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Concern (for continuous-time processes)

e How to represent a real WSS process x(t) as a response of a minimum-phase
system L(w) with a white input 2(¢) of unit power?

Definition (Minimum-phase system) A system is called minimum-phase
if both L(w) and 1/L(w) are causal and stable.

(A system is stable if a bounded input (BI) always induces a bounded output (BO). As a result, a linear system is
stable in the BIBO sense if all poles of the system are in the strict left half of the s-plane.)

Definition (Causal filter) An causal filter is one whose output depends only
on past and present inputs.

e A process that can be represented as a response of a minimum-phase system
L(w) with a white input 2(¢) of unit power is called regular.

‘ Oxford Dictionary - Regular. adj. Recurring at uniform intervals. Done or happening frequently.

e A formal definition of regular processes is given below.

Definition (Regular processes) A process x(t) is regular if
Sea(w) = |L(w)|?

where L(s) (s = jw) is analytic in the right-hand plane Re{s} > 0.

e Roughly speaking, a function is analytic if its function values are determinate
and finite (never indeterminate or infinity).
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Filter with minimum group delay

e For all causal and stable systems that have the same magnitude response, the
minimum phase system has the minimum group delay.

e Hence, a more appropriate name for minimum-phase system should be the
“minimum group delay’ system.

e We will come back to (provide a proof for) this later.
Some observations about regular process x(t)

e Ri(7)=0(7) = Sii(w) = 1.

o Sir(w) = [L(w)[*Sii(w) = |L(w)[

e S0,

x(t) = /OO 1(7)e(t — 7)dT,

(0.9]

where L(w) is minimum-phase, which is determined in terms of the desired
0

1 |
real, positive, even, finite-area Sy,(w), and 1(7) = o / L(w)e’dw.
m

— 00
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Innovation: (t) is called the innovation of a(t).
Innovation Filter: L(w) is called the innovation filter of x(t).

Whitening Filter: 1/L(w) is called the whitening filter of x(t).

Lemma (Paley-Wiener condition) A process x(t) is regular if the Paley-
Wiener condition holds, i.e.,

/°° [log Sz (w)|

o 1+w?

dw < 0.

e Hence, a BL process violates the Paley-Wiener condition.
e Paley-Wiener condition is only sufficient.

e We thus cannot prove that a BL process is not regular by showing it violates
the Paley-Wiener condition.

Definition (Bandlimited processes) A process x(t) is called bandlimited
(BL) if Syr(w) = 0 for |w| > o, and R,.(0) < co.
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How to find L(w) such that |L(w)|* = S(w) for a given real, positive, even, finite-area S(w).
e Observation 1: S(w) = S(—w) implies that S(w) is a function of w?.

e Observation 2: L(w) can be easily determined if S(w) is a rational spectrum.

Definition (Rational spectra) A rational spectrum is the ratio of two poly-
nomials in w?:

A(w?)
B(w?)’

where A(z) and B(x) are both polynomials of x.

S(w) =

— Let s = jw. Then, S(s) = A(—s*)/B(—s%).
— Observe that if s; is a root (either zero or pole) of S(s), —s; is also a root
of S(s). Also, the roots of S(s) are either real or complex conjugate.

— Then, roots of S(s) are symmetric with respect to the imaginary axis.
So we can separate them into two groups: Left group that consists of all
roots with Re{s;} < 0, and the right group that consists of all roots with
Re{s;} > 0. (How to take care of those roots with Re{s;} = 07)

— We can accordingly form L(s) by the ratio of two polynomials with the left
roots of S(s).
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N
Example 11-1 S(w) = T
N N N
Solution: S(s) = = = L(s) =
a?—s2  (la]+s)(la] —s) la| + s
VN VN N
S L) = (el = |, = o s
la| + jw la| + jw a® + w
[
49 + 25w?
Example 11-2 S(w) = T 10 E ot
49 — 255 (7 + 5s)(7 —5s)

Solution: S(s)

T 9-102+s! (1+sB+s)(1—s)(3—>s)

B 7+ 5s o) = Les)L(—s
>0y CEESEE)
M) = 06w

- 74 5jw 494 25w
(;“L(”)‘ ‘(1+jw)(3+jw) 9—|—10w2+w4s<w)>
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11-6
Example 11-1 o0
1 o0 % 7‘a‘\/_:]\;w€jw7—dw =
1(7 — L(w)e’™ dw - 00 |
( ) 27‘(‘ e ( ) \/Ne_\a\q— (%/ %ejw/wal>
T —00
i/ \/N T g for jw' = |a| + jw.
2m J_ o | + jw
T integrator
— \/Ne_\ah/ 5(u)du 5(¢) L) fimé(u)du
—00 —— 1/(jw :
1 1
[Nl 750 /3
o0, T <0
Example 11-2
1 [ :
1(7) - L(w)e!* dw
2T J_ o
1 [~ 7+ 5j :

o J o (14 jw)(3+ jw)

1 [ 1 4 o
- — + — | /¥ dw
2r J_ o \1+jw 3+ jw

e T+4e, >0
0, T <0
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11-7
Example 11-1
1 0 q differentiator /(t)
lW itening\7) = T GjWwa a(t) . a
e T) = 50 | Ew) Aw) | [AwGo)
> al + jw j
- = J¥ wTd
o \/N e’ dw
o
= ot J“wa
¥y 0 o |
Example 11-2
1 OO 1 wT
lwhitening(T) — % ) ‘] dw
1 )(3 .
B / +Jw)B+Jw) ey
2 7+ 5jw
L1 (344 w)?\
2m 5 144 jw
1 1 0.64 :
= — — | ——+ 2.6 19T d
o 005( T4+ jw ”w)e “

1 [*1
—0.128¢ 1 {7 > 0} +0.526(7) + 2—/ - (jw) e’“Tdw
Q0 —00
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Definition (Minimum-phase system) A system is called minimum-phase
if both L(w) and 1/L(w) are causal and stable.

Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

Observation A system is minimum-phase if functions L(s) and 1/L(s) are ana-
lytic in the right-hand plane Re{s} > 0.
(Le., no poles and zeros satisfy Re{s} > 0.)

L(s)

Implicitly, the above figure implies that 1(7) — 0 as 7 — 0o. See the two examples
in the previous slide.
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Example 11-3 S(w) = — 1
w

Solution: 5(s) = — >
olution: S(s) = =
st+1 (82425 4+ 1)(s2 — V25 +1)

= Ly s (st-tenes)

:52+\/§5+1
5
= Lw) =
() —w? + jv2w + 1
5 : 25
= |L(w)|* = = = S(w
(= el = || ~ e =)

o 1) = 2 / T L (@) du

=5/
IR 5

S or oo 1 — w2+ 5V 2w
B { 5v2sin(t/v/2)e V2 1> 0

0, 7 <0

e?“Tdw
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Concern (for discrete-time processes)

e How to represent a real discrete WSS process x|[t] as a response of a discrete
manimum-phase system L[e/*] with a discrete white input 4[] of unit power?

Definition (Minimum-phase system) A discrete system is called minimum-
phase if both L[e?*] and 1/L[e/*] are causal and stable.

(A system is stable if a bounded input (BI) always induces a bounded output (BO). As a result, a linear system is
stable in the BIBO sense if all poles of the system are inside the unit circle in the z-plane.)

Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

e A (discrete) process that can be represented as a response of a minimum-phase
system L[e/“] with a white input 4[t] of unit power is called regular.

e A formal definition of (discrete) regular processes is given below.

Definition (Discrete regular processes) A process x[t] is regular if

Saalw] = [L[e™]|"

where L[z] (2 = /%) is analytic for |z| > 1.

e Roughly speaking, a function is analytic if its function values are determinate
and finite (never indeterminate or infinity).
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Some observations about x[t| so defined

I, =0
0, 7#0

is the Kronecker delta function.

e R;[r] = d[t] = Silw]| = 1, where 0[] = {
o Sialw] = L[] Sifw] = [L[e7] .
e S0,

Zl t—T

T=—00

where L[e/“] is minimum-phase, determined in terms of the desired real, posi-

1 g : :
tive, even, finite-area S;;|w], and 1[7] = — / Lie/¥]e/“ dw.

2m ).

Conveniently, we will sometimes write L[e/*] as L|w]. These two expressions are

actually equivalent.
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Innovation: [t] is called the innovations of x|t].
Innovation Filter: L{w| is called the innovation filter of x|t].

Whitening Filter: 1/L|w] is called the whitening filter of x[t].

Lemma (Paley-Wiener condition) A process x[t] is regular if the Paley-
Wiener condition holds, i.e.,

/ llog Sy |w]| dw < 0.

If S,.|w] is an integrable function, then the above condition reduces to

/W log(Syz|w])dw > —oc.

™ ™

e Obviously, / llog Sy |w]| dw < oo implies / log(Syz|w])dw > —o0.

—T —T
We need to prove the converse is also true if S, |w] integrable.
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Claim / |Sw]|dw < oo and / log(Sw])dw > —oco = / log Sw]| dw < 0.

Proof: By

/ log(S[w])dw
{we[—m,m):S|w]<1}

we derive:

| los(sluhla

IA

IA

/{wE
/{wE

i
i
.

log(S

wl<1}

| tox(stelias - [ log(S[e])de,

™

{we]—m,m):Sw]>1}

log(Swplde + log( Sl
{we[—m,7):Sw]>1}

log(S|w])dw + / log(S|w])dw

w]<1} {we[-m,m):S[w]>1}

w])dw + 2/ log(S|w])dw

{we[—m,m):Sw]>1}

w])dw + 2/ (Slw] — 1)dw
{we[—m,m):S[w]>1}

] dw +2/W(\S[w]\  1)dw < oo,
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Theorem (Page 424 in textbook: Chapter 9) There exists a unique
function

Zh ~F for h[0] > 0 and |z| > 1
that is analytic together Wlth its inverse in |z| > 1 satisfying
> |hk]]? < oo and S[w] = |[Hle ] ae.,

if, and only if, S[w] as well as log(S[w]) are integrable functions over [—m, ),

where

Hle ] = hﬁl Hlre 7]

is defined as the exterior radial limit of H|[z] on the unit circle.
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How to find Lw] such that |L{w]|* = S[w| for a real, positive, even, finite-area S[w].

e Observation 1: Sw]( = S[e/*] = Sle™*]) = S[—w] implies that Sw] is a
function of cos(w) = (/¥ + e77%) /2.

e Observation 2: L{w| can be easily determined if S|w]| is a rational spectrum.

Definition (Rational spectra) A rational spectrum is the ratio of two poly-
nomials in cos(w):

A(cos(w))
B(cos(w))’
where A(z) and B(z) are both polynomials of x.

Slw] =

— Let z = e/¥. Then, S[z] = A((z + 271)/2)/B((z + 271)/2).
— Observe that if 2; is a root (zero or pole) of S[z], 1/z; is also a root of S/z|.

Also, the roots of S[z] are either real or complex conjugate.

— Then, the roots of S[z] are symmetric with respect to the unit circle.
So we can separate them into two groups: Inside group that consists of all
roots with |z| < 1, and the outside group that consists of all roots with
12| > 1.

— Form L[z] by the ratio of two polynomials with the inside roots of S/z|.
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11-16

5 — 4cos(w)
10 — 6 cos(w)

Example 11-4 S[w] =

5-2(z+2) 20— (122 21— (1/2)2)
Solution: S| = S5 = =5 = 30— 130 30=(1/3))
L = 1:(% z 1§ Sl 1/z)
L) = 20 = (/2

3(1 = (1/3)e” ”“’)

20— (1))
( = [LIf = ‘3(1 (13

2: sm)
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1(7]

1 m
% —T
1 (7 2(1—(1/2)e %)
om ) 3(1—(1/3)e)
1 [7 1/3 jor
o )., (1‘1—<1/3>efw)6 ~
1 m

— [ (1=3"[1+3 e 43+
2m

L{w]e/ " dw

e?“Tdw

0, T <0
1-31 7=0
—3~ 47 7>

x D e/ dw

11-17
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1 Tl )WT
1Whitening[7_] = % m@j dw
1 (™ 3(1—(1/3)e7¥) .
LT 8
27 2(1 — (1/2)e=3v)

—T
™

1 1 .
= — 1+ /2 — | /“Tdw
21 ), 1 —(1/2)e-w

— % (T+27 " [1+27 e 42272 4o ]) € dw

0, 7 <0
= ¢ 1+27H 7=0
2-(+7) 7 > 0
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Definition (Minimum-phase system) A system is called minimum-phase
if both L|w] and 1/L[w] are causal and stable.

Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

Observation A discrete system is minimum-phase if functions L[z] and 1/L[z]
are analytic in the exterior |z| > 1 of the unit circle.

Lz
X
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Filter with minimum group delay

e For all causal and stable systems that have the same magnitude response, the
minimum phase system has the minimum group delay.

e Hence, a more appropriate name for meinimum-phase system is the “minimum
group delay’ system.

Delay of a filter: What is a proper definition for filter delay?

x[t]

yl] = — / " (X[wle ) et = at — )

Liw] = e/ 27

—T

Hence, the delay of a filter can be “defined” as:

d d

= (arg{Lfu]}) = —— (—wn) = n.

The filter is named minimum phase due to that it minimizes the “phase change.”
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Ezxample: Delay of a filter with a single zero

|t Liz] =1 — 227! ylt] = xlt] — ziz|t — 1]
d —jw d —1 —Jj(w—argyz;
— (arg{l — zie 7“}) = —% (arg {\ZZ! _ e J(w—argf })}>
=~ (arg {]2Z — cos(w — arg{z;}) + jsin(w — arg{z;}) })

d sin(w — argd z;
= (tan L [ ( slzi)) ]) See the next Slide.

dw |2i| 71 — cos(w — arg{z;})
|2i| — cos(w — arg{z;})
zi| + |zi] 7! — 2 cos(w — arg{z;})

Apparently, the choice between z; = |z;]e/®8%t and 1/27 = |z|~ted @8l (or 27
and 1/z;), which minimizes the filter delay, is the one lying in the interior of unit

d

0 (arg{l — zie¥}) =

circle since
|2;| + fixed

fixed
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d B sin(w — arg{z;}) i tan (§) = by
dw Ga“ [\zz-rl — cos(w — arg{sz
B [|2:] 7! — cos(w — arg{2;})] (%[Sin(w — arg{zi})])
sin®(w — arg{z;}) + [|zi|~! — cos(w — arg{z;})]2
_sin(w —arg{z}) (%Hzi\_l — cos(w — arg{zi})])
sin?(w — arg{z;}) + [|zi| ! — cos(w — arg{z;})]2
— cos(w — arg{z;})] cos(w — arg{z;}) — sin*(w — arg{z;})
1 — 2|zt cos(w — arg{z}) + | 2|2
_ |2i| 7 cos(w — arg{z}) — 1
1 — 2|z~ cos(w — arg{z;}) + |22
_ cos(w — arg{z;}) — |z
|2i] — 2 cos(w — arg{zi}) + |z~

[l

‘—1
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™

Ezample. Take |z;| = § and arg{z;} = £.
3 |

| ' | |.-
—10 -5 —7m/3 0 /3
w

(@2
—_
(]

e The figure shows that

|zi| —cos(w—arg{z;})
|2i| 42| 71 =2 cos(w—arg{z;})

|2} | —cos(w—arg{z})
|25+ 2|71 =2 cos(w—arg{z]})

and
are identical except with some shift.

e The figure shows that the phase change corresponding to z; is always smaller
than that corresponding to 1/z; (and of course, to 1/27). So, the choice between
zi = |zlel®8tEt and 1/2 = |z te 7 @85} which minimizes the filter delay,

is the one lying in the interior of unit circle.
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Delay of a filter with multiple zeros L[z] = [],(1 — z;27)

t] , . ylt]

1 — 212~ 1 —z;2~

Choose half of the zeros, among all the zero-pairs (one in inside group and one
in outside group) of the target S[z] = L[z|L[1/z], such that the group delay is
minimized.

Apparently, the choice of all zeros in the inside group will satisfy the need.
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Delay of a filter with a single pole

|t Llz] = 1/(1 — piz™Y) ylt] = z[t] + piylt — 1]
Lle*] = ’11—_]?]@'95622’2 = arg {L[ej“’]} = arg {1 pfew}
and
d [p;| — cos(w + arg{p;})

—— (arg{l — pfe/¥}) = -
o TP = T T 2ot + m )
Again, the choice between p! = [pile/®8Pit and 1/p; = |p|~'e/®&Pi} (or p; and
1/p?), which minimizes the filter delay, is the one lying in the interior of unit circle
since

d _ |p| + fixed

_ R pJw _
dw (arg{l bic }) fixed

All the conclusions for zeros can be applied to poles.
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Delay of a filter with multiple zeros and multiple poles

_ [0 —z2")
Hk(l — prz )

L|z]

Choose half of the zeros and poles, among all the zero-pairs and pole-pairs (one in
inside group and one in outside group) of the desired S|z] = L[z]L[1/z] such that
the group delay is minimized.

Apparently, the choice of all zeros and poles in the inside group will satisfy the
need.

The end of Section 11-1 Factorization and Innovations
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nxl1 nxn nxl1
u(t z(t
O] gy (20
) B Cron |
w(t)mxl EAE y(t)TX1
|
|
]D)rxm

A system with state variables

e Consider a system with input &(¢) and output g(¢), in which their relationship
is defined through an internal state variable Z(t) as:

%Z(t) = AZ(t) +4d(t) = AZ(t) + BE(t) (%)

—

§(t) = CZ(t)+ Dx(t)

The relationship between input @(t) and output Z(¢) of the subsystem S is
given by ().
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Terminology

11-28

e The order of the system is defined as the dimension of the state variable Z(t),

which i1s m in our case.

Derivation of the impulse response

e The impulse response of the subsystem S7 can be derived from relationship

n><1 f ¢ nxnu )nxldQ

equivalently

E(S)nxl —

Qb(s)nxrﬂi(s)nxl .

Taking the Laplace transform of both sides of Eq. () yields:

SZ(8)nx1 = ApxnZ(8)nx1 + U(8)nx1
= 50(8)nxnW(S)nx1 = Apxn®(8)nxnU(8)nx1 + U(S)nx1
= 8P(8)nxn = Apxn®(8)nxn = Lnxn
= D(8)nxn = (SLyxn — Aan)_l

= O(t)nxn = exp {Ayxnt}

where I is the identity matrix.

t > 0.
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eMt 0 0
0 e ... 0
SeMsTt=s| = | S| ST if ST exists
A : : " :
g = ¢ 0 0 6>\nt
00 1 B -
Z E(At)k : holds no matter whether
| k=0 S~ exists or not
where A1, Ao, ..., A, are the eigenvalues of A, and S is the matrix with its columns

being the linearly independent eigenvectors of A.
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Derivation of the impulse response (continued)
e For the overall system,
581 = CrxnZuxt + D@ty
— [ Codlauailt - hrda+ [ S(@)Dr (e~ a)ada

- / rxngb( )an nxmi(t - @)mxlda + / 5(Q)Drxm£(t - a)mxlda
= / ( rxngb( )nxn nxm T 5( )Drxm) j’(t — CV)mxld&-
Hence,
h(t)rxm — rxngb( )nxn nxm T 5( ) rXm
and

H(S)Txm = CTXHCD(S)anBnXm+DTXm =|Crxp, (SHan - Aan)_l Byxm + Dysern |
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11-31

By Theorem 9-4 that tells:

Sl @le = Serd @)t (@
Syy(w)?“XT — H(w)rx Sa:y(w)mxr
— H(w)rxmsxa: (W)mxml{Jr (w)rxm

we can infer that,

Sxy(s)mxr — Sxm(s)mmeT(_S)rxm
H
H

Syy(S)TXT




Finite-Order Systems and State Variables 1132

Example 1

e Suppose 7 =n =m and B,,«, = C,,«,, = L,,x, and D,,«,, = 0,,%,,. Then,

%Z(t) — AZ() + () = AZ(E) + F(D)
y(t) = 2(t)
implics
Cgit) = Ag(t) + 31
e Then.

H(S)nxn - Crxn (Sann - Anxn)_l anm + Drxm — (Sann - Anxn)_l
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Example 2

e Suppose
y" () + ary" () + -+ any(t) = 2(h).

e By assuming that Z(t) = [y(t),yM(t), -,y D(t)]", the system can be
equivalently transformed to:

( [0 | 0 0] 0
p 0 0 1 0 0
SEt) = | 00 0 0 | Z(t)+ [0] x(2)
\ —Qp —Ap—1 Ap—9 —a 1
~ ~~ ~ =~
A B
y(t) = [1 0 -+ 0]Z(t)+ 0
\ D
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e Hence,

H(S)rxm - Crxn (Sann - Anxn)_l anm + Drxm
- Clxn (S]Inxn - Anxn)_l anl

s —1 0 0 0
0 s -1 0 0
= |10 )10 0 s 0 0
Ap Ap—1 Ap-2 S+ ay 1
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Definition (Finite-order processes) A (WSS) process x(t) is of finite order
if its innovation filter is a rational function of s, i.e.,
_ bps™ 4+ b1 -+ by, N(s)

L(s =
(5) s"+aps"l 4 +ay, D(s)’

satisfying that N(s) and D(s) are Hurwitz polynomials.

A Hurwitz polynomial is a polynomial whose zeros are located in the left half-plane

of the complex plane, namely, the real part of every zero is negative.

Autocorrelation function of finite-order process x(t)
e Let {s;}" 4 be the roots of D(s), and assume m < n.
e Then, L(s) can be expanded into partial fractions as:

L(s) = Z p jz . and 1(7) = Z%esiT/T o(u)du.

i=1 -0

1 [~ : ; 1 [~ -
— N ety = ;e (—/ m— wa’) for jw' = jw — s;.
2T J_ oo JW — S; Coo JW

See Slide 11-6.
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e We can then derive:

S,u(s) = L(s)L(—s)

- (575) =)

— ’Yﬂ/k
_ZZ (s —si)(—s — sg)

1= 1 k 1
_ ZZ ( Yive/ (i + i) N —Yivk/ (i ‘|‘3k))
=L k=1 57 % —5 7 Sk
B —YiVk/ (i + Si) —YiVk/ (i + Sk)
-y Y P 593 E—
1=1 k=1 1=1 k=1

n

= Z —— 2 51 (9) + i (=),

=1 k=1

where

n
v,
ap = Yk Z _Sk—z_s = v L(—s).
i=1 L

11-36
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e This gives that:

R (1) = — St (w)e! dw

Tx

and
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Example 11-5 L(s) =1/(s + «)

Solution:
1 1/(2 1/(2
. _ 1) 1/20)
(s+a)(—-s+a) s+a —s+a
Then,
1 —a|T
Rmx(T) = %6 ’ ‘
]
Example 11-6 ="(t) + 3z'(t) + 2x(t) = 4(1).
Solution | ] ]
L p— p—
(5) s? 4+ 35+ 2 S—|—1+S—|—2
| Cs/1241/4 —s/12+1/4

= Spe(8) = L(s)L(—s) = - ‘
() ($)L(=s) (24 3s+2)(s?—3s+2) s2+3s+2 s>—3s5+2

Hence,

/6 (=1/12) 1 1
+ _ _ pt e (ol Il [
Sxx(s) s - 1 + s -4 2 = Rfﬁx(T) Rxx(’T‘) € € .

§ 12
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Given N
z(t) = / L(rYi(t — 7)dr,
e detive -
Reu(r) = Bla(t + Tja(t) )
_ g [(/OO L(w)ilt + 7 — u)du> (/OO L ()it — v)dv)]
_ /Z /Z L)1) E [i(t + 7 — w)i(t — v)] dudy
_ /Z /Z LW (0)5(r — 1 + v)dudy
_ /Z 1(0)1( + v)dv ( _ /Z L (—0)1(r — v)d = 1(—7) * 1(7))
Thus,

Ru(-r) = | 1) o)

= /Oo Lu+7)l(u)du (u=—T7+v)= Ry(7)
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nx1 nxn nxl1
N g a2
_,t anm Crxn _,t
$[ ]mxl & y[ ]7’><1
|
|
]D)rxm

A system with state variables

e Consider a system with input @[t] and output y[t|, in which their relationship
is defined through an internal state variable Z[t] as:

Zt+ 1] = AZ[t] + ult| = AZ[t] + BZ[t] (%)
glt] = CZ[t] + Da[]

The relationship between input 4[t] and output Z[t] of the subsystem S; is

given by ().
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Terminology

e The order of the system is defined as the dimension of the state variable Z[¢],
which is n in our case.

Derivation of the impulse response

e The impulse response of the subsystem S; can be derived from relationship

Z[tlx1 = D or oo Pl nxn@t — alpnx1 | equivalently  Z[z]nx1 = @[2]nxnt[2]nx1

Taking the z-transform of both sides of (x) yields:

2Z|2]nx1 = DpxnZ[2]nx1 + U[2]nx1
= 20[2]nxnU|2]nx1 = Apsn®|2]nxn|2]nx1 + U[2]nxa
= (D[Z]an AanCI)[ ]an = L xn
= O[zluxn = (Zuxn — Anxn) ™

= t]nxn = exp{Annt} .

where I is the identity matrix.
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Derivation of the impulse response (continued)

e For the overall system,

'g[t]rxl — Crxnz[t]nxl +Drxmth]

mx1
- Z Cranb nxnu n><1‘|‘ Z 5 t_a]mxl
- Z Crxngb Afpxn n><mm m><1‘|‘ Z Tme a]mxl
- Z (Crxn@ladnsnBrxm + 0[] Dy ) B[t — atlmxi-
Hence,
h[t]rxm - Crxn¢[t]nannxm + 5[t]DT><m
and

H[Z]rxm - (CTXTL(I)[Z]anBnXm_HDer =|Crxn (Z]Inxn - Anx”)_l B,xm + Dyl
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Definition (Discrete finite-order processes) A (WSS) discrete process |t]
is of finite order if its innovation filter is a rational function of z, i.e.,
2] bo+biz '+ +byz™ Nz
Zl = = ;
l+aiz7t+---+a,z" Dz

satisfying that the roots of N|z] and D|z| are within the unit circle.

Autocorrelation function of discrete finite-order process x|t]

e Let {z}"; be the roots of D[z], and assume m < n.

71

— We allow m = n with z; = 0 in some practical case. In such case, —

below is equal to v1 = b, /a,.

— Here, we further assume that z; # 0 for ¢ > 2.

e Then, L[z] can be expanded into partial fractions as:

n

Z 1 —/Z'Z_l and 1(7-) - 715[7-]1{21 = O}"‘VlZI]-{T > 0}1{21 # O}—I—Z ’}/Z'ZZ-T].{T > O}

=1 1=2

Lz

| . I - - '
2 JWT _ ) o —jw 2 _—j2w L JWT
o /7r T zie—jwe dw = o | 07 (1 + zie 't + zje + ) e’ dw.
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e We can then derive (and correct (11-37) in text) that:

Szl = L[z|L[z~
n n
_ Yk
<z11_Z’ ><k11_2k2>
n n
) !
= (1= 2271 )(1 = z2)
__5355(%%/1—%%)+%%K1—%%)_ Vi )
o 1 — zz71 1 — 212 1 — 2z
_ zn: - YiVk (1 - Zzzk Z Z Vﬂ/k/ 1 - Zzzk) - - YiVk
1 — 2271 1 — z12 _ 1 — z2p
1=1 k=1 zlkl 1=1 k=1
_ Sy ol
_Zl—zz +Zl_2kz—;a7 Szl + S [1/2] — Z&“
where
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e This gives that:

1 & . .
R;_x [T] — % S;_x [GJW]GJWwa

n

1 [7 o :
= — S 1Td
2 ). (Z 1 — zieﬂw> W

1=1

a10[7)1{z = 0} + a1 2]1{z1 # 0} + Zaiz{, T>0

1=2

0, T <0
and
R..[T] = i W S [ej“]ejwdw
1 T +oroiw _|_ — w WT
=0/ (S e+ St e ZozZ) /T dw

= R[]+ Ry [=7] = 0[] Ry, [0]
R (I7I1
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Definition (AR processes) The discrete (finite-order) process a[t] is called
autoregressive (AR) if its innovation filter is of the form:
Cltazl et ane

L|z]

Remarks

e For AR processes,
[t + aix[t — 1)+ - + apx[t — n| = byt[t]. (11.1)

e [t is named AR because the output will continue indefinitely in an self-regressive
fashion only with one excitation.

e Since x|t — m| can be completely determined by
x[t —m — 1] upto [t — m — n| and [t — m],
it only depends on
tft —m],i[t —m —1],ét —m —2|,....
Accordingly under the assumption that a[t] is WSS,
R,i[—m| = E{x[t — m]i[t]} = E{x[t — m]}E{i[t]} = 0 for m > 0.
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e By multiplying 2[t] followed by taking expectation of both sides of (11.1), we
obtain:

Rm[O] + al/PLZ-M—F G/QM+ R CLnM: RM[O] = bo .
e By multiplying x|t —m) for 0 < m < n followed by taking expectation of both
sides of (11.1), we obtain:

xx[t] : Ry[0] +aiRe[—1]+ -+ apRee[—n] = b
xx[t —1] @ Ryl + a1 R[04+ -+ apnRpp|—n+1] = 0

xx[t—n| : Rynl+aRyn—1+- - +a,R.[0] = 0,

or equivalently,

R..[1]  Ru.[0] R..[-1] -+ Rul-n+1]| |a 0
R..12]  Ru.[l] R..[0] -+ Ryl-n+2]| |az| =10
Roln] Ruln—1) Rufn—2 - Rl | |a] |0

This i_s named the Yule- Walker equations.

The Yule-Walker equations can be used to determine aq, - - - , a,, and by for known
R.:[m], or to determine R,,[m] recursively for known ay,--- , a, and by.
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Example 11-7 x[t] — ax[t — 1] = bi[t].

Solution:

b
o L[z] = T T A= and v, = b and ay = y1L[1/2] = b*/(1 — a?).

b b

e Then, R,,[7]| = a1z = ; 5 all. O
—a

Ifa > 1, then b(1+az"' +a?27%+---) does not converge unless |z| < 1/]al;
hence,

b
—— =b(l+azrt+a* 24
1 —az"1 ( )
is not valid for |z| = |e/*| = 1. In short, an AR process with roots outside the

unit circle is not stationary!

Two cases that are not included in Slide 11-43:

1. Case of m = 0 and by = 0, such as the autoregressive processes with line
spectruim.

2. Case of m > n, such as the moving average processes.

These will be covered in next few slides.
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Definition (Line spectra) A line spectrum only consists of lines; i.e.,

S(w) = 2 Z o26(w — w;).

e The autocorrelation function of a process with line spectrum is:

1 [> . .
R(T) = %/ (27r Z 020 (w — wz)> e’ dw = Z oreli,
0 i i
e An exemplified process that results in a line spectrum is:

x(t) = Z c;e/it
i

where {¢;} are uncorrelated with zero mean, and o7 = F{|¢;|*}.
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Definition (Discrete line spectra) A line spectrum for discrete processes
only consists of lines, i.e.,

Slw] = 27‘(‘20‘3(5(&) —w;) for —7m <w <,

]

where each —7m < w; < 7.

e The autocorrelation function of a discrete process with line spectrum is:

1 [~ . _
R|T] = %/ (27T Z 06w — wz)> e’ dw = Z oI,
e An exemplified process that results in a line spectrum is:

x[t] = Z c;e’it
i

where {¢;} are uncorrelated with zero mean, and o7 = F{|¢;|*}.
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Example of AR processes with line spectra

e Suppose that
n
x[t] = Z c;e’it
i=1

where {c;} are real and uncorrelated with zero mean and variance o7 = E{c?},
and each —7m < w; < 7.

o [t z; = el¥i.

e Find ay,ao, ..., a, such that
I R T R 0
1ozt 22 s 2" |a 0
1ozt 237 - 2" |az| = |0
1zt 22 0 2 a, 0
Then

xlt] + ezt — 1]+ asx[t — 2] + - - - + a,x[t — n]

n
=) cz (T+az '+ a5 ") =0.
1=1
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Specifically, if n = 2, we require

D(z) = 14+ aiz; 4 a2 =0
D(z) = 1+a1z;  + a2 =0
Then, a1 = —(21 + 22) and ay = z125.
If n = 3, we require
D(z1) = 14+a127 +ag27? +azz;® =0
D(z) = 1+a1z5' +aszy? +azzy® =0
D(z) = 1+a123" +agz3? +azz;° =0

Then, a; = —(21 + 29 + 23), (9 = 2129 + 2123 + 2923 and ag = —212923.
In fact, D(z) =[]/, (1 — ziz71).

e This turns out to be a special case of the AR processes for which by = 0 and
D(z) = 1+ a2zt +az™? + -+ a,z" Tt is usually referred to as the
predictable process.

Definition (Predictable process) A process is called predictableif its present
value can be determined by its past.
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Autocorrelation and line power spectrum of x|t]

(271: ciejwi(t—i-r)) (271: c;r;ejwkt>]
' k=1

_ E E 'E cic; eij t—i-T)e Jwit

1=1 k=1
n

= g 0?6‘”’”
i=1

and for —7 < w < T,

R..[T] = E

0 >0 n
Splw] = Z Ry [r]e ™47 = Z Zafej“iTe_jm
T=—00 T=—00 1=1
n
— Ya T eI w—wi)T _ 2720?5 . (Line spectral)

T=——"00

where Y220 e /Wmwilm =N 9 §(w — w; + 277).

T=—00
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Definition (MA processes) The discrete process x[t] is called moving average
(MA) if its innovation filter is of the form:

Liz] = by + bzt 4+ bz ™

Autocorrelation function of MA processes

e For an MA process,
x[t] = boi[t] + bye[t — 1] + - - - + bpi[t — m].
e Hence, the symmetric autocorrelation function (i.e., R, [7] = Ry.[—7]) equals

R..|t] = E{x[t+ 7|x[t]}

(S ) (-]

m

= mbekE{Zt—l—T—Z t—k } zm:zm:bbkéT—Z—l—k]

1=0 k=0 1=0 k=0

bk+7bk7 fOI’ 0 S T S m

O

form >m

~
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Definition (ARMA processes) The discrete process xt] is called autoregres-
sive moving average (ARMA) if its innovation filter is of the form:
b+ bz 4+ bpz™  N[Z

Liz| = =

l+a1z7 '+ 4+a,z Dlz]

e The analysis of the ARMA processes has been done; so we omit it. See the
slides after Slide 11-43.

The end of Section 11-2 Finite-Order Systems and State Variables
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Question: Given that wy = 27/T,

i . 1 7 .
x(t) = Z c,e’™" and cn—f/() x(t)e /"0l dt,

n=——oo

(t) well approximate the WSS x(t)?

whether does @
Theorem x(t) equals x(t) for 0 < t < T in the MS sense, i.e.,

El|2(t) — x(t)]] =0

for 0 <t <T.
Proof: Observe that for 0 <t < T,

00 o0
E ( cnejnwot E { C:ﬁle—]mwot
n=—00 m=—00

o0 o0

_ E ( E { E[CnC:FL] ejnwote—]mwgt

nN=—o0 Mm=——00
©.¢] (0.9]
1

T T
= Z Z (—2/ / E[x(u)x*(v)] ej"wouejmwovdudv) et gy mwol
= Jo Jo

nN=—oo m=——0oo

Elz)] = E
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(continued)

(vt

) - [

=

n=——oo m=—0oo

T 1 ] & .
= nwp(t—u) - mwg(v—t)
Ryx(u — ) ( T g e T g e’ dudv

T T x
:/ / Ry(u — ) (Z 5t—u+nT><Z 5(v—t+mT)>dudv
0 0 n=—o00 m—=—o00
o0 00 T
— Z Z // vt —0)0(t —u+nT)6(v —t +mT)dudv
—00 M=—00 0

-y

— Z Z Rep((n+m)T)1{0 <t +nT < T}1{0 <t —mT < T}

n=-—00 M=-—00

e t t t t

n=-—00 M=-—00

T
/ Ro(t+nT —v)1{0 <t +nT <T}o(v —t +mT)dv
0

= R..(0) = E[|lz(t)]],
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and

Elz(t)z*(t) = E

t
= (nT)1{0 < ¢ T<T ——1
z% L(MT)H{0 <t+nT <T} (e, T < n<T)
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Similarly,

Elx"(t)z(t)] = F
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Hence,

El|lz(t) — =] = E|

Remarks

e It is tricky to say the theorem holds at ¢ = 0 (respectively, ¢ = T') since
fOT d(s)ds or (respectively, fOT d(s — T)ds) is actually indeterminate.

e [t can be similarly proved that if &(¢) is MS-periodic with period T,

Ellz(t) — z(t)])] =0 forac. t € R.

Definition A process x(t) is called MS periodic if
Blla(t +T) - ()] = 0

for every t.
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Theorem 9-1 A process x(t) is MS periodic if, and only if, its autocorrelation
function is doubly periodic, namely,

R, (t1 + mT, to + nT) = Ry, (t1,t2) for every integer m and n.

e In addition, for a MS-periodic WSS process x(t),

0

1 (7 .
{cn — T/o w(t)ejnwotdt}noo

are uncorrelated with zero-mean except possibly non-zero-mean at n = 0.

e These remarks are summarized into the next theorem.
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Theorem 11-1 For a MS-periodic (with period T') WSS process @ (t), &(t) equals
x(t) in the MS sense, i.e., E[|#(t) — x(t)]?] = 0.

In addition, {c,}>° . are uncorrelated with zero mean except possibly for n = 0.

09

o . are uncorrelated with zero mean except

Proof: It remains to prove that {c,}
possibly for n = 0.

For an MS-periodic WSS x(t),

Elc,] = %/0 Elz(t)]e /™' dt = p,6[n], (because wy = 1/(27))
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and

FElc,c

*
m

| =

e . e . i
(T/o :B(t)e]m"otdt> (T/o w(s)e]m"osds>
T T | |
- E * —Jnwot L Jmwgs
T2/0 /0 [x(t)x"(s)] e e dtds

1

Ryo(t — s)e /™I ™05 qtds =1t — s

T—s
Rxx 6 jnwo(u—i-s)ejmwosduds

1 T | 1 /7T .
(/)3 i)

=) (3 [ Reet)e ) (s = 7/(2)
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Remarks
e {c,}°° _ may not be uncorrelated if x(¢) is not MS-periodic!

e Even if x(t) is MS-periodic, {¢,}?° . may not be uncorrelated when the
chosen 7' is not the MS-period for a(t).

e Concern: Can we find an alternative expression for a(t) for which the coef-
ficients are guaranteed to be uncorrelated?

Answer: Karhunen-Loeve Expansions.
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Question: Given a set of orthonormal functions {@,(¢)}22_ over [0,T), define

— Z c,pn(t) and cn—/o x(t)p (t)dt.

Whether does @(t) well approximate a(t)?
Theorem {c,}°°

o o are orthogonal, if

/O Rus(t, 8)0u(5)ds = Apn(?)

for some A\, for every n.

For MS-periodic WSS process x(t) with MS-period T,

T 1 t 1 _ (t )
R..(t—s ejnwo';) ds = / R, (u)—=e!" 0" dy
/ ( ) ( t—T ( )\/T
/ g |
VT /0 (ﬁ )

T
where wy = 27 /T and A / Ryp(u)e ™0y,
0
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Proof:
Ele,c,] = E ) (/OTJ;(S)SO;%(SMS) *]

- /OT/OTE s)] on(t)pm(s)dtds

— /OT (/OT wx(t, 8)om(s )ds) o (1) dt

- TAm@Om t)dt

— Mdlm -

[

Remarks

o {p,(t)}>2  and {\,}°° . are respectively called the eigenfunctions and
eigenvalues of R, (t, s).
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e For a random process x(t), projection A, is real and non-negative for every n.

E

Bioal
[ o] - <[ o) i)
- [ ( / Roult, s)ipu(s >ds) o1 (1)
A

~

T

nSOn
0

= A\

S

® R..(t,1) Z An|on(t)|? for 0 <t < T. (Property of the eigen-system)

n=—oo
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Theorem El|z(t) — x(t)]?] =0for 0 <t < T.

Proof: Observe that

Ellzt)f] = E

H
[
)
&
O
i
>
=
.
37
=
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and

Elzt)z"(t)] = E

M lon(t)]* = Z Mlon()]* (A, real and non-negative)

n—=——oo n—=——oo

Similarly,

El@ (tz(t)] = ) Mlea®)”
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Hence,

Ellz(t) —zt)F] = Ellz)’] - Elzt)z"(t)] - Elz"(t)z(t)] + Ellz(t)]’]
- Z )‘n‘@n(t)P - Z )‘n‘gpn(t)P - Z )‘n‘@n(t)‘Q + Ry (2, 1)
- a:x t t Z )\nlgpn )

which equals zero by property of the eigen-system. O

Mercer’s Theorem tells that Rm t,s) Z An@n(t SOn

n=—oo

Example 11-10: Wiener process. Suppose
n[0,0) =0,
nlty, ty) is Gaussian distributed with mean zero and variance af(ty — t1),

e and n|ty,ty) and n[ts, ty) are independent if [¢1, t5) and [t3, t4) are non-overlapping
intervals.

Please determine the Karhunen-Loeve expansion of real process x(t) = n|0,t).
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Answer:

Ro(th, ) Elz(t))z"(t2)]

E[n|0,t)n]0,t5)]

El(n [0 twin) + T [fmins tmax)) 1[0, tunin)]
[ 0 tmm ] +FE [n[tmm max) [O tnnn)]

E [ O Tiin ] +F [n[tmi < n|0, tmin)]

= amin{ty, ts},

il
Dj

where t,,, = min{t;, to} and ty. = {t1, 2}

/0 R..(t, s)p(s)ds = \p(t) < a/o min{t, s}p(s)ds = Ap(t)
& a/o sp(s)ds + ozt/t o(s)ds = Ap(t) (al)

& { « /t p(s)ds = Ad' () (@2)  p initially { (a1) ¢(0) =0
AP(1) + agp(t) = 0 2 =
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Theorem 8.6 [Tom M. Apostoal, Calculus, pp. 326, Volume 1, 2nd Edition,
1967] The solution of the equation 3" (z) + by(z) = 0 is

y(x) = crur(x) + coug(x),
where ¢; and ¢y are constants determined by initial conditions, and
1. ui(z) =1 and ug(z) = x if b = 0;
2. uy(z) = e and uy(x) = e ¥ if b = —k% < 0;
3. ui(z) = cos(kx) and us(x) = sin(kz) if b = k* > 0.

e Consequently, ¢, (t) = ¢1 cos(ty/a/\,) + cosin(t/a/N,), and the two initial
conditions give that ¢; = 0 (¢,(0) = 0) and T\/a /N, = 2k, + 1)7/2 for
integer k,, (¢),(T") = 0). Moreover,

r r 2k, + 1
/cpi(t)dt — / cgsm2<( il Mt) dt

1

2k, + 1 T

= / c%sin2(( il )Wu)Tdu——cg—l
0 2 2

gives that co = 1/2/T.
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e To sum up,

2 . ((2k,+ 1) 4aT?
nll) = T t ) >\n — )
Pult) =/ 75 ( oT ) (2 + 1)27°
and

/OT on(t)pm(t)dt = /OT%sm ((%”2; 1)7Tt) sin ((2]“7"2; 1)7Tt) dt

— /01 cos|(k, — k) muldu — /01 cos|(kn + km + 1)muldu

= Slky — k] — [k + ki + 1]

1, k,=kp (equivalently (2k, + 1) = (2k,, + 1))
= { =1, 2kp+1) = —(2%kp+1)

0, otherwise.
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So, it only requires to take those k,,’s that make (2k, + 1) strictly positive.
This concludes that the Winner process x(t) for t € [0, T) can be written as a

\/7 / sm( 2”;;1) ) dt.

sum of sine waves:

and

By assigning ¢, = ¢,+/2/T, we can simplify the expression as:

~_ . (@n+D)r o2 7 (Cn+ D7
xr t) = ; C,, S111 (Tt and C,, — f . w(t) S111 Tt dt.




Karhunen-Loeve Expansions 1175

Example. Suppose x(t) is WSS. Then, from

/OO R, (t — s)pa(s)ds = A pa(t),

(0.¢]

we know that the Fourier transform @) (w) of eigenfunction ¢, (t) and eigenvalue A

should satisfy:
Spa(w)Py(w) = APy (w).

This implies
(Spz(w) = A) Py (w) =0,

Suppose Sy, (w) = A only at w = u. (There could be other value of w such as
w = v that also makes S;,(v) = A. We would treat this case as the eigenvalue A
has several eigenfunctions.)

Then, ®)(w) = v276(w — u) is an eigenfunction corresponding to eigenvalue \,

which implies
1 .
ox(t) = ——e’",

V2m
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Hence,

x(t) = / caxpa(t)d\ = — / crel "N

00 2T

and

- /_ T ettt = —— /_ " a(tedr

00 27

We can redenote ¢y by \/%X (u) and yield:

x(t) = %/OO X (u)e’""du and X (u) —/ x(t)e 7" dL.

—00
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e This example justifies the viewpoint that the Fourier transform of a WSS
process is simply the Karhunen-Loeve expansion of this random process.

e We will show later that E[X (u)X™(v)] = 278, (u)d(u — v)
(resp. Blex €5,] = 5 E[X (u) X*(v)] =
)\1 &Hd )\2)

Sea(w)d(u—w) for distinet eigenvalues

e/ is /27 S p (1)
e/ is /21 Syp(w).)

The ei | ding to e t !
° e eigenvalue corresponding to eigenvector ——
\ 2T

1
[.e., the eigenvalue corresponding to eigenvector ——
( V2T
1

1 _
e The eigenvectors ——e’“" and ——=e’“?" are orthogonal to each other
V2T V2T

(namely,

* 1 1
/OO \/7 jwlt\/_ _jWQtdt 5(&)1 —CUQ) )

The end of Section 11-3 Fourier Series and Karhunen-Loéve Expansions
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e The Fourier transform of a random process a(t) is also a random process,

defined as:

©.¢]

X(u) 2 /_ x(t)e 7" dt.

(0.9]

Lemma

o Let Ryx(uy,uz) and Sxx(A1, A2) be the autocorrelation function and two-
dimensional power spectrum of X (t), respectively.

o Let Ry.(t1,t2) and Sy.(f1, fo) be the autocorrelation function and two-
dimensional power spectrum of &(t), respectively.

Then,
Rxx(uy, ug) = Spe(ur, —us) and  Sxx(A1, Aa) = 477 Rop(— A1, Ag).
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Proof:
Rxx(ui,up) = B[ X (u) X (uy)]
= / / E[m(tl)m*(tg)]e_j(ultl_“2t2>dt1dt2
— / Ryo(ti,t )6_‘j[u1t1+(_u2>t2]dt1dt2
— Sxx uy, _u2)
and
Sxx (A1, Ag) —/ / Rixx (uy, ug)e I MutA2u) gy, dy,
= / / S (U1, —u )e‘leulHWﬂdulduQ
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Example (Theorem 11-2: Nonstationary white noise) If
Ryp(th, t2) = q(t1)0(t1 — t2) with q(t1) > 0,

(which defines the so-called nonstationary white noise) then

Sxx(fla f2) — / / Rxx(tla t2)€_j(flt1+f2t2>dt1dt2
— / / Q(t1)5(t1 _ t2)e—j(f1t1+f2t2)dt1dt2

—/ q(t2)€—j(f1+f2)t2dt2
= Q(f1+ f2)

Rxx(up,ug) = Spa(ur, —u2) = Q(ur — ug),
and
SXX()\la )\2) == 47T2R3;x(—)\1, )\2) == 471'2(](—)\1)5(—)\1 — )\2) = 471'2(]()\2)5()\1 + )\2)

From the above derivation, it is apparent that if a nonstationary white noise a(t)
has zero mean, then X (u) becomes WSS. O
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Example If x(t) is WSS, then
S f1, f2) = / / R,.(t1 — tz)e_j(f1t1+f2t2>dt1dt2
— /Oo /OO Rm(S)6-](f18+f1t2+f2t2)d3dt2

— Sm(fl)/oo eItz gy,

= QWSxx(fl)d(fl + fZ)

Hence,

Rxx(u,v) = Spe(u, —v) = 278, (u)d(u — v) (where Sea(u) > O).

In summary:

e The Fourier transform of a zero-mean nonstationary white process becomes

WSS.

e The Fourier transform of a WSS process becomes nonstationary white.
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Example If (%) is real and WSS, then
Rxx(u,v) = E[X (u) X (v)] = Spz(u, —v) = 275 (u)d(u — v).

Taking u = w and v = —w for w # 0, together with the fact that X (w) = X (—w),
yields:

Rxx(w,—w) = EX(w)X"(—w)]
— BX%w)
= ERe{X(w)}’] - E[Im{X (w)}*] + 2j E[Re{X (w)} - Im{ X (w)}]

(— 27TSm(w)5(2w)) — 0.

This concludes:

ERe{X(w)}?] = EIm{X (w)}?] and ERe{X(w)} -Im{X(w)}] =0.
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A windowing filter is of the form h(7;t) = w(t)d(7) that induces

y(t) = x(t)w(t) = /oo w(t)o(7) x(t — 7)dT

 h(r)

Example 11-11 w(t) = 1{|t| < T} for WSS x(t).

Fundamental Theorem and Theorem 9-2 For any linear system,

h'(7;t2) h(7;t1)
RMI (tlv tQ) ny(tl, tg) Ryy(tl, tg)
= E[h*(7;t2) * Ryr(t1,t2)] = E[h™(7;t2) * h(7;11) * Ry (t1,2)]

e For the windowing filter,
ny(tl, tg) = E[h*(T, tg) * Rxx(tla tg)]
h*(7;t2) Ry (t1, to — 7)dT

/ 5(T)Rxx(t1,t2 —T)dT
t2 ]%xm(tlat2)

|
&y
|
8



Windowing

and

Ryy(tl? t2)

11-84
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e For the windowing filter,

2)

Q

1,

8

(0.9]

R, t17t2 —J(t1U1+t21@)dt \dts

/ w* R,, tl,tz) —j(trur-ttaug) gy Ldts

t2 (4 / / m U17U2)6J(t1v1+t2vz)dv dv2> eI (tiurttaug) gy \dts
2

]
/ (/ e Itm=v) g (/ w(tg)ejt2(”2“2)dt2) )Sm(vl,vg)dvldvg

(271'(5 U1 — Ul)W*(UQ — UQ)) Sm(vl, Ug)dvldvg

g3
38

/N

|
\88\\

\ﬂ
= I
)

/.
TN

|+~§

= W*(vg — ug)Sye (U1, v2)dvs,
2T

—00



Windowing

and

Syy(ulv u2) —

11-86

€ 1
/ / w(ty) (4 / / xy 01702)69(75101%202)0[@ dUQ) e~ (trurttaug) gy \dts
o 2

(/ tl —]tl(ul Ul)dtl/ e—]t2<u2 U2>dt2> ngy(ULUQ)dUldUQ

(0. 9]

A
2 / N / ) ( (ur = v1)2m0 (uz —v2)> Sy (1, v2)dvydvy

2— W(Ul - Ul)Sa:y(Ulv u2)dU1
T J—o0
1 0 (0.}
m / W(U1 — Ul)W*(UQ - UQ)Sa:x<U17 UQ)dvldUQ) ’
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Hence,
Ryy(ui,ug) = yy (1, —
— / / W (uy — v1)W*(vg 4 u2) Sy (v1, vo)dvdus.
42

For WSS x(t), Syz(v1,v2) = 2718, (v1)d(v1 + va) (cf. Slide 11-81); this reduces the
formula of Ryy (uq,us) to:

Ryy( U1, uz)

— / / W u1 — Ul (UQ + UQ)QWSxx(Ul)é(Ul + Ug)dvldvg

— % W(u1 — ”Ul)W (UQ — ’Ul)Sxx(”Ul)d’Ul.
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Example 11-11 w(t) = 1{|t| < T} for WSS «x(t). Determine Ryvy (u,u).

Answer: We know that W (w) = 2sin(Tw)/w.
Hence,

Ryy(u,u) = % /OO W(u—v)W*(u — v)Sp(v)dv

= W o) Se(0)de

2T J_ o

_ 3/00 (T =) o o,

T) o (u—wv)?




Fourier-Stieltjes Representation of WSS processes

11-89

Define

s / lX(a)da

where X (w) is the Fourier transform of a WSS process ().

e By the Fourier-Stieltjes notation,

Hence,




Properties of Z(w)

e That x(t) is WSS implies

Rxx(u,v) =215, (u)d(u — v),

where S, (u) > 0, namely,
11-81).

X (u) is a nonstationary white process

11-90

(cf. Slide

e Integration of a nonstationary white process is a process with orthogonal

increments.

Proof:

{

_/wl

E{|Z(w2)
E

— Z{w)||Z(w) = Z(ws)['}
X(a)do - / X*(ﬁ)dﬂ}

/

=/ / Rxx(a, B)dBda

_ /wa /ww4 21 S, ()0 (e — B)dBda

21 Sy (@) 1H{ws < a < wytda

= 0, if (w1, ws) N (w3, wy) = 0.
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Theorem (Wold’s decomposition for continuous processes) An arbi-
trary WSS process x(t) can be decomposed into sum of a reqular process x,.(t)
and a predictable process x,(t), for which &, (¢) and «,(t) are orthogonal.

Definition (Predictable process) A process is called predictableif its present
value can be determined by its past.

e A (WSS) process is predictable if, and only if, its spectrum consists of

lines.

e An example of a predictable process is the discrete AR process with line spectra.

See Slide 11-H1:

xlt] + axlt — 1]+ e[t — 2| + -+ - + apx[t —n] = 0.

Theorem (Wold’s decomposition for discrete processes) An arbitrary
WSS process x[t] can be decomposed into sum of a regular process x,[t] and a
predictable process x,|t], for which x,[t] and «,[t] are orthogonal.
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Proof:

e Form the predictor of a[t] based on its past as:

2t = apxft — k.

The optimal {a;}72, in the MS sense can be obtained through the fact that
the MS prediction error
elt] = z|t] — zt]

is orthogonal to the data, i.e.,

Efe[tlx*[t —m]} = E { <:13[t] ) [t — k]) [t — m]}

= 0 for any m > 1.

This leads to the discrete Wiener-Hope equation:
R, [m] = ap Ry [m — k] for m > 0,
k=1
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In addition, it can be shown that elt] is a white process.

For 7 > 0,

E{elt + 7le"[t]} = Wﬂ? YamEW:o.
—0

For 7 < 0,

E e[t + rle’[t]} = (B {eltle’[t + r]})* = 0.

Hence, elt] is white.

In summary;,
a[t] is the best MS estimate of x[t] in terms of the past of x|t].
elt] = x[t] — x[t] is the part of x[t] that remains “unestimated.”
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e Form the best MS estimator of x[t] in terms of e[t] and its past:

elt—k]
should be orthogonal to {e[t — k|}7°,. Since x,[t] is a linear combination of
x[t] and its past, x,[t] is orthogonal to e[t + m| for m > 0.
In summary,

(

x,[t] L e[t — k] for every integer k

z,[t] = > wyelt — k]

\

implies @, [t] L x,[t].

e x,[t] is obtained by feeding a white input to a causal (and stable) filter; hence,
it is regular.
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e [t remains to prove that a,|[t] is predictable.

— Define two filters Afz] =1 =377 agz™" and W[z] = Y 10wz ™",

— Define y[t] = @,[t] — > 1o arx,[t — K.

— Then, by that e[t] and y|t] are respectively the outputs due to inputs |t]
and x,[t] through linear filter A[z], we learn that e[t] — y[t] is the output
due to input «,[t] = x[t] — x,[t] through filter A[z]. Together with that
x,|t] is the output due to input e[t] through filter W|z|, we have:

elt]

Wiz z, [t Al7] eft] —ylt] __ ylt]

+

— This summarizes to that ylt| is the output due to input e[t] through filter
1 — A[z]Wz]. So, y[t] is completely determined by e[t] and its past.

— However, the definition of y[t] = @,[t] — > ;| arx,[t — k] indicates that
y|t] is also completely determined by @,[t] and its past.

— Finally, x,[t] L e[t — k] for every integer k implies E{|y[t]|*} = 0. O
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Further observation on Wold’s Decomposition:

o Siole™] = Syyu,[€7¥] 4 Sy, [€7%], where S, [€7%] = |L[e/]|? for some L[e?*],

and S,[e’*] is a line spectrum.
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Example 11-12 y(t) = a - (t) with E[a] = 0 and WSS regular x() is inde-
pendent of a. Find Wold’s decomposition y,.(t) and y,(t) of y(t).
Answer:
Ryy(t) = Ely(t+7)y*(t)]
= Flax(t +71)a"x*(t)]
= 2R, (1),
where 02 = Flaa*]. Hence,
Syy(w) = 048 (w) = oy [Sp,(w) + 27 [ns|*6(w)] ,
where 1, & E[z(t)]. Accordingly,
Syyr(w) = 0387, (w) and Sy, p(w) = 27,50 (w).

We can then set y,(t) = n.a, and y,.(t) = y(t) — n.a = a[x(t) — n.]. O

Examination of the selected y,(t) and y,.():
e y,(t) =y,(t — 7) for any 7 > 0; hence, y,() can be determined by its past.
e Ely.(t+7)y*(t)] = 02RS,(7), and hence S, (w) = ¢25¢, (w).

a~ "rx a~Trx

o Ely,(t)y,(t)] = E{alz(t) — nma’} = oy E{z(t) — .} = 0.
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e The Fourier transform of a discrete random process @ |t] is also a random process

defined as:

which is periodic with period 27.

Lemma
o Let Ryx(uy,us) be the autocorrelation function of X (¢).

o Let S,.[f1, fo] be the two-dimensional power spectrum of discrete a[t].

Then,
Rxx(ui, u9) = Syzlur, —us] for —m < g, ug < .
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Proof:
Ryx(ui,ug) = E[X(u1) X" (uz)]

- Y Y Bleluele s

t1=—00 l9=—00
_ Z Z Rxx[tbt2]€—j[ult1+(—u2)t2]

t1=—00 t9=—00

— Sacx [Ula _u2]-
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Example If x[t| is WSS, then for —7 < f1, fo <,

0

Sealf1: fo] = Z Z Rm[tl—tQ]e—ﬂfﬂﬁfﬂ?)

t1=—00 l9g=—00
00 00

— Z Z Rm[s]e—J(flerhtﬁthQ)

to=—00 §=—00

_ —j(fitf2)ts > > .
Szl f1] tQZOO € o Z O(x + 2mn) = Z e I
— 27TSxx[f1]5<f1 + f2) — —

Hence, for —m < wu,v <,

Rxx(u,v) = Syplu, —v] = 2wS,.[uld(u — v) (Where Syelu] > O).
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Definition (Bispectrum) The bispectrum S, (wi,ws) of a random pro-
cess x(t) is the two-dimensional Fourier transform of its third order moment
Rire(u,v) = Rype(t +u,t +v,t) = Elz(t + w)x(t + v)z*(t)] in v and v, where
Ryzu(t + u,t 4+ v,t) is independent of t.

Remarks

e A case that R, (t+wu,t+wv,t) is independent of ¢ is that x(t) is SSS (in which
R, (t + u,t + v,t) only depends on the two differences).

e When only the individual statistics of system input and system output are
known, their power spectrums can only be used to determine the system am-
plitude (of H(w))!

Syy(w) = ‘H(W)FSM(W)-

e In light of the third-order moments, the system phase can be identified.

Syyy(W1, w2) = Syza(wi, wa) H(wr) H (wo) H* (w1 + wa).
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Syyy(wi, wa) = / Ry (u, v)e /) dudy

[ Bl wyte+ vy @) e dude

= /Z B K/Z him)ae(t +u — Tl)dﬁ)
( Z hm)a(t + v — Tz)de) ( / Z W (73)a* (¢ — Tg)d@,)]

—j (uwr+vwe) dudv

_ / / / / (1) (o)W (73) Rpge(t — 71 + 73,V — To + T3)

g I (uw1tvwy) dudvdrdmdrs

—/ / / / / (1) h(72)h* (73) Ry (1, V)

—] v/w1 T w1 —T3w1 v Wyt Towe — T3W2)du dv' dTldTQdTg

= Spra(wr, we)H(wy)H (we) H* (wy + wo).

('b
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Example If x(t) is a SSS white process, where “white” implies R, (u,v) =

Qd0(u)d(v) and Sppp(wi, ws) = Q, then

Syyy(“}lo‘*}?) = Q- H(WI)H(W2)H*(W1 + W2)a
which implies

(9(&)1, CUQ) Z Zgyyy(wl, wg) LH(wl) + ZH((UQ) — AH(wl + wg)

plwr) + (W) — pwr + wa).

L

Then
8(9 (w1 , (,UQ)

o — ¢(0) — &),

wo=0

and
@@0-@@)—Qéw¢@mmm
= ¢(O)w — /Ow b, wo)

dw .
an 1

wo=0

Note that for a real system, ¢(0) = 0. However, ¢'(0) may not be zero!
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Theorem 11-4 For a real SSS process x(t),
Rxxx(u,v,w) = B[ X (u) X (v)X*(w)] = 270842 (u, v)6(u + v — w).

Proof:

EX (u) X (1) X*(w)] = Ela(t))2(t)x* (t3)]e I WhHv=<ts) gy at. dt,

D —J(us1tutgt+vsotuviz—wt
Racxa:(sla 52)6 j(usy 3 2 3)d81d82dt3
00

/ / Ropo(ty — ts, to — tg)e I WHv=wt) qp dqtodt
v)

du+v—w).

The end of Section 11-4 Spectral Representation of Random Processes




