)(t)]T, the system can be
equivalently transformed to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
z⃗(t) =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
... ... ... . . . ...

−an −an−1 −an−2 · · · −a1

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

z⃗(t) +

⎡

⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤

⎥⎥⎥⎥⎥⎦

︸︷︷︸
B

x(t)

y(t) =
[
1 0 · · · 0

]
︸ ︷︷ ︸

C

z⃗(t) + 0︸︷︷︸
D
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• Hence,

H(s)r×m = Cr×n (sIn×n − An×n)
−1Bn×m + Dr×m

= C1×n (sIn×n − An×n)
−1Bn×1

=
[
1 0 · · · 0

]

⎡

⎢⎢⎢⎢⎢⎣

s −1 0 · · · 0
0 s −1 · · · 0
0 0 s · · · 0
... ... ... . . . ...
an an−1 an−2 · · · s + a1

⎤

⎥⎥⎥⎥⎥⎦

−1 ⎡

⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤

⎥⎥⎥⎥⎥⎦

=
1

sn + a1sn−1 + · · · + an
.

✷
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Definition (Finite-order processes) A (WSS) process x(t) is of finite order
if its innovation filter is a rational function of s, i.e.,

L(s) =
b0sm + b1sm−1 + · · · + bm
sn + a1sn−1 + · · · + an

=
N(s)

D(s)
,

satisfying that N(s) and D(s) are Hurwitz polynomials.

A Hurwitz polynomial is a polynomial whose zeros are located in the left half-plane
of the complex plane, namely, the real part of every zero is negative.

Autocorrelation function of finite-order process x(t)

• Let {si}ni=1 be the roots of D(s), and assume m < n.

• Then, L(s) can be expanded into partial fractions as:

L(s) =
n∑

i=1

γi
s− si

and l(τ ) =
n∑

i=1

γie
siτ

∫ τ

−∞
δ(u)du.

1

2π

∫ ∞

−∞

γi
jω − si

ejωτdω = γie
siτ

(
1

2π

∫ ∞

−∞

1

jω′e
jω′τdω′

)
for jω′ = jω − si.

See Slide 11-6.
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• We can then derive:

Sxx(s) = L(s)L(−s)

=

(
n∑

i=1

γi
s− si

)(
n∑

k=1

γk
−s− sk

)

=
n∑

i=1

n∑

k=1

γiγk
(s− si)(−s− sk)

=
n∑

i=1

n∑

k=1

(
−γiγk/(si + sk)

s− si
+

−γiγk/(si + sk)

−s− sk

)

=
n∑

i=1

n∑

k=1

−γiγk/(si + sk)

s− si
+

n∑

i=1

n∑

k=1

−γiγk/(si + sk)

−s− sk

=
n∑

i=1

αi

s− si
+

n∑

k=1

αk

−s− sk
! S+

xx(s) + S+
xx(−s),

where

αk = γk

n∑

i=1

γi
−sk − si

= γk L(−sk).
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• This gives that:

R+
xx(τ ) =

1

2π

∫ ∞

−∞
S+
xx(ω)e

jωτdω

=
1

2π

∫ ∞

−∞

(
n∑

i=1

αi

jω − si

)
ejωτdω

=

⎧
⎪⎨

⎪⎩

n∑

i=1

αie
siτ , τ > 0

0, τ < 0

and

Rxx(τ ) =
1

2π

∫ ∞

−∞
Sxx(ω)e

jωτdω

=
1

2π

∫ ∞

−∞
(S+

xx(ω) + S+
xx(−ω))ejωτdω

= R+
xx(τ ) +R+

xx(−τ )

= R+
xx(|τ |) (for τ ̸= 0)
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Example 11-5 L(s) = 1/(s + α)

Solution:

Sxx(s) =
1

(s + α)(−s + α)
=

1/(2α)

s + α
+

1/(2α)

−s + α
.

Then,

Rxx(τ ) =
1

2α
e−α|τ |.

✷

Example 11-6 x′′(t) + 3x′(t) + 2x(t) = i(t).

Solution

L(s) =
1

s2 + 3s + 2
=

1

s + 1
+

−1

s + 2

⇒ Sxx(s) = L(s)L(−s) =
1

(s2 + 3s+ 2)(s2 − 3s + 2)
=

s/12 + 1/4

s2 + 3s + 2
+
−s/12 + 1/4

s2 − 3s + 2
.

Hence,

S+
xx(s) =

1/6

s + 1
+

(−1/12)

s + 2
⇒ Rxx(τ ) = R+

xx(|τ |) =
1

6
e−|τ | − 1

12
e−2|τ |.

✷
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Given

x(t) =

∫ ∞

−∞
l(τ )i(t− τ )dτ,

we derive

Rxx(τ ) = E[x(t + τ )x(t)]

= E

[(∫ ∞

−∞
l(u)i(t + τ − u)du

)(∫ ∞

−∞
l(v)i(t− v)dv

)]

=

∫ ∞

−∞

∫ ∞

−∞
l(u)l(v)E [i(t + τ − u)i(t− v)] dudv

=

∫ ∞

−∞

∫ ∞

−∞
l(u)l(v)δ(τ − u + v)dudv

=

∫ ∞

−∞
l(v)l(τ + v)dv

(
=

∫ ∞

−∞
l(−v)l(τ − v)dv = l(−τ ) ∗ l(τ )

)

Thus,

Rxx(−τ ) =

∫ ∞

−∞
l(v)l(−τ + v)dv

=

∫ ∞

−∞
l(u + τ )l(u)du (u = −τ + v) = Rxx(τ )
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✲
x⃗[t]m×1

✲

#
#

❅
❅ ✲
u⃗[t]

n×1

Bn×m

S1(A)

n×n

✲
z⃗[t]

n×1

#
#

❅
❅ ✲

Cr×n
❄⊕ ✲
y⃗[t]r×1

✲

#
#

❅
❅ ✲

Dr×m

✻

A system with state variables

• Consider a system with input x⃗[t] and output y⃗[t], in which their relationship
is defined through an internal state variable z⃗[t] as:

{
z⃗[t + 1] = Az⃗[t] + u⃗[t] = Az⃗[t] + Bx⃗[t] (∗)

y⃗[t] = Cz⃗[t] + Dx⃗[t]

The relationship between input u⃗[t] and output z⃗[t] of the subsystem S1 is
given by (∗).
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Terminology

• The order of the system is defined as the dimension of the state variable z⃗[t],
which is n in our case.

Derivation of the impulse response

• The impulse response of the subsystem S1 can be derived from relationship

z⃗[t]n×1 =
∑∞

α=−∞ φ[α]n×nu⃗[t− α]n×1 equivalently z⃗[z]n×1 = φ[z]n×nu⃗[z]n×1

Taking the z-transform of both sides of (∗) yields:

zz⃗[z]n×1 = An×nz⃗[z]n×1 + u⃗[z]n×1

⇒ zφ[z]n×nu⃗[z]n×1 = An×nφ[z]n×nu⃗[z]n×1 + u⃗[z]n×1

⇒ zΦ[z]n×n − An×nΦ[z]n×n = In×n

⇒ Φ[z]n×n = (zIn×n − An×n)
−1

⇒ φ[t]n×n = exp {An×nt} .

where I is the identity matrix.
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Derivation of the impulse response (continued)

• For the overall system,

y⃗[t]r×1 = Cr×nz⃗[t]n×1 + Dr×mx⃗[t]m×1

=
∞∑

α=−∞
Cr×nφ[α]n×nu⃗[t− α]n×1 +

∞∑

α=−∞
δ[α]Dr×mx⃗[t− α]m×1

=
∞∑

α=−∞
Cr×nφ[α]n×nBn×mx⃗[t− α]m×1 +

∞∑

α=−∞
δ[α]Dr×mx⃗[t− α]m×1

=
∞∑

α=−∞
(Cr×nφ[α]n×nBn×m + δ[α]Dr×m) x⃗[t− α]m×1.

Hence,
h[t]r×m = Cr×nφ[t]n×nBn×m + δ[t]Dr×m

and

H[z]r×m = Cr×nΦ[z]n×nBn×m+Dr×m = Cr×n (zIn×n − An×n)
−1Bn×m + Dr×m .
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Definition (Discrete finite-order processes) A (WSS) discrete process x[t]
is of finite order if its innovation filter is a rational function of z, i.e.,

L[z] =
b0 + b1z−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n
=

N [z]

D[z]
,

satisfying that the roots of N [z] and D[z] are within the unit circle.

Autocorrelation function of discrete finite-order process x[t]

• Let {zi}ni=1 be the roots of D[z], and assume m ≤ n.

– We allow m = n with z1 = 0 in some practical case. In such case, γ1
1−z1z−1

below is equal to γ1 = bn/an.

– Here, we further assume that zi ̸= 0 for i ≥ 2.

• Then, L[z] can be expanded into partial fractions as:

L[z] =
n∑

i=1

γi
1− ziz−1

and l(τ ) = γ1δ[τ ]1{z1 = 0}+γ1zτ11{τ ≥ 0}1{z1 ̸= 0}+
n∑

i=2

γiz
τ
i 1{τ ≥ 0}.

1

2π

∫ π

−π

γi
1− zie−jω

ejωτdω =
1

2π

∫ π

−π
γi
(
1 + zie

−jω + z2i e
−j2ω + · · ·

)
ejωτdω.
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• We can then derive (and correct (11-37) in text) that:

Sxx[z] = L[z]L[z−1]

=

(
n∑

i=1

γi
1− ziz−1

)(
n∑

k=1

γk
1− zkz

)

=
n∑

i=1

n∑

k=1

γiγk
(1− ziz−1)(1− zkz)

=
n∑

i=1

n∑

k=1

(
γiγk/(1− zizk)

1− ziz−1
+

γiγk/(1− zizk)

1− zkz
− γiγk

1− zizk

)

=
n∑

i=1

n∑

k=1

γiγk/(1− zizk)

1− ziz−1
+

n∑

i=1

n∑

k=1

γiγk/(1− zizk)

1− zkz
−

n∑

i=1

n∑

k=1

γiγk
1− zizk

=
n∑

i=1

αi

1− ziz−1
+

n∑

k=1

αk

1− zkz
−

n∑

i=1

αi = S+
xx[z] + S+

xx[1/z]−
n∑

i=1

αi,

where

αk = γk

n∑

i=1

γi
1− zizk

= γkL[z
−1
k ].
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• This gives that:

R+
xx[τ ] =

1

2π

∫ π

−π
S+
xx[e

jω]ejωτdω

=
1

2π

∫ π

−π

(
n∑

i=1

αi

1− zie−jω

)
ejωτdω

=

⎧
⎪⎨

⎪⎩
α1δ[τ ]1{z1 = 0} + α1zτ11{z1 ̸= 0} +

n∑

i=2

αiz
τ
i , τ ≥ 0

0, τ < 0

and

Rxx[τ ] =
1

2π

∫ π

−π
Sxx[e

jω]ejωτdω

=
1

2π

∫ π

−π

(
S+
xx[e

jω] + S+
xx[e

−jω]−
n∑

i=1

αi

)
ejωτdω

= R+
xx[τ ] + R+

xx[−τ ]− δ[τ ]R+
xx[0]

= R+
xx[|τ |].
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Definition (AR processes) The discrete (finite-order) process x[t] is called
autoregressive (AR) if its innovation filter is of the form:

L[z] =
b0

1 + a1z−1 + · · · + anz−n
.

Remarks

• For AR processes,

x[t] + a1x[t− 1] + · · · + anx[t− n] = b0i[t]. (11.1)

• It is named AR because the output will continue indefinitely in an self-regressive
fashion only with one excitation.

• Since x[t−m] can be completely determined by

x[t−m− 1] upto x[t−m− n] and i[t−m],

it only depends on

i[t−m], i[t−m− 1], i[t−m− 2], . . . .

Accordingly under the assumption that x[t] is WSS,

Rxi[−m] = E{x[t−m]i[t]} = E{x[t−m]}E{i[t]} = 0 for m > 0.



Autoregressive Processes 11-47

• By multiplying i[t] followed by taking expectation of both sides of (11.1), we
obtain:

Rxi[0] + a1✘✘✘✘✘✘Rxi[−1] + a2✘✘✘✘✘✘Rxi[−2] + · · · + an✘✘✘✘✘✘Rxi[−n] = Rxi[0] = b0 .

• By multiplying x[t−m] for 0 ≤ m ≤ n followed by taking expectation of both
sides of (11.1), we obtain:

×x[t] : Rxx[0] + a1Rxx[−1] + · · · + anRxx[−n] = b20
×x[t− 1] : Rxx[1] + a1Rxx[0] + · · · + anRxx[−n + 1] = 0

... ... ... ...
×x[t− n] : Rxx[n] + a1Rxx[n− 1] + · · · + anRxx[0] = 0,

or equivalently,⎡

⎢⎢⎢⎢⎢⎣

Rxx[0] Rxx[−1] Rxx[−2] · · · Rxx[−n]
Rxx[1] Rxx[0] Rxx[−1] · · · Rxx[−n + 1]
Rxx[2] Rxx[1] Rxx[0] · · · Rxx[−n + 2]

... ... ... . . . ...
Rxx[n] Rxx[n− 1] Rxx[n− 2] · · · Rxx[0]

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1
a1
a2
...
an

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

b20
0
0
...
0

⎤

⎥⎥⎥⎥⎥⎦
.

This is named the Yule-Walker equations.

The Yule-Walker equations can be used to determine a1, · · · , an and b0 for known
Rxx[m], or to determine Rxx[m] recursively for known a1, · · · , an and b0.
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Example 11-7 x[t]− ax[t− 1] = bi[t].

Solution:

• L[z] =
b

1− az−1
⇒ z1 = a and γ1 = b and α1 = γ1L[1/z1] = b2/(1− a2).

• Then, Rxx[τ ] = α1z
|τ |
1 =

b2

1− a2
a|τ |. ✷

If a > 1, then b (1 + az−1 + a2z−2 + · · · ) does not converge unless |z| < 1/|a|;
hence,

b

1− az−1
= b (1 + az−1 + a2z−2 + · · · )

is not valid for |z| = |ejω| = 1. In short, an AR process with roots outside the
unit circle is not stationary!

Two cases that are not included in Slide 11-43:

1. Case of m = 0 and b0 = 0, such as the autoregressive processes with line
spectrum.

2. Case of m > n, such as the moving average processes.

These will be covered in next few slides.
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Definition (Line spectra) A line spectrum only consists of lines, i.e.,

S(ω) = 2π
∑

i

σ2
i δ(ω − ωi).

• The autocorrelation function of a process with line spectrum is:

R(τ ) =
1

2π

∫ ∞

−∞

(
2π
∑

i

σ2
i δ(ω − ωi)

)
ejωτdω =

∑

i

σ2
i e

jωiτ .

• An exemplified process that results in a line spectrum is:

x(t) =
∑

i

cie
jωit,

where {ci} are uncorrelated with zero mean, and σ2
i = E{|ci|2}.
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Definition (Discrete line spectra) A line spectrum for discrete processes
only consists of lines, i.e.,

S[ω] = 2π
∑

i

σ2
i δ(ω − ωi) for − π ≤ ω < π,

where each −π ≤ ωi < π.

• The autocorrelation function of a discrete process with line spectrum is:

R[τ ] =
1

2π

∫ π

−π

(
2π
∑

i

σ2
i δ(ω − ωi)

)
ejωτdω =

∑

i

σ2
i e

jωiτ .

• An exemplified process that results in a line spectrum is:

x[t] =
∑

i

cie
jωit,

where {ci} are uncorrelated with zero mean, and σ2
i = E{|ci|2}.
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Example of AR processes with line spectra

• Suppose that

x[t] =
n∑

i=1

cie
jωit,

where {ci} are real and uncorrelated with zero mean and variance σ2
i = E{c2i},

and each −π ≤ ωi < π.

• Let zi = ejωi.

• Find a1, a2, . . . , an such that
⎡

⎢⎢⎢⎢⎢⎣

1 z−1
1 z−2

1 · · · z−n
1

1 z−1
2 z−2

2 · · · z−n
2

1 z−1
3 z−2

3 · · · z−n
3

... ... ... . . . ...
1 z−1

n z−2
n · · · z−n

n

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1
a1
a2
...
an

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

0
0
0
...
0

⎤

⎥⎥⎥⎥⎥⎦
.

Then

x[t] + a1x[t− 1] + a2x[t− 2] + · · · + anx[t− n]

=
n∑

i=1

ciz
t
i

(
1 + a1z

−1
i + · · · + anz

−n
i

)
= 0.
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Specifically, if n = 2, we require

D(z1) = 1 + a1z
−1
1 + a2z

−2
1 = 0

D(z2) = 1 + a1z
−1
2 + a2z

−2
2 = 0

Then, a1 = −(z1 + z2) and a2 = z1z2.
If n = 3, we require

D(z1) = 1 + a1z
−1
1 + a2z

−2
1 + a3z

−3
1 = 0

D(z2) = 1 + a1z
−1
2 + a2z

−2
2 + a3z

−3
2 = 0

D(z3) = 1 + a1z
−1
3 + a2z

−2
3 + a3z

−3
3 = 0

Then, a1 = −(z1 + z2 + z3), a2 = z1z2 + z1z3 + z2z3 and a3 = −z1z2z3.
In fact, D(z) =

∏n
i=1(1− ziz−1).

• This turns out to be a special case of the AR processes for which b0 = 0 and
D(z) = 1 + a1z−1 + a2z−2 + · · · + anz−n. It is usually referred to as the
predictable process.

Definition (Predictable process) A process is called predictable if its present
value can be determined by its past.
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Autocorrelation and line power spectrum of x[t]

•

Rxx[τ ] = E

[(
n∑

i=1

cie
jωi(t+τ)

)(
n∑

k=1

c∗ke
−jωkt

)]

=
n∑

i=1

n∑

k=1

E [cic
∗
k] e

jωi(t+τ)e−jωkt

=
n∑

i=1

σ2
i e

jωiτ

and for −π ≤ ω < π,

Sxx[ω] =
∞∑

τ=−∞
Rxx[τ ]e

−jωτ =
∞∑

τ=−∞

n∑

i=1

σ2
i e

jωiτe−jωτ

=
n∑

i=1

σ2
i

∞∑

τ=−∞
e−j(ω−ωi)τ = 2π

n∑

i=1

σ2
i δ(ω − ωi). (Line spectra!)

where
∑∞

τ=−∞ e−j(ω−ωi)τ =
∑∞

τ=−∞ 2π · δ(ω − ωi + 2πτ ).
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Definition (MA processes) The discrete process x[t] is called moving average
(MA) if its innovation filter is of the form:

L[z] = b0 + b1z
−1 + · · · + bmz

−m.

Autocorrelation function of MA processes

• For an MA process,

x[t] = b0i[t] + b1i[t− 1] + · · · + bmi[t−m].

• Hence, the symmetric autocorrelation function (i.e., Rxx[τ ] = Rxx[−τ ]) equals

Rxx[τ ] = E{x[t + τ ]x[t]}

= E

{(
m∑

i=0

bii[t + τ − i]

)(
m∑

k=0

bki[t− k]

)}

=
m∑

i=0

m∑

k=0

bibkE {i[t + τ − i]i[t− k]} =
m∑

i=0

m∑

k=0

bibkδ[τ − i + k]

=

⎧
⎪⎨

⎪⎩

m−τ∑

k=0

bk+τbk, for 0 ≤ τ ≤ m

0, for τ > m
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Definition (ARMA processes) The discrete process x[t] is called autoregres-
sive moving average (ARMA) if its innovation filter is of the form:

L[z] =
b0 + b1z−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n
=

N [z]

D[z]
.

• The analysis of the ARMA processes has been done; so we omit it. See the
slides after Slide 11-43.

The end of Section 11-2 Finite-Order Systems and State Variables
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Question: Given that ω0 = 2π/T ,

x̂(t) =
∞∑

n=−∞
cne

jnω0t and cn =
1

T

∫ T

0
x(t)e−jnω0tdt,

whether does x̂(t) well approximate the WSS x(t)?

Theorem x̂(t) equals x(t) for 0 < t < T in the MS sense, i.e.,

E[|x̂(t)− x(t)|2] = 0

for 0 < t < T .
Proof: Observe that for 0 < t < T ,

E[|x̂(t)|2] = E

[( ∞∑

n=−∞
cne

jnω0t

)( ∞∑

m=−∞
c∗me

−jmω0t

)]

=
∞∑

n=−∞

∞∑

m=−∞
E [cnc

∗
m] e

jnω0te−jmω0t

=
∞∑

n=−∞

∞∑

m=−∞

(
1

T 2

∫ T

0

∫ T

0
E [x(u)x∗(v)] e−jnω0uejmω0vdudv

)
ejnω0te−jmω0t
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(continued)

(
E[|x̂(t)|2]

)
=

∫ T

0

∫ T

0
Rxx(u− v)

(
1

T

∞∑

n=−∞
ejnω0(t−u)

)(
1

T

∞∑

m=−∞
ejmω0(v−t)

)
dudv

=

∫ T

0

∫ T

0
Rxx(u− v)

( ∞∑

n=−∞
δ(t− u + nT )

)( ∞∑

m=−∞
δ(v − t +mT )

)
dudv

=
∞∑

n=−∞

∞∑

m=−∞

∫ T

0

∫ T

0
Rxx(u− v)δ(t− u + nT )δ(v − t +mT )dudv

=
∞∑

n=−∞

∞∑

m=−∞

∫ T

0
Rxx(t + nT − v)1{0 < t + nT < T}δ(v − t +mT )dv

=
∞∑

n=−∞

∞∑

m=−∞
Rxx((n +m)T )1{0 < t + nT < T}1{0 < t−mT < T}

=
∞∑

n=−∞

∞∑

m=−∞
Rxx((n +m)T )1

{
− t

T
< n < 1− t

T
and

t

T
− 1 < m <

t

T

}

= Rxx(0) = E[|x(t)|2],
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and

E[x̂(t)x∗(t)] = E

[( ∞∑

n=−∞
cne

jnω0t

)
x∗(t)

]

=
∞∑

n=−∞
E[cnx

∗(t)]ejnω0t

=
∞∑

n=−∞
E

[(
1

T

∫ T

0
x(s)e−jnω0sds

)
x∗(t)

]
ejnω0t

=

∫ T

0
E[x(s)x∗(t)]

(
1

T

∞∑

n=−∞
ejnω0(t−s)

)
ds

=

∫ T

0
Rxx(s− t)

( ∞∑

n=−∞
δ(t− s + nT )

)
ds

=
∞∑

n=−∞
Rxx(nT )1{0 < t + nT < T} (i.e.,

t

T
− 1 < −n <

t

T
)

= Rxx(0)
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Similarly,

E[x̂∗(t)x(t)] = E

[( ∞∑

n=−∞
c∗ne

−jnω0t

)
x(t)

]

=
∞∑

n=−∞
E[c∗nx(t)]e

−jnω0t

=
∞∑

n=−∞
E

[(
1

T

∫ T

0
x∗(s)ejnω0sds

)
x(t)

]
e−jnω0t

=

∫ T

0
E[x(t)x∗(s)]

(
1

T

∞∑

n=−∞
ejnω0(s−t)

)
ds

=

∫ T

0
Rxx(t− s)

( ∞∑

n=−∞
δ(s− t + nT )

)
ds

=
∞∑

n=−∞
Rxx(nT )1{0 < t− nT < T} (i.e.,

t

T
− 1 < n <

t

T
)

= Rxx(0)
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Hence,

E[|x̂(t)− x(t)|2] = E[|x̂(t)|2]− E[x̂(t)x∗(t)]− E[x̂∗(t)x(t)] + E[|x(t)|2]
= Rxx(0)− Rxx(0)−Rxx(0) +Rxx(0)

= 0.

✷

Remarks

• It is tricky to say the theorem holds at t = 0 (respectively, t = T ) since∫ T
0 δ(s)ds or (respectively,

∫ T
0 δ(s− T )ds) is actually indeterminate.

• It can be similarly proved that if x(t) is MS-periodic with period T ,

E[|x̂(t)− x(t)|2] = 0 for a.e. t ∈ ℜ.

Definition A process x(t) is called MS periodic if

E[|x(t + T )− x(t)|2] = 0

for every t.
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Theorem 9-1 A process x(t) is MS periodic if, and only if, its autocorrelation
function is doubly periodic, namely,

Rxx(t1 +mT, t2 + nT ) = Rxx(t1, t2) for every integer m and n.

• In addition, for a MS-periodic WSS process x(t),
{
cn =

1

T

∫ T

0
x(t)e−jnω0tdt

}∞

n=−∞

are uncorrelated with zero-mean except possibly non-zero-mean at n = 0.

• These remarks are summarized into the next theorem.
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Theorem 11-1 For a MS-periodic (with period T ) WSS process x(t), x̂(t) equals
x(t) in the MS sense, i.e., E[|x̂(t)− x(t)|2] = 0.

In addition, {cn}∞n=−∞ are uncorrelated with zero mean except possibly for n = 0.

Proof: It remains to prove that {cn}∞n=−∞ are uncorrelated with zero mean except
possibly for n = 0.

For an MS-periodic WSS x(t),

E[cn] =
1

T

∫ T

0
E[x(t)]e−jnω0tdt = µxδ[n], (because ω0 = T/(2π))
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and

E[cnc
∗
m] = E

[(
1

T

∫ T

0
x(t)e−jnω0tdt

)(
1

T

∫ T

0
x(s)e−jnω0sds

)∗]

=
1

T 2

∫ T

0

∫ T

0
E [x(t)x∗(s)] e−jnω0tejmω0sdtds

=
1

T 2

∫ T

0

∫ T

0
Rxx(t− s)e−jnω0tejmω0sdtds, u = t− s

=
1

T 2

∫ T

0

∫ T−s

−s
Rxx(u)e

−jnω0(u+s)ejmω0sduds

=

(
1

T

∫ T

0
e−j(n−m)ω0sds

)(
1

T

∫ T

0
Rxx(u)e

−jnω0udu

)

= δ[n−m]

(
1

T

∫ T

0
Rxx(u)e

−jnω0udu

)
(since ω0 = T/(2π))

✷
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Remarks

• {cn}∞n=−∞ may not be uncorrelated if x(t) is not MS-periodic!

• Even if x(t) is MS-periodic, {cn}∞n=−∞ may not be uncorrelated when the
chosen T is not the MS-period for x(t).

• Concern: Can we find an alternative expression for x(t) for which the coef-
ficients are guaranteed to be uncorrelated?

Answer: Karhunen-Loève Expansions.
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Question: Given a set of orthonormal functions {ϕn(t)}∞n=−∞ over [0, T ), define

x̂(t) =
∞∑

n=−∞
cnϕn(t) and cn =

∫ T

0
x(t)ϕ∗

n(t)dt.

Whether does x̂(t) well approximate x(t)?

Theorem {cn}∞n=−∞ are orthogonal, if
∫ T

0
Rxx(t, s)ϕn(s)ds = λnϕn(t)

for some λn for every n.

For MS-periodic WSS process x(t) with MS-period T ,
∫ T

0
Rxx(t− s)

(
1√
T
ejnω0s

)
ds =

∫ t

t−T
Rxx(u)

1√
T
ejnω0(t−u)du

=
1√
T
ejnω0t

∫ T

0
Rxx(u)e

−jnω0udu = λn

(
1√
T
ejnω0t

)
,

where ω0 = 2π/T and λn =

∫ T

0
Rxx(u)e

−jnω0udu.
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Proof:

E[cnc
∗
m] = E

[(∫ T

0
x(t)ϕ∗

n(t)dt

)(∫ T

0
x(s)ϕ∗

m(s)ds

)∗]

=

∫ T

0

∫ T

0
E [x(t)x∗(s)]ϕ∗

n(t)ϕm(s)dtds

=

∫ T

0

(∫ T

0
Rxx(t, s)ϕm(s)ds

)
ϕ∗
n(t)dt

=

∫ T

0
λmϕm(t)ϕ

∗
n(t)dt

= λmδ[m− n].

✷

Remarks

• {ϕn(t)}∞n=−∞ and {λn}∞n=−∞ are respectively called the eigenfunctions and
eigenvalues of Rxx(t, s).
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• For a random process x(t), projection λn is real and non-negative for every n.

Proof:

E

[∣∣∣∣
∫ T

0
x(t)ϕ∗

n(t)dt

∣∣∣∣
2
]

= E

[(∫ T

0
x(t)ϕ∗

n(t)dt

)(∫ T

0
x∗(s)ϕn(s)ds

)]

=

∫ T

0

(∫ T

0
Rxx(t, s)ϕn(s)ds

)
ϕ∗
n(t)dt

=

∫ T

0
λnϕn(t)ϕ

∗
n(t)dt

= λn.

✷

• Rxx(t, t) =
∞∑

n=−∞
λn|ϕn(t)|2 for 0 ≤ t < T . (Property of the eigen-system)
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Theorem E[|x̂(t)− x(t)|2] = 0 for 0 < t < T .

Proof: Observe that

E[|x̂(t)|2] = E

[( ∞∑

n=−∞
cnϕn(t)

)( ∞∑

m=−∞
c∗mϕ

∗
m(t)

)]

=
∞∑

n=−∞

∞∑

m=−∞
E [cnc

∗
m]ϕn(t)ϕ

∗
m(t)

=
∞∑

n=−∞

∞∑

m=−∞
λmδ[m− n]ϕn(t)ϕ

∗
m(t) (because {cn} orthogonal)

=
∞∑

n=−∞
λn|ϕn(t)|2

(
= Rxx(t, t)

)
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and

E[x̂(t)x∗(t)] = E

[( ∞∑

n=−∞
cnϕn(t)

)
x∗(t)

]

=
∞∑

n=−∞
E[cnx

∗(t)]ϕn(t)

=
∞∑

n=−∞
E

[(∫ T

0
x(s)ϕ∗

n(s)ds

)
x∗(t)

]
ϕn(t)

=
∞∑

n=−∞

(∫ T

0
Rxx(t, s)ϕn(s)ds

)∗

ϕn(t)

=
∞∑

n=−∞
λ∗
nϕ

∗
n(t)ϕn(t)

=
∞∑

n=−∞
λ∗
n|ϕn(t)|2 =

∞∑

n=−∞
λn|ϕn(t)|2 (λn real and non-negative)

Similarly,

E[x̂∗(t)x(t)] =
∞∑

n=−∞
λn|ϕn(t)|2.
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Hence,

E[|x̂(t)− x(t)|2] = E[|x̂(t)|2]− E[x̂(t)x∗(t)]− E[x̂∗(t)x(t)] + E[|x(t)|2]

=
∞∑

n=−∞
λn|ϕn(t)|2 −

∞∑

n=−∞
λn|ϕn(t)|2 −

∞∑

n=−∞
λn|ϕn(t)|2 +Rxx(t, t)

= Rxx(t, t)−
∞∑

n=−∞
λn|ϕn(t)|2,

which equals zero by property of the eigen-system. ✷

Mercer’s Theorem tells that Rxx(t, s) =
∞∑

n=−∞
λnϕn(t)ϕ

∗
n(s).

Example 11-10: Wiener process. Suppose

• n[0, 0) = 0,

• n[t1, t2) is Gaussian distributed with mean zero and variance α(t2 − t1),

• andn[t1, t2) andn[t3, t4) are independent if [t1, t2) and [t3, t4) are non-overlapping
intervals.

Please determine the Karhunen-Loève expansion of real process x(t) ! n[0, t).
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Answer:

•

Rxx(t1, t2) = E[x(t1)x
∗(t2)]

= E[n[0, t1)n[0, t2)]

= E [(n[0, tmin) + n[tmin, tmax))n[0, tmin)]

= E
[
n2[0, tmin)

]
+ E [n[tmin, tmax)n[0, tmin)]

= E
[
n2[0, tmin)

]
+

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

E [n[tmin, tmax)]E [n[0, tmin)]

= αmin{t1, t2},

where tmin ! min{t1, t2} and tmax ! {t1, t2}.

•
∫ T

0
Rxx(t, s)ϕ(s)ds = λϕ(t) ⇔ α

∫ T

0
min{t, s}ϕ(s)ds = λϕ(t)

⇔ α

∫ t

0
sϕ(s)ds + αt

∫ T

t
ϕ(s)ds = λϕ(t) (a1)

⇔

⎧
⎨

⎩
α

∫ T

t
ϕ(s)ds = λϕ′(t) (a2)

λϕ′′(t) + αϕ(t) = 0
with initially

{
(a1) ϕ(0) = 0
(a2) ϕ′(T ) = 0



Karhunen-Loève Expansions 11-72

Theorem 8.6 [Tom M. Apostoal, Calculus, pp. 326, Volume 1, 2nd Edition,
1967] The solution of the equation y′′(x) + by(x) = 0 is

y(x) = c1u1(x) + c2u2(x),

where c1 and c2 are constants determined by initial conditions, and

1. u1(x) = 1 and u2(x) = x if b = 0;

2. u1(x) = ekx and u2(x) = e−kx if b = −k2 < 0;

3. u1(x) = cos(kx) and u2(x) = sin(kx) if b = k2 > 0.

• Consequently, ϕn(t) = c1 cos(t
√
α/λn) + c2 sin(t

√
α/λn), and the two initial

conditions give that c1 = 0 (ϕn(0) = 0) and T
√

α/λn = (2kn + 1)π/2 for
integer kn (ϕ′

n(T ) = 0). Moreover,
∫ T

0
ϕ2
n(t)dt =

∫ T

0
c22 sin

2

(
(2kn + 1)π

2T
t

)
dt

=

∫ 1

0
c22 sin

2

(
(2kn + 1)π

2
u

)
Tdu =

T

2
c22 = 1

gives that c2 =
√

2/T .
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• To sum up,

ϕn(t) =

√
2

T
sin

(
(2kn + 1)π

2T
t

)
, λn =

4αT 2

(2kn + 1)2π2
,

and
∫ T

0
ϕn(t)ϕ

∗
m(t)dt =

∫ T

0

2

T
sin

(
(2kn + 1)π

2T
t

)
sin

(
(2km + 1)π

2T
t

)
dt

=

∫ 1

0
2 sin

(
(2kn + 1)π

2
u

)
sin

(
(2km + 1)π

2
u

)
du

=

∫ 1

0
cos[(kn − km)πu]du−

∫ 1

0
cos[(kn + km + 1)πu]du

= δ[kn − km]− δ[kn + km + 1]

=

⎧
⎨

⎩

1, kn = km (equivalently (2kn + 1) = (2km + 1))
−1, (2kn + 1) = −(2km + 1)
0, otherwise.
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So, it only requires to take those kn’s that make (2kn + 1) strictly positive.
This concludes that the Winner process x(t) for t ∈ [0, T ) can be written as a
sum of sine waves:

x(t) =

√
2

T

∞∑

n=0

cn sin

(
(2n + 1)π

2T
t

)

and

cn =

√
2

T

∫ T

0
x(t) sin

(
(2n + 1)π

2T
t

)
dt.

✷

By assigning c̃n = cn
√

2/T , we can simplify the expression as:

x(t) =
∞∑

n=0

c̃n sin

(
(2n + 1)π

2T
t

)
and c̃n =

2

T

∫ T

0
x(t) sin

(
(2n + 1)π

2T
t

)
dt.
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Example. Suppose x(t) is WSS. Then, from
∫ ∞

−∞
Rxx(t− s)ϕλ(s)ds = λϕλ(t),

we know that the Fourier transform Φλ(ω) of eigenfunction ϕλ(t) and eigenvalue λ
should satisfy:

Sxx(ω)Φλ(ω) = λΦλ(ω).

This implies
(Sxx(ω)− λ)Φλ(ω) = 0.

Suppose Sxx(ω) = λ only at ω = u. (There could be other value of ω such as
ω = v that also makes Sxx(v) = λ. We would treat this case as the eigenvalue λ
has several eigenfunctions.)
Then, Φλ(ω) =

√
2πδ(ω − u) is an eigenfunction corresponding to eigenvalue λ,

which implies

ϕλ(t) =
1√
2π

ejut.
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Hence,

x(t) =

∫ ∞

−∞
cλϕλ(t)dλ =

1√
2π

∫ ∞

−∞
cλe

j u(λ) tdλ

and

cλ =

∫ ∞

−∞
x(t)ϕ∗

λ(t)dt =
1√
2π

∫ ∞

−∞
x(t)e−jutdt.

We can redenote cλ by 1√
2π
X(u) and yield:

x(t) =
1

2π

∫ ∞

−∞
X(u)ejutdu and X(u) =

∫ ∞

−∞
x(t)e−jutdt.

✷
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• This example justifies the viewpoint that the Fourier transform of a WSS
process is simply the Karhunen-Loève expansion of this random process.

• We will show later that E[X(u)X∗(v)] = 2πSxx(u)δ(u− v)
(resp. E[cλ1c

∗
λ2
] = 1

2πE[X(u)X∗(v)] = Sxx(u)δ(u−v) for distinct eigenvalues
λ1 and λ2).

• The eigenvalue corresponding to eigenvector
1√
2π

ejut is
√
2πSxx(u).

(I.e., the eigenvalue corresponding to eigenvector
1√
2π

ejωt is
√
2πSxx(ω).)

• The eigenvectors
1√
2π

ejω1t and
1√
2π

ejω2t are orthogonal to each other

(namely, ∫ ∞

−∞

1√
2π

ejω1t
1√
2π

e−jω2tdt = δ(ω1 − ω2) ).

The end of Section 11-3 Fourier Series and Karhunen-Loève Expansions
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• The Fourier transform of a random process x(t) is also a random process,
defined as:

X(u) !
∫ ∞

−∞
x(t)e−jutdt.

Lemma

• Let RXX(u1, u2) and SXX(λ1,λ2) be the autocorrelation function and two-
dimensional power spectrum of X(t), respectively.

• Let Rxx(t1, t2) and Sxx(f1, f2) be the autocorrelation function and two-
dimensional power spectrum of x(t), respectively.

Then,

RXX(u1, u2) = Sxx(u1,−u2) and SXX(λ1,λ2) = 4π2Rxx(−λ1,λ2).
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Proof:

RXX(u1, u2) = E[X(u1)X
∗(u2)]

=

∫ ∞

−∞

∫ ∞

−∞
E[x(t1)x

∗(t2)]e
−j(u1t1−u2t2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
Rxx(t1, t2)e

−j[u1t1+(−u2)t2]dt1dt2

= Sxx(u1,−u2)

and

SXX(λ1,λ2) =

∫ ∞

−∞

∫ ∞

−∞
RXX(u1, u2)e

−j(λ1u1+λ2u2)du1du2

=

∫ ∞

−∞

∫ ∞

−∞
Sxx(u1,−u2)e

−j(λ1u1+λ2u2)du1du2

=

∫ ∞

−∞

∫ ∞

−∞
Sxx(u1, u

′
2)e

j[(−λ1)u1+λ2u
′
2]du1du

′
2

= 4π2Rxx(−λ1,λ2).

✷
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Example (Theorem 11-2: Nonstationary white noise) If

Rxx(t1, t2) = q(t1)δ(t1 − t2) with q(t1) > 0,

(which defines the so-called nonstationary white noise) then

Sxx(f1, f2) =

∫ ∞

−∞

∫ ∞

−∞
Rxx(t1, t2)e

−j(f1t1+f2t2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
q(t1)δ(t1 − t2)e

−j(f1t1+f2t2)dt1dt2

=

∫ ∞

−∞
q(t2)e

−j(f1+f2)t2dt2

= Q(f1 + f2)

RXX(u1, u2) = Sxx(u1,−u2) = Q(u1 − u2),

and

SXX(λ1,λ2) = 4π2Rxx(−λ1,λ2) = 4π2q(−λ1)δ(−λ1 − λ2) = 4π2q(λ2)δ(λ1 + λ2).

From the above derivation, it is apparent that if a nonstationary white noise x(t)
has zero mean, then X(u) becomes WSS. ✷
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Example If x(t) is WSS, then

Sxx(f1, f2) =

∫ ∞

−∞

∫ ∞

−∞
Rxx(t1 − t2)e

−j(f1t1+f2t2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
Rxx(s)e

−j(f1s+f1t2+f2t2)dsdt2

= Sxx(f1)

∫ ∞

−∞
e−j(f1+f2)t2dt2

= 2πSxx(f1)δ(f1 + f2).

Hence,

RXX(u, v) = Sxx(u,−v) = 2πSxx(u)δ(u− v)

(
where Sxx(u) ≥ 0

)
.

✷

In summary:

• The Fourier transform of a zero-mean nonstationary white process becomes
WSS.

• The Fourier transform of a WSS process becomes nonstationary white.



Spectral Representation of Random Processes 11-82

Example If x(t) is real and WSS, then

RXX(u, v) = E[X(u)X∗(v)] = Sxx(u,−v) = 2πSxx(u)δ(u− v).

Taking u = ω and v = −ω for ω ̸= 0, together with the fact thatX(ω) = X∗(−ω),
yields:

RXX(ω,−ω) = E[X(ω)X∗(−ω)]

= E[X2(ω)]

= E[Re{X(ω)}2]− E[Im{X(ω)}2] + 2jE[Re{X(ω)} · Im{X(ω)}](
= 2πSxx(ω)δ(2ω)

)
= 0.

This concludes:

E[Re{X(ω)}2] = E[Im{X(ω)}2] and E[Re{X(ω)} · Im{X(ω)}] = 0.

✷
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A windowing filter is of the form h(τ ; t) = w(t)δ(τ ) that induces

y(t) = x(t)w(t) =

∫ ∞

−∞
w(t)δ(τ )︸ ︷︷ ︸

h(τ ;t)

x(t− τ )dτ

Example 11-11 w(t) = 1{|t| ≤ T} for WSS x(t).

Fundamental Theorem and Theorem 9-2 For any linear system,

✲
Rxx(t1, t2)

h∗(τ ; t2) ✲

Rxy(t1, t2)
= E[h∗(τ ; t2) ∗Rxx(t1, t2)]

h(τ ; t1) ✲

Ryy(t1, t2)
= E[h∗(τ ; t2) ∗ h(τ ; t1) ∗Rxx(t1, t2)]

• For the windowing filter,

Rxy(t1, t2) = E[h∗(τ ; t2) ∗Rxx(t1, t2)]

= E

[∫ ∞

−∞
h∗(τ ; t2)Rxx(t1, t2 − τ )dτ

]

= w∗(t2)

∫ ∞

−∞
δ(τ )Rxx(t1, t2 − τ )dτ

= w∗(t2)Rxx(t1, t2)
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and

Ryy(t1, t2) = E[h(τ ; t1) ∗ Rxy(t1, t2)]

= E

[∫ ∞

−∞
h(τ ; t1)Rxy(t1 − τ, t2)dτ

]

= w(t1)

∫ ∞

−∞
δ(τ )Rxy(t1 − τ, t2)dτ

= w(t1)Rxy(t1, t2)(
= w(t1)w

∗(t2)Rxx(t1, t2)

)
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• For the windowing filter,

Sxy(u1, u2)

=

∫ ∞

−∞

∫ ∞

−∞
Rxy(t1, t2)e

−j(t1u1+t2u2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
w∗(t2)Rxx(t1, t2)e

−j(t1u1+t2u2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
w∗(t2)

(
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Sxx(v1, v2)e

j(t1v1+t2v2)dv1dv2

)
e−j(t1u1+t2u2)dt1dt2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
e−jt1(u1−v1)dt1

(∫ ∞

−∞
w(t2)e

−jt2(v2−u2)dt2

)∗)
Sxx(v1, v2)dv1dv2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

(
2πδ(u1 − v1)W

∗(v2 − u2)

)
Sxx(v1, v2)dv1dv2

=
1

2π

∫ ∞

−∞
W ∗(v2 − u2)Sxx(u1, v2)dv2,
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and

Syy(u1, u2) =

∫ ∞

−∞

∫ ∞

−∞
Ryy(t1, t2)e

−j(t1u1+t2u2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
w(t1)Rxy(t1, t2)e

−j(t1u1+t2u2)dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
w(t1)

(
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Sxy(v1, v2)e

j(t1v1+t2v2)dv1dv2

)
e−j(t1u1+t2u2)dt1dt2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
w(t1)e

−jt1(u1−v1)dt1

∫ ∞

−∞
e−jt2(u2−v2)dt2

)
Sxy(v1, v2)dv1dv2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

(
W (u1 − v1)2πδ(u2 − v2)

)
Sxy(v1, v2)dv1dv2

=
1

2π

∫ ∞

−∞
W (u1 − v1)Sxy(v1, u2)dv1

(
=

1

4π2

∫ ∞

−∞

∫ ∞

−∞
W (u1 − v1)W

∗(v2 − u2)Sxx(v1, v2)dv1dv2

)
.



Windowing 11-87

Hence,

RY Y (u1, u2) = Syy(u1,−u2)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
W (u1 − v1)W

∗(v2 + u2)Sxx(v1, v2)dv1dv2.

For WSS x(t), Sxx(v1, v2) = 2πSxx(v1)δ(v1+ v2) (cf. Slide 11-81); this reduces the
formula of RY Y (u1, u2) to:

RY Y (u1, u2)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
W (u1 − v1)W

∗(v2 + u2)2πSxx(v1)δ(v1 + v2)dv1dv2

=
1

2π

∫ ∞

−∞
W (u1 − v1)W

∗(u2 − v1)Sxx(v1)dv1.
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Example 11-11 w(t) = 1{|t| ≤ T} for WSS x(t). Determine RY Y (u, u).

Answer: We know that W (ω) = 2 sin(Tω)/ω.
Hence,

RY Y (u, u) =
1

2π

∫ ∞

−∞
W (u− v)W ∗(u− v)Sxx(v)dv

=
1

2π

∫ ∞

−∞
|W (u− v)|2Sxx(v)dv

=
2

π

∫ ∞

−∞

sin2(T (u− v))

(u− v)2
Sxx(v)dv.

✷
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Define

Z(ω) !
∫ ω

−∞
X(α)dα

where X(ω) is the Fourier transform of a WSS process x(t).

• By the Fourier-Stieltjes notation,

dZ(ω) = X(ω)dω.

Hence,

x(t) =
1

2π

∫ ∞

−∞
ejωtX(ω)dω =

1

2π

∫ ∞

−∞
ejωtdZ(ω).
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• That x(t) is WSS implies

RXX(u, v) = 2πSxx(u)δ(u− v),

where Sxx(u) ≥ 0, namely, X(u) is a nonstationary white process (cf. Slide
11-81).

• Integration of a nonstationary white process is a process with orthogonal
increments.

Proof:

E{[Z(ω2)−Z(ω1)][Z(ω4)−Z(ω3)]
∗}

= E

{∫ ω2

ω1

X(α)dα ·
∫ ω4

ω3

X∗(β)dβ

}

=

∫ ω2

ω1

∫ ω4

ω3

RXX(α, β)dβdα

=

∫ ω2

ω1

∫ ω4

ω3

2πSxx(α)δ(α− β)dβdα

=

∫ ω2

ω1

2πSxx(α)1{ω3 < α < ω4}dα

= 0, if (ω1,ω2) ∩ (ω3,ω4) = ∅.
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Theorem (Wold’s decomposition for continuous processes) An arbi-
trary WSS process x(t) can be decomposed into sum of a regular process xr(t)
and a predictable process xp(t), for which xr(t) and xp(t) are orthogonal.

Definition (Predictable process) A process is called predictable if its present
value can be determined by its past.

• A (WSS) process is predictable if, and only if, its spectrum consists of
lines.

• An example of a predictable process is the discrete AR process with line spectra.
See Slide 11-51:

x[t] + a1x[t− 1] + a2x[t− 2] + · · · + anx[t− n] = 0.

Theorem (Wold’s decomposition for discrete processes) An arbitrary
WSS process x[t] can be decomposed into sum of a regular process xr[t] and a
predictable process xp[t], for which xr[t] and xp[t] are orthogonal.
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Proof:

• Form the predictor of x[t] based on its past as:

x̂[t] =
∞∑

k=1

akx[t− k].

The optimal {ak}∞k=1 in the MS sense can be obtained through the fact that
the MS prediction error

e[t] = x[t]− x̂[t]

is orthogonal to the data, i.e.,

E{e[t]x∗[t−m]} = E

{(
x[t]−

∞∑

k=1

akx[t− k]

)
x∗[t−m]

}

= 0 for any m ≥ 1.

This leads to the discrete Wiener-Höpe equation:

Rxx[m] =
∞∑

k=1

akRxx[m− k] for m > 0.
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In addition, it can be shown that e[t] is a white process.

For τ > 0,

E {e[t + τ ]e∗[t]} = ✭✭✭✭✭✭✭✭✭✭✭✭✭
E {e[t + τ ]x∗[t]}︸ ︷︷ ︸

=0

−
∞∑

m=1

am
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

E {e[t + τ ]x∗[t−m]}︸ ︷︷ ︸
=0

= 0.

For τ < 0,
E {e[t + τ ]e∗[t]} = (E {e[t]e∗[t + τ ]})∗ = 0.

Hence, e[t] is white.

In summary,
x̂[t] is the best MS estimate of x[t] in terms of the past of x[t].
e[t] = x[t]− x̂[t] is the part of x[t] that remains “unestimated.”
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• Form the best MS estimator of x[t] in terms of e[t] and its past:

xr[t] =
∞∑

k=0

wke[t− k].

Again, the error

xp[t] = x[t]− xr[t] = x[t]−
∞∑

k=0

wk

(
x[t− k]−

∞∑

ℓ=1

x[t− k − ℓ]

︸ ︷︷ ︸
e[t−k]

)

should be orthogonal to {e[t − k]}∞k=0. Since xp[t] is a linear combination of
x[t] and its past, xp[t] is orthogonal to e[t +m] for m > 0.

In summary, ⎧
⎪⎪⎨

⎪⎪⎩

xp[t] ⊥ e[t− k] for every integer k

xr[t] =
∞∑

k=0

wke[t− k]

implies xp[t] ⊥ xr[t].

• xr[t] is obtained by feeding a white input to a causal (and stable) filter; hence,
it is regular.
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• It remains to prove that xp[t] is predictable.

– Define two filters A[z] = 1−
∑∞

k=1 akz
−k and W [z] =

∑∞
k=0wkz−k.

– Define y[t] = xp[t]−
∑∞

k=1 akxp[t− k].

– Then, by that e[t] and y[t] are respectively the outputs due to inputs x[t]
and xp[t] through linear filter A[z], we learn that e[t]− y[t] is the output
due to input xr[t] = x[t] − xp[t] through filter A[z]. Together with that
xr[t] is the output due to input e[t] through filter W [z], we have:

✲ W [z] ✲ A[z] ✲ ✲✐e[t]− y[t] −
+✻

e[t] xr[t] y[t]

– This summarizes to that y[t] is the output due to input e[t] through filter
1−A[z]W [z]. So, y[t] is completely determined by e[t] and its past.

– However, the definition of y[t] = xp[t] −
∑∞

k=1 akxp[t − k] indicates that
y[t] is also completely determined by xp[t] and its past.

– Finally, xp[t] ⊥ e[t− k] for every integer k implies E{|y[t]|2} = 0. ✷
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Further observation on Wold’s Decomposition:

• Sxx[ejω] = Sxrxr[e
jω] +Sxpxp[e

jω], where Sxrxr [e
jω] = |L[ejω]|2 for some L[ejω],

and Sp[ejω] is a line spectrum.
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Example 11-12 y(t) = a · x(t) with E[a] = 0 and WSS regular x(t) is inde-
pendent of a. Find Wold’s decomposition yr(t) and yp(t) of y(t).

Answer:

Ryy(τ ) = E[y(t + τ )y∗(t)]

= E [ax(t + τ )a∗x∗(t)]

= σ2
aRxx(τ ),

where σ2
a = E[aa∗]. Hence,

Syy(ω) = σ2
aSxx(ω) = σ2

a

[
Sc
xx(ω) + 2π|ηx|2δ(ω)

]
,

where ηx ! E[x(t)]. Accordingly,

Syy,r(ω) = σ2
aS

c
xx(ω) and Syy,p(ω) = 2π|ηx|2σ2

aδ(ω).

We can then set yp(t) = ηxa, and yr(t) = y(t)− ηxa = a[x(t)− ηx]. ✷

Examination of the selected yp(t) and yr(t):

• yp(t) = yp(t− τ ) for any τ ≥ 0; hence, yp(t) can be determined by its past.

• E[yr(t + τ )y∗
r(t)] = σ2

aR
c
xx(τ ), and hence Syryr(ω) = σ2

aS
c
xx(ω).

• E[yr(t)y
∗
p(t)] = E {a[x(t)− ηx]η∗xa

∗} = σ2
aη

∗
xE {x(t)− ηx} = 0.
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• The Fourier transform of a discrete random processx[t] is also a random process
defined as:

X(u) !
∞∑

t=−∞
x[t]e−jut,

which is periodic with period 2π.

Lemma

• Let RXX(u1, u2) be the autocorrelation function of X(t).

• Let Sxx[f1, f2] be the two-dimensional power spectrum of discrete x[t].

Then,
RXX(u1, u2) = Sxx[u1,−u2] for − π ≤ u1, u2 < π.
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Proof:

RXX(u1, u2) = E[X(u1)X
∗(u2)]

=
∞∑

t1=−∞

∞∑

t2=−∞
E{x[t1]x∗[t2]}e−j(u1t1−u2t2)

=
∞∑

t1=−∞

∞∑

t2=−∞
Rxx[t1, t2]e

−j[u1t1+(−u2)t2]

= Sxx[u1,−u2].

✷
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Example If x[t] is WSS, then for −π ≤ f1, f2 < π,

Sxx[f1, f2] =
∞∑

t1=−∞

∞∑

t2=−∞
Rxx[t1 − t2]e

−j(f1t1+f2t2)

=
∞∑

t2=−∞

∞∑

s=−∞
Rxx[s]e

−j(f1s+f1t2+f2t2)

= Sxx[f1]
∞∑

t2=−∞
e−j(f1+f2)t2

= 2πSxx[f1]δ(f1 + f2).

Hence, for −π ≤ u, v < π,

RXX(u, v) = Sxx[u,−v] = 2πSxx[u]δ(u− v)

(
where Sxx[u] ≥ 0

)
.

✷

2π
∞∑

n=−∞
δ(x + 2πn) =

∞∑

n=−∞
e−jnx
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Definition (Bispectrum) The bispectrum S̄xxx(ω1,ω2) of a random pro-
cess x(t) is the two-dimensional Fourier transform of its third order moment
R̄xxx(u, v) = Rxxx(t + u, t + v, t) ! E[x(t + u)x(t + v)x∗(t)] in u and v, where
Rxxx(t + u, t + v, t) is independent of t.

Remarks

• A case that Rxxx(t+u, t+v, t) is independent of t is that x(t) is SSS (in which
Rxx(t + u, t + v, t) only depends on the two differences).

• When only the individual statistics of system input and system output are
known, their power spectrums can only be used to determine the system am-
plitude (of H(ω))!

Syy(ω) = |H(ω)|2Sxx(ω).

• In light of the third-order moments, the system phase can be identified.

S̄yyy(ω1,ω2) = S̄xxx(ω1,ω2)H(ω1)H(ω2)H
∗(ω1 + ω2).
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S̄yyy(ω1,ω2) =

∫ ∞

−∞

∫ ∞

−∞
R̄yyy(u, v)e

−j(uω1+vω2)dudv

=

∫ ∞

−∞

∫ ∞

−∞
E [y(t + u)y(t + v)y∗(t)] e−j(uω1+vω2)dudv

=

∫ ∞

−∞

∫ ∞

−∞
E

[(∫ ∞

−∞
h(τ1)x(t + u− τ1)dτ1

)

(∫ ∞

−∞
h(τ2)x(t + v − τ2)dτ2

)(∫ ∞

−∞
h∗(τ3)x

∗(t− τ3)dτ3

)]

e−j(uω1+vω2)dudv

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h(τ1)h(τ2)h

∗(τ3)R̄xxx(u− τ1 + τ3, v − τ2 + τ3)

e−j(uω1+vω2)dudvdτ1dτ2dτ3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h(τ1)h(τ2)h

∗(τ3)R̄xxx(u
′, v′)

e−j(u′ω1+τ1ω1−τ3ω1+v′ω2+τ2ω2−τ3ω2)du′dv′dτ1dτ2dτ3
= S̄xxx(ω1,ω2)H(ω1)H(ω2)H

∗(ω1 + ω2).
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Example If x(t) is a SSS white process, where “white” implies R̄xxx(u, v) =
Qδ(u)δ(v) and S̄xxx(ω1,ω2) = Q, then

S̄yyy(ω1,ω2) = Q ·H(ω1)H(ω2)H
∗(ω1 + ω2),

which implies

θ(ω1,ω2) ! ∠S̄yyy(ω1,ω2) = ∠H(ω1) + ∠H(ω2)− ∠H(ω1 + ω2)

! ϕ(ω1) + ϕ(ω2)− ϕ(ω1 + ω2).

Then

∂θ(ω1,ω2)

∂ω2

∣∣∣∣
ω2=0

= ϕ′(0)− ϕ′(ω1),

and

ϕ(ω)− ϕ(0) =

∫ ω

0
ϕ′(ω1)dω1

= ϕ′(0)ω −
∫ ω

0

∂θ(ω1,ω2)

∂ω2

∣∣∣∣
ω2=0

dω1.

Note that for a real system, ϕ(0) = 0. However, ϕ′(0) may not be zero!
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Theorem 11-4 For a real SSS process x(t),

RXXX(u, v,ω) = E[X(u)X(v)X∗(ω)] = 2πS̄xxx(u, v)δ(u + v − ω).

Proof:

E[X(u)X(v)X∗(ω)] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E[x(t1)x(t2)x

∗(t3)]e
−j(ut1+vt2−ωt3)dt1dt2dt3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R̄xxx(t1 − t3, t2 − t3)e

−j(ut1+vt2−ωt3)dt1dt2dt3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R̄xxx(s1, s2)e

−j(us1+ut3+vs2+vt3−ωt3)ds1ds2dt3

= 2πS̄xxx(u, v)δ(u + v − ω).

✷

The end of Section 11-4 Spectral Representation of Random Processes


