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e Starting at the 9th line on page 463, the textbook wrote

We shall show that x(t) = a(t) cos(wgt) — b(t) sin(wpt) is WSS
iff the processes a(t) and b(t) are such that

Rua(7) = Rip(1)  Rup(7) = —Ripu(r)  (10-126).

The forward part is correct, but the converse may not be right!

Lemma The process x(t) = a(t) cos(wot) — b(t) sin(wpt) is WSS if a(t) and b(t)
are zero-mean WSS with Ry, (7) = Ry(7) and Ryp(7) = — Rpa(T).

Proof: If a(t) and b(t) are zero-mean WSS with R, (7) = Ry (7) and Ry(7) =
— Rypo(7), then Elx(t)] = 0 and

Elx(t1)x(ts)] = E{|a(t)cos(wot1) — b(t1) sin(wpt1)][a(ts2) cos(wpts) — b(ts) sin(wyta)]}
Rty — to) cos(woty) cos(wota) — Rap(ty — to) cos(wpty) sin(wots)

— Ry (t1 — to) sin(woty) cos(wota) + Ryp(t1 — t2) sin(wpty) sin(wyts)

= Rua(t1 — ta) cos|wo(ts — t2)] + Rap(t1 — t2) sinfwy(t; — to)],

which indicates the WSS of a(t). O
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Fallacy If the process x(t) = a(t) cos(wyt) — b(t) sin(wpt) is WSS,
then a(t) and b(t) are such that

Raa(T) = Rbb(T) and Rab(T) = —Rba(T).

Counterexample:
e a(t) = sin(wyt), b(t) = cos(wpt), and x(t) = 0.
e x(t) is WSS, but
Ruu(t1,t2) = Ela(ty)a(ts)] = sin(wpty) sin(wots)

and
Rup(t1,t2) = E[b(t1)b(t2)] = cos(wyty) cos(wyts)

are not equal and are not functions of only (£; — t9). O

What will be the correct statement?

Lemma Suppose a(t) and b(t) are zero-mean jointly WSS. Then, the process
x(t) = a(t) cos(wpt) — b(t) sin(wgt) is WSS if, and only if, a(t) and b(t) are such
that

Raa(T) = Rbb(T) and Rab(T) = —Rba(T).

e The blue-colored presumption is actually given at the first line of Section 10.3.
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Proof:
1. Forward: Have been proved in Slide 10-1.

2. Converse: If x(t) is WSS, then
Elx(t1)x(ts)] = Ruu(t1, ta) cos(woty) cos(wota) — Rap(t, to) cos(wpty) sin(wpts)
— Rypa(t1, to) sin(wyty) cos(wots) + Ryp(t, to) sin(woty) sin(wots)
cos|wy(t1 — t2)] + cos|wp(ty + ¢
_ Raa(tlth) [ 0( 1 2)] [ O( 1 2)]

2
Ryt 1)l £ 12) ; sinfwo(t1 — t)]
—Rya(t1, t2)sm[w0(t1 + 1) _|2_ sinfwy(f1 — )]
+ Ry (1, t2)cos[w0(t1 — b)) ; cos|wo(t1 + t2)]

1
=35 cos|wo(t + t2)][Raa(t1 — t2) — Ryp(t1 — t2)]  (must be zero!)
1
+§ cos|wo(ty — to)|[Raa(ts — t2) + Rpp(t1 — t2)]  (depends only on (¢; — t3))
1
) sinfwo(ty + t2)][Rap(t1 — t2) + Rpa(t1 — t2)]  (must be zero!)

I
‘|—§ Sll’l[&)()(fl - tg)][Rab(tl - tz) - Rba(tl - tz)] (depends Ol’lly o1 (tl — tg))
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imply that

Raa(tl — tz) = Rbb(tl — tg) and Raa(tl — tz) + Rbb(tl — tg) = 2Raa(t1 — tg)
Rap(ty —ta) = —Rpa(t1 — t2) and Ryt — to) — Rpa(ts — t2) = 2Ru(t1 — ta).

O

Remarks

e The above lemma yields that

R (T) = Raa(T) cos(woT) + Rap(7) sin(woT)

for zero-mean WSS a(t) and b(t) with R, (7) = Ry (7) and Rup(7) = — Rpa(T).
e Define w(t) = a(t) + jb(t). Then, it is easy to see that

x(t) = Re{w(t)e/*0}
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e We can define a dual function of x(t) as:

y(t) = Im{w(t)e’*'} = a(t)sin(wpt) + b(t) cos(wot)

In summary;,

w(t) = a(t)+ jb(t) with Ryy(r) = Ryp(7), Rap(T) = — Rpu(7)
z(t) = Re{w(t)e™'}

y(t) = Im{w(t)e’ "'}

z(t) = a(t) + jy(t) = w(t)e™

In the sequel, we assume that a(t) and b(t) are zero-mean jointly WSS and a(t) is
WSS (s0 Ruo(T) = Rip(7) and Ry (T) = — Rpa(7)).
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Graphical View:

w(t) = a(t) + jb(t)

\ 4

WV
zero-mean WSS

z(t) = =(t) + jy(t)

WES
——(t) = Re{w(t)e’0'}

y(t) = Im{w(t)e’ "'}

——a(t) = Re{z(t)e /w0!}

Tz(t) Ro(.}
Tw(t) Re( ]

b(t) = Im{z(t)e/0!}
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Observation 1 z(t) is zero-mean WSS if w(t) is zero-mean WSS.
Proof: Observe that z(t) = h(7;t) x w(t) with h(1;t) = hi(7)ho(t), where
hi(1) = (1) and hs(t) = /0. Hence, by Theorem 9-2 (cf. Slide 9-104),
R..(t+ s,t) = E{hs(t + s)h3(t)|hi(—s) * hi(s) * Ry,w(s)]}
= ho(t + s)h3(t) - 0(—s) * d(s) * Ryw(s)

= e Ryu(s).
The proof is completed by noting that E[z(t)] = 0. O
Observation 2 R,,(7) = R,,(7) and R,,(7) = —R,.(7) if Observation 1 is

true.

Proof: A direct consequence of the Lemma in Slide 10-2. Note that a(t) =
Re{w(t)} = Re{z(t)e "'} = x(t) cos(wot) — y(t) sin(wpt) is WSS and z(t) is
zero-mean WSS (equivalently, x(t) and y(t) are zero-mean jointly WSS). O

Observation 3 R, (7) = 2R.(7)—2jRap(7) and R..(7) = 2R, (T7)—25 Ry (7).

Proof: Follow Observation 2 and the definition of w(t) and z(¢). O
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Observation 4

and

Sy(@) = $1S2s(u) = Sus(~)] = 2{Su(w = ) = Su( =12 = o).

Proof: First, R,,(—7) = Ry.(7) implies S, (—w) = Sy (w).
Secondly, R,,(—7) = —R,,(—7) = —R,,(7) implies

Spy(—w) —/ ny(T)eﬂ”)TdT—/ Ry, (—T)e “Tdr

o0 —00

= —/ ny(T)e_jwdT: —Sy(w)

0.9

Then, the observation follows from
S..(w) = 28, (w) — 255, (w) (Observation 3)
S.o(—w) = 28 (—w) — 2j Sy (—w) = 255, (w) + 2554y (w)
S..(w) = Syw(w—wy) (Observation 1)
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Rice’s representation
e The Lemma on Slide 10-1 states that the process
x(t) = a(t) cos(wpt) — b(t) sin(wyt)
is WSS if a(t) and b(t) are zero-mean WSS with R, (7) = Rpp(7) and Ry(7) =
— Rpa (7).
e Rice claims that for any zero-mean WSS process (), there exists
wy, a(t) and b(t)

such that & (t) can be represented as x(t) = a(t) cos(wgt) —b(t) sin(wyt), which
is named the Rice’s representation. (Here, “=" in the MS sense.)

e Rice’s representation is not unique!
a(t) = Re{(z(t) + jy(t))e "'}
b(t) = Im {(z(t) + jy(t))e ™'},

for any wp and any zero-mean WSS y(t) satisfying R,,(7) = R,,(7) and
Rey(7) = —Rya(7).
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How to choose y(t) that satisfies R,,(7) = R,,(7) and R,,(7) = —R,.(7)
e Choose or restrict y(t) to be Y (w) = X (w)H (w).
e By Theorem 9-4 (cf. Slide 9-104),
Suy(®) = Sel@)H' (@) and Syy(w) = Suulw)| H(w)2

e Irom X (w) = Y (w)[1/H(w)] and Theorem 9-4 (exchanging the roles of x(t)
and y(t)), we obtain

Sya(w) = Syy(W)[1/H(w)]* = Sua(w) [ H(W)*[1/ H(w)]" = Spr(w) H(w).
e In order to have
Ser(w) = Syy(w) = Sea(W)HW)|* and  Syy(w) = =Sy (w),

we require

i) |Hw)[*=1| and |i1) H(w) = —H*(w)|.
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e In addition, by R, (—7) = —Ry.(—7) = —Ry(7), we have S, (—w) =
—Syy(w) or equivalently S, (—w)H*(—w) = =Sy (w)H*(w).
Together with Sy, (w) = Spp(—w), W

, we require [i1) H(—w) = —H(w)]|.

o i) |H(w)|> =1|implies H(w) = /™) for some ¢(w).

o ¢JoW) — H(w)=—-H"w)| = —e W) implies ¢/2?@) = —1, which in turns

i)

implies

ol = (k(w) +3 ) 7

for some integer function k(w). For convenience, we restrict k(w) € {0, 1}.

e Hence,
H(w) = jel™w) = j<_1)k(w).

e Finally, |4ii) H(—w) = —H(w)|implies k(w) # k(—w) for k(w) € {0,1}.
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Claim For a given S,,(w), the choice of Hilbert transform y(¢) of &(¢) minimizes
the average rate of variation of the complex envelope of (t), namely, E[|w’(t)]?].

Proof:

e Since the transfer function of a differentiator is jw,
S (W) = Sww(cu)]jw]2 = Sww(cu)w2.

e Observation 1 indicates that Sy, (w) = S, (w + wp).

e Hence, the problem becomes to minimize

0.9

M 2 B[ (b)) = / Syt (W) o

0

- /Oo WS (W) = /Oo (w — wo)* S (w)dw. (10.1)

e Lor a selected S..(w), the best wy that minimizes (10.1) should satisfy

B ffo wS,,(w )dw
Wo =
f Szz
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e Taking wy into (10.1) yields
M :/ (W? — @5)S..(w)dw.
Observe that

M= [ - ahs

©.¢]

- 5 ([ -aso+ [ - s
— 5 ([ - apiste + su-wa)
_ 9 / Z(wQ @) S, (w)duw, (— ) / Z S () e — 22 / Z Sm(w)dw>

where the last equality follows from 4S5,,(w) = S..(w) + S..(—w) (cf. Obser-
vation 4). As a result, it suffices to maximize @3 for the minimization of M for
a given Sy, (w).
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e By S..(w) =25, (w) — 255,y (w) (Observation 3), Sy, (w) = Spz(—w) (Obser-
vation 4) and R,,(—7) = —R,.(—7) = —R,,(7) (or equivalently, S,,(—w) =
—Szy(w)), we have

/Oo wS.(w)dw = 2/m(—j)wSxy(w)dw — 4/000(—j)w5xy(w)dw.

Also,

[ surte = [ sutato= 3 ([ s [~ s-wa)
= " () = 4 /0 " Sy

Hence,

o (=)wSay(w)dw fo J)wSez(w)H* (w)dw fOOOwSm(w)(_l)k(w)Hdw.

o foooS o(w)dw fo‘”S o(W)dw - 7S (w)dw

Consequently, the maximum @y is obtained if (—=1)*“+t =1 forw > 0. O
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Hilbert transform y(¢) of x(¢)

e Since k(w) = 0 for w < 0 and k(w) = 1 for w > 0, H(w) = j(—1)F¥) =
—jsgn(w) is the Hilbert transformer, and wy = [~ wSse(w)dw/ [;° Spz(w)dw.

Sz (W)
—— —
—wy “o Z(w) = X(w) +jY (w)
(1) = a(t) + Jy(1) oL
S..(w) = |1 + sgn(w)|*S,.(w)
o = 45, (w)1{w > 0}
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w(t) = a(t)+ 7b(t) Complex envelope or Lowpass signal
= r(t)el*W®

x(t) = Re{w(t)e*'} Bandpass signal
= a(t) cos(wot) — b(t) sin(wyt)
= 7(t) cos|wot + (t)]

a(t) Inphase component

b(t) Quadrature component

wi(t) = 2 (wot + p(t)) = wy + /() Instantaneous freququency

Definition (Bandpass) A process x(t) = a(t) cos(wyt) — b(t) sin(wyt) is called
bandpass if Sy, (w) = 0 for |w| outside an interval (wy, ws).

Definition (Narrowband) A bandpass process x(t) = a(t)cos(wot) —
b(t) sin(wypt) is called narrowband or quasimonochromatic if |wy — wy| <K wy.

Definition (Monochromatic) A bandpass process (t) = a(t) cos(wot) —

b(t) sin(wot) is called monochromatic if S, (w) is an impulse.




Instantaneous Frequency and Optimal Center Frequencyioir

The optimal center frequency is given by
) f_ WS, (w )dw o [T (—jw)S. ( )dw jE[z(t (2'(t))*
w =7 = :
DS g 2o Sl E[=()]

Now observe that z(t) = r(t)ej(‘*’otﬂo( ) implies 2 (t) = [r ()47 (t)w;(t)] e “ote )
Then,

[7(t) — jr(t)w;(t)Je=Lo=
(' (t)] = JE [ (Hwi(t)] -

Since Sy (w) = Spp(—w) = Syy(w) = Syy(—w), we have

1

Ele(t)e/(0)] = Ely@y 0] = 5- [ (~j0)Suwido =0

and Elr(t)r'(t)|= Elz(t)z'(t)] + Ely(t)y'(t)] = 0.
This concludes that E[z(t)(2'(t))"] = —jE [r*(t)w;(t)], which together with
Ellz(t)]] = E[lr(t)|"] implies

=
I\
—~
~
~—
—~
\\
P
~
~—
~—
I_96l
I
& &
 ——
<
—~
k)
~—
=
&

Elr(t)wi(t)]

optimal carrier freq wy = = weighted average of w; ( = wp +

Elr3(t))
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Consider the frequency modulation with modulation index \.

Let @(t) = cos|wot + A\p(t) + @], where p(t) = fot c(a)da.

’IU(t) — ej()\so(t)—l—goo)
x(t) = Re{w(t)ejwot}
Z(t) = w(t)eijt

Theorem 10-3 If ¢(t) is SSS, and ¢, 1L c(t), and E[e/#0] = E[e/*#0] = 0,
then x(t) is zero-mean WSS, where “1l” means “independent.”

Proof: Since E[z(t)] = E[w(t)e/*0!] = E[e/*¢{)]Elei#o]eint = (),

Ele(t)] = E[Re{z(t)}] = Re{E[2(t)]} = 0.
In addition,
R, (t+T1,1) = ?[w(t + 7)x(t)] (because x(t) real) 1
= ZE (z(t+7T)+2"(t+7))(=2(t)+ 2%(t))]. (since x(t) = g(z(t) + 2*(t)))
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Observe that

10-19

Elz(t+7)z(t)] = E [ej(wo(t+7)+/\¢(t+7)+¢o)ej(wot+/\<P(t)+<Po)]

_ [ej<wo<2t+¢>+xso<t+r>+w<t>>] E [e/%0] =0

9

_ E [ej(wo(t+7)+kso(t+7)+¢o)e—j(wotJrM(t)Jrsoo)}

'ejA[so<t+r>—so<t>1]

:ej)\ ftt+T c(a)da}

_ 6jWOTE[C;jMD(T)]

B C(O‘MO‘] (because ¢(t) is SSS)

and
R..(t+T7,t) = Elz(t+71)z"(t)]
— WTE
— YT
— YT
Consequently,

R,.(t+7,1)

= L (Re(r) + RL(7)),

which together with F[x(t)] = 0 implies the WSS of x(t). O
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Remarks on Theorem 10-3

e From the proof of Theorem 10-3, we also learn that:

1 , |
R, (1) = §Re {R..(T)} and Ryu(7) = E[ejkso(T)] (since R..(T) = Ryuw(T)e?07)
e In addition, x(¢) is in general not WSS if ¢y is deterministic since E[e/?0] =
/90 £ ().

e Further classification of x(t):

— The process x(t) is generally classified to “phase modulated’ if the statistics
of ¢p(t) is known (i.e., ¢p(t) is the information process).

R, (1) = sRe {E [e/¢(D] e/} is well-defined for the random process

@ (t) because “any finite-dimensional (including one-dimensional) sample

distribution is well-defined for a random process.”

— The process x(t) is generally classified to “frequency modulated’ if the
statistics of ¢(t) is known (i.e.; ¢(t) is the information process).

R..(1) = iRe{E [e()] &/07} may not be well-defined even if the

distribution of ¢(t) is known. An extreme example is that ¢(t) is not

Lebesque-integrable in t.
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Remarks on frequency modulation

e In order for x(t) to be zero-mean WSS, Theorem 10-3 (cf. Slide 10-18) requires
that c(t) is SSS, and ¢, 1L c(t), and E[e/¥0] = E[e/*#0] = 0.

e Without SSS of ¢(t), (t) may not be WSS, and the calculation of S,,(w) (or
R, (7)) lacks of its footing!

e Question is that how to approximate S,,(w) under known statistics of SSS
c(t)?

Answer: Woodward’s Theorem.
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Theorem 10-4 (Woodward’s Theorem) If the process ¢(t) is continuous
and SSS with marginal density f.(c), and also if c(t) 1L g, and E[e/#0] =
Ele??#0] = 0, then for large \,

Seale) ~ 1 [fc (“’ ;“0) o (@)] .

e By the continuity of ¢(t),

Proof:

p(t) =~ c(0)t for |t| < 1y

for some 7y sufficiently small. So,

x(t) = Re{z(t)}| ~|z(t) £ Re{z(t)}| for |t| < 7,

where

Z(t) L ojwot+A 3 e(a)da+gg) and Z(t) A oilwot+Ate(0)+pg)

Take a look at the lemmas on Slide 9-105 and compare them with z(t)!
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e Treating tc(0) as fo a)da with €(t) = ¢(0) for every t € R, we observe that
c(t) is SSS and c(t) 1L ¢y, and hence, we can follow the proof of Theorem
10-3 to obtain:

Rgg(T) = F |:6]>‘TC(O):| 0T — e]WOT/ fc(C)GJATCdC _ Xe]on\/ fc ( ) GJUTdU

which implies

/ fe (%)/ e ITW—wo—u) g gy,

N fe (%) 210 (w — wy — u)du

27 W — Wy
-5 (55):

Then, Observation 4 (cf. Slide 10-8) implies that

Sir(w) = i [S=z(w) + Sz (—w)] = [fc (w 5 w()) e (M)] |

A
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e Now in order for Szz(w) to well-approximate S,,(w), we hope that
Rz:(7) = /07 Bl me0)] (10.2)

well-approximates

R..(7) = & E [GNJ cwﬂ (10.3)

for most 7 € R. We already know that (10.2) is close to (10.3) for |7| < 7.
As for |T] > 7, because ¢(0) and [ e(a)da assume to have densities, we can
make:

B ~0 and E [ej Ao C(O‘MO‘] ~ 0 if A is sufficiently large.

This proves the requirement that “for large A" in the theorem. O

We will see how well the approximate in Woodward’s theorem is for the special
case that ¢(t) is a Gaussian process.

Riemann-Lebesgue Theorem (Thm. 26.1 in P. Billingsley, Probability and

|t|—o00

Measure, 3rd Ed., Wiley, 1995) If X has a density, then px(t) & E[e/*] —= 0.
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Definition (Gaussian process) [p. 122, Random Processes: A Mathemat-
ical Approach for Engineers, R. M. Gray & L. D. Davisson] A random process
{x(t),t € T} is said to be a Gaussian random process if all finite collections of
samples of the process are Gaussian random vectors.

e This is exactly the definition used in the textbook (cf. Slide 9-42).

Lemma [p. 122, Random Processes: A Mathematical Approach for Engineers,
R. M. Gray & L. D. Davisson] A Gaussian random process is completely determined
by a real-valued mean function p(t) and a symmetric positive definite function

C(tq, t2).

e This is exactly what states in Existence Theorem in Slide 9-42.

Definition (Gaussian process) [p. 54, Communication Systems, 4th edition,
S. Haykin| A random process x(t) is said to be a Gaussian process, if every
(Lebesque-integrable) linear functional of &(t) in the form of

5= / " gat)dt

0

is a. Gaussian random variable, provided that y has finite variance.
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e By this definition, (¢ fo a)da is certainly a Gaussian process, if ¢(t) is
a Gaussian process.

/_ Z o(t)plt)dt = / o)dadt — / / a)dadt
—/0 (a)/a ()dtda—/mc(a)/a o(—t)dtda

— /_ " d(a)e(a)da

©.¢]

where g(a) £ 1{a > 0} - [ g(t)dt — 1{a < 0} - [~ g(—t)dL.

e Hakin’s definition of Gaussian processes implies the definition in the textbook.

A random vector is Gaussian if every linear combination of the vector compo-
nent is a Gaussian random variable.
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e The converse is also true since every Lebesque-integrable function can be
approximated by some Riemann-integrable function (cf. Slide 26-16 in my
course: Advanced Probability in Communications). E.g., the integral of the
Lebesque-integrable-but-Riemann-nonintegrable function that f(z) = 0 if x
is irrational, and 1, if = is rational, can be approximated by the integral of
the Riemann-integrable function f(x) = 0. Thus, the integral result y can
be obtained by taking finite number of samples of g(¢)a(t), and then letting
the number of samples go to infinity. The limiting distribution is certainly
Gaussian because for each sampled number, the samples are constituted of a
Gaussian vector by the text’s definition.
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The accuracy of Woodward’s approximate is determined by how well
R::(1) = e/ E[eO0)]  approximates R..(7) = /“07 E[e/A?(7)],
For zero-mean Gaussian SSS ¢(t) with

R~ {

p, for |T| < 70;
0, otherwise.

p(t) = fot c(a)da is also zero-mean Gaussian. This implies

Elp*(T)] = / / B)]dadB = / / cela — B)dadp = / / w)dudf3

= / Rcc(u)/ dﬂdu+/ Rcc(u)/ dBdu (Note R..(u) = Re.(—u))
—T —u 0 0
T 2 :
T, if |7| < 7o;
f— 2 — f—
/0 (7 = w)Rec(u)du {,07'0(2]7\ — Tp), otherwise,
and for zero-mean Gaussian (1),
WO T —l)\QpTQ : .
_ ,JwoT —1)\2E[<p2(7)] _ el 072 , if ‘T’ < T0;
Realr) = e {ejwoﬂe%vmo(ﬁTo)7 otherwise.

Similarly,
Res(7) = /07 ¥V HICO] — gienro—3X0r*,
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Thus,
1S2a(w) — Sesle)] = \ /

T[>0

< /.
|>To

2 |21
= )\2—p7_0€ pT0/2 )\ FCD (_)\\/157_0) ’

where ®(-) is the cdf of the standard normal. A well-known approximation for

P(—x) is
1 I 1-3 1-3-5
P(—x) = e/ (1——+ — +>

o3\ _ %vmo@\rr—m) oI (w—w0)T 7.

(e §X%pr? _ e—%vpm@\rr—m)) oI (w—wo)T

2 x4 0
and

1 1 1 2 1 2
22 /2 —x“/2 —x“/2
e l——= ) <P(—2) = e —P(x) < e .
27T ( $2) s ¢(=) \V2Tx (@) < V2 a3

Consequently, letting x = A\/p7y yields

210V 2T ( 1 or2/2 _ @(—x)) < 2rovem 1 a2 “Xpr2/2.

_ Q. < —
’SZZ(W) SZZ(W)’ - . \/%3336 >\4,027'

2Tx
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We finally conclude that:

Sualt0) = Sualt)] = |7 (Sea() + Suxl =) = § (S2s(w) + Ss(—w)
< 1 150() — S| + 7 18us(—w) = Sxs(—)
< 70 e—)\2p73/2
= e

and the difference of S,,(w) and S;zz(w) uniformly decreases to zero as \ large.
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o Wideband FM: If X is chosen such that N2 p78 > 1, Sy (w) ~ Spz(w).
In such case,

2
S (w + wy) A Saa(w + wyp) = 7” f. (;) . (Sce Slide 10-23.)

and the bandwidth of Szz(w + wy) is wide (as proportional to A), and so is the
bandwidth of its approximate target S.,(w + wp). Thus, the system is named
wideband F'M.

e Narrowband FM: If X is not large enough such that \?p7g < 1, (and assume
7y is very small such that most |7| > 7), then by Slide 10-28,

2\ pToeAQPTg /2

~ SJwoT —)\2p7'2(|7'|/7' —1/2) ~
R..(T) = e ! ’ = Saa(w +wo) & w2+ )\4p27'g

with 3dB-bandwidth wsqp = A p7p.
In such case, S,.(w) is named narrowband FM, and cannot be well-approximated

by Sgg(éd).

The end of Section 10-3 Modulation
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Cyclostationarity: A random process x(t) is called strictly-sense cyclostation-
ary stationary (SSCS) with period T if its statistical properties are invariant
to a shift of the origin by integer multiples of T

Wide-Sense Cyclostationarity: A random process x(t) is called wide-sense
cyclostationary stationary (WSCS) with period T if 1., (t + mT) = 0. (t)
and Ry, (t1 + mT,ty + mT) = R, (t1,t2) for every integer m.

Theorem 10-5 (SSCS and SSS) If x(¢) is an SSCS process with period T,
then y(t) = x(t — 0) is SSS, where random variable 6 that is independent of x(t)
is uniformly distributed over [0, T).

Moreover, the cdf of y(¢) can be obtained from the cdf of x(t) as:

1 (T
Fy(zy,...,xnit1, ... 1) = f/ Fo(ry,...,xnt1 —a,... t, —a)da. (10.4)
0
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Proof: It suffices to show that the probability of the event
PH{Ce S y(ti+c¢, () <zxzyand --- and y(t, + ¢, () < x,})

is independent of ¢, and is given by (10.4). This can be proved as follows.
By the uniformity of 8, and independence between a(t) and 6,

PACe S:ylti+c¢¢) <zyand --- and y(t, + ¢, ) < z,})
T
/ ({CGSIw(h—I—C—Q,C) < x7and --- andw(tn+c_(97§) an}) (%) do

P {ceS zt1—a,() <zyand --- and x(t, — a,() < z,})da (a=60—c)

'ﬂm

T
Folxy,...,xpt1 —a, ... t, —a)da.

_ / PUCES @t —a,¢) <y and - and @ty — a,¢) < z,})da (By SSCS of @ (1))

e
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Theorem 10-6 (WSCS and WSS) If x(t) is a WSCS process with period
T, then y(t) = x(t — ) is WSS, where random variable @ that is independent of
x(t) is uniformly distributed over [0, 7).

Moreover, the mean and autocorrelation function of y(t) are

I 1 7
Ty = T/O nx(t)dt and Ryy(T) - T/O Rxm(t+7_7 t)dt

Ely(t)] = Elz(t — 0)] = E|Elz(t — 0)|0 = 0] = %/0 Ela(t — 0)|0 = 00

Elx(t — 0)]df (Independence between x(t) and 0)

=
3
»
~—
QL
&
=
@p)
@)
N
©)
—
8
=
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and similarly

R, (t+T1,t) = E|
— E|

(t+7)y(t)] = Flx(t+ 71— 0)x(t — 0)]

x(t+7—0)x(t —0)|0 =0]]
Elx(t+71—0)x(t — 0)|@ = 0]d0 (Uniformity of )

b &

~

Elx(t+ 71— 0)x(t — 0)]d0 (Independence between x(t) and )

T
Ro(t+7—0,t— 0)df

t
Ry (s+T1,5)ds (s=1t—10)

-7

T

Ri:(s+7,8)ds (WSCS of x(t)).

— T S— — —

Nl— Hl= 5= 5= 5=
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Remarks

e In the literature, R,,(7) is called the time-average autocorrelation function
of the WSCS process @ (), because it averages over one period of the periodic

autocorrelation function of & (t), and is usually denoted by R, (7).

For a non-WSCS process (), its time-average autocorrelation function is

defined as: y
Roo(m) = lim — [ Ry (t+7,t)dt,

provided the limit exists.

The above limit always exists for a WSCS process, and is equal to

kT

_ 1
Ry (T) = — / R,.(t + 7,t)dt for any positive integer k.

e In the textbook, &(t) = x(t — @) is named the shifted process of x(t).
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Examples of WSCS processes: Show that the pulse train

= EOO: c,0(t —nT)

n—=——oo

is WSCS, where {¢,}>° __ is a discrete-time SSS sequence. Then, determine the
time-average autocorrelation function and time-average power spectrum of z(t).
Answer: Apparently,

p=(t) = E[z(t)] = ) Eleqo(t —nT) = pe Y 6(t —nT)

n—=——oo n—=——oo

and

R..(ti,ty) = Y Y  Elewe]d(ty —nT)i(ty — rT)

N=-—00 7"=—00

= Z Z Rcc tl —nT)5(t2—TT)

- Z Ree[m)] Z 5(ty — (m+r)T)o(ts —rT) (m=n—r)

are periodic with period 7.
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To determine the time-average autocorrelation function for a(t), we derive that

_ 1 T 1 T 0
Ro(r) - f/o RZZ(H—T,t)dt—f/ > Al Z S(t+ 17 — (m+ 1Tt — 1Tt
1 o0
-2 ; m TZOO/ (t+ 7 — (m+P)T)5(t — rT)dt
1 T—rT
- = ZRCC TZOO/ 5(s+7 —mT)é(s)ds (s=t—rT)
1
= = m_z_:oo R..m /_ (s +7—mT)(s)ds
1
. fmzz_oo Ruli] | 90als)0(5)ds (9unls) = (s 7 = )
1 L . | grm(s) continuous at s = 0;
= Z R./m]g:m(0) Replication Property (Slide 9-87): { exception oceurs at ...

m—=——oo

1 (0.¢}
= = Z R..[m|o(T — mT).

m=—oo
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For any 7 not equal to a multiple of T', g, (s) is zero at the vicinity of zero, and
is certainly continuous at s = 0.

The same claim holds if 7 = kT for some integer k, and m # k.

At the situation where 7 = kT" and k = m, we use the “convention” that ffooo d(s+
mT — mT)d(s)ds = [°_d(s)d(s)ds = d(s) to complete the derivation.

The expression on page 475 of the textbook, namely,
T
/ t+717—(m~+r)T)o(t —rT)dt =0(r —mT)
0

is incorrect. Note that the left-hand-side is a function of r while the right-hand-side
does not depend on r. The correct expression should be:

Eoo: /Té(t 41— (m+)T)8(t — rT)dt = 6(r — mT).

r=—00

An easier way to do the derivation in the previous slide is that

/Oo 5(t — a)d(t — b)dt = /OO 5(a — b)o(t — b)dt = 6(a — b).

©. 9] —00
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The time-average power spectrum of a(t) is then given by:

Suw) = [
/

where
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Fundamental Theorem and Theorems 9-2 and 9-4 Revisited For any
linear time-invariant system,

N ) Ny = E[h(T)  0,]
= h*(—1 h(t) — _
Fiages(T) (=) (7) R, (1) = E[h"(—7) * h(T) % Ryp(7)]
= H*(w H(w) — _
S (W) ) ) Syy(w) = E[|H (w)[*Sye(w)]

provided the listed conditions hold.
1. E[P;] < oo, where P, £ [* |h(7)|dr;

R R

2. lim sup max —/ N (t — a)dt|, —/ R..(t —a,t —Db)dt| p < M for

W00 2w J_y 2w J_y
some finite M holds almost everywhere (a.e.) in a, b;

3. limy, o ﬁ fiuw n.(t — 7)dt = 1, for every ;

4. limy—yeo ﬁ fiuw R..(t —a,t — b)dt = R,.(b— a) for every a, b.
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Proof:

N T N T
Jm o _wny(t)dt—u}ggo 5w ) Ely(t)]dt
1 w (0.¢}
u}gr;o—w E [/ h(T)x (t—T)dT] dt

lim —/ / x(t — 7)|drdt
w—00 2

lim / ( t—T1 dt) dr
wW—0x0 00

Bk <r>}2w/wn< |
/ Z Tim (E[h(r)]i / Zm(t—T)dt) ir

10-42

This step requires the existence of a function g(7)
sufficiently large w

IRl

ATY)

0.9

= M - E|[|h(7)|] such that for

/Z N (t — T)dt‘ < g(7)a.e. in 7 and / g(1)dr = M-E[P})] <

—0O0

A

(

w

Elh()] lim — [ n.(t— T)dt) dr — 7, / " Bh(r)dr

w—oo LW

—w o0
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w

1
R,,(7) = lim — Ryy(t+7 t)dt

wW—00 w
= lim —/ / / ER* (u)h(v)|Ryp(t + 7 — v, t — u)dvdudt
w—00 2

_ whi%o/ / <%/ E[h*(u)h(v)]Rm(tJrT—v,t—u)dt) dvdu

= lim ( (Wh(v)| Ryt + T — v, t — u)dt) dvdu

w—>oo

There exists function g(u,v) = M - E Hh*( Jh(v)|] such that for sufficiently large w,

Elwhly, [

/ / g(u,v)dvdu = M - E[P%] < 0o

Ry, (t+ 17—, t—u)dt‘ < g(u,v)

and

_ /OO /°° EIl (u)h(v)] lim (i /Z Rm(tJrT—v,t—u)dt) dvdu

_ / ) / B (@)h(0)] Realr = 0 4 w)dodu.
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Theorem 9-4 follows immediately from Theorem 9-2; hence, we omit it. O

Example 10-4 Suppose that

x(t) = Z c,0(t — nT) with {c,} > zero-mean i.i.d.

n—=——oo

0, otherwise

Please find the time-average autocorrelation function and time-average power spec-
trum of the output process y(t).

Answer: Examine the four conditions as follows.

1. B[P} = T? < oo, where Py 2 [ |h(7)|dr = [, dr =T

2. Since (1) = 0 and Rel] = Eleqnes] = 0if m 0
Roo(ti, ts) = Z Re[m Z(m (m +7)T)(ty — rT)

r=—00

= R.[0] Z 5(t1 — rT)d(ty — rT)  (cf. Slide 10-37)

r=—00
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4 )

1 (" ("
hgl—?olip max < \% /w N (t — a)dt/, % /w Ry.(t —a,t — b)dt‘ >
\ =0 J
I -
= ligfolip 7 /w R.c[0] T;OO ot —a—rT)o(t—b—rT)dt

. VAR
= R.[0]6(a —b) - limsup %/w Z o(t—0b—rT)dt

wW—00

r=—00

= R.f013(a — ) - lmsup | [Q_MH

wonso 2w | T
1

= TRCC[OM((I — b); (which is bounded a.e. in a, b)

3.7y = liMyoo 5= [ Ne(t — 7)dt = 0 for every
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4.

Rxx(b o a)

for every a, b.

w

1
lim — R, (t —a,t —b)dt

w—00 20 ) _,
1 S
u}glgo w0 ) R..[0] ; ot —a—rT)o(t—b—rT)dt

1
ZRaf0}3(b— 0

By the validity of the four conditions, Fundamental Theorem and Theorems 9-2

and 9-4 give

Ny = 77;6/ h(t)dr =n,T =0,

0
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/ / h*(u)h(v) Rye(T — v + u)dvdu

:// [0(r—v+u)dvdu (O<v=u+7<T)

— TRCCH/O H{—7<u<T—r71}du

— R.[0] (1 - %) 1{|r| < T).

) = 1H@Salo) = | [ | (FRo0)

- (IR (Lra) = Ropg

and
9

The end of Section 10-4 Cyclostationary Processes
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Definition (Bandlimited processes) A process x(t) is called bandlimited
(BL) if Sy.(w) = 0 for |w| > o, and R,.(0) < oo.

Most books do not require R,.(0) < oo for the definition of bandlimited pro-

cesses. Here, we additionally require R,,(0) < oo for theoretical manipulation
convenience. See the next lemma.

Lemma A bandlimited process x(t) has Taylor expansion (in the MS sense).

Proof: Since S,,(w) is real and non-negative, and

_ 1 oo . 1 o
oo > R, (0) / Spr(w)e?Vdw = — Sa(w)dw,

T or o 2 J_,
we have - ;
/ | jw|*™" S (w)dw < 02”/ Spr(w)dw < oo.
Hence, the inverse Fourier transform of |jw|*"S,,(w) exists, which implies the nth
derivative of R, () exists. Specifically, by Theorem 9-4,

_ 1 g _ :
R™(7) = 2—/ (jw)?"Spp(w)e™ dw.  (Hence, £™(¢) exists in the MS sense.)
m

—0
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Observe that

ejwv v_(]w)n

]2

n!

|
o

n
oo gl

So, passing the process (t) via filter H(w) = e/“ and filter H(w) = >~ % (jw)
should result in the same output. Accordingly,

n

x(t+v)= Z AR (t)% in the MS sense.
n=0 '

Remarks
e The above lemma indicates that a BL process is very “smooth” since it has

derivatives of any order.

e The next lemma shows further that a BL process is not only “smooth” but also
“slow-varying in time.”

Lemma If x(¢) is BL (not necessarily a real process as required in the textbook),

1 v _
lim — [ E []a:(t+7) — x| dt < 0?72 R (0),

w—00 20 J_,,

provided the limit exists.
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Proof: Let y(t) be the output due to input x(¢) and filter H(w) = &/*7 — 1.
Then, y(t) = x(t + 7) — x(t), and

1" 2 R T 2
Jm s | B e e de = Jim oo [ Byl

1
= lim —— [ Ry (t.t)dt = R,,(0)

Theorem 9-4 states that

_ 1 o0 _
Ry0) = o [ 1H@) Sl
1 g _
= o 79T — 1|2, (w)dw
T —0
L [7 5 /WwT\ 5
= o _048111 <7> Sype(w)dw
1 [° _
< 5 WS, (w)dw  (]sin()| < 10)])
1 [7 . _
< 027'2%/ Spz(w)dw = 0*7* R, (0).
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Theorem 10-9 (Stochastic sampling theorem) If x(¢) is BL, then
x(t+7)= n:z_:oo x(t+nT) SH;[((TT(T_ n?;) ) (in the MS sense),
where T' =7 /0.
Proof: By Fourier series,
T = Z an /" for jw| < o,
where . .
a, . = i eije—jndew _ SIH[O(T B nT)] .
T 20 ), o(t —nT)

Again, passing the BL-to-o process x(t) via filter H(w) = ¢/“7 and filter Hy(w) =
S MY with Hy(w) = Hy(w) for |w| < o (We actually don’t care whether

n=——oo

Hi(w) = Hy(w) for |w| > 0. Why?) should result in the same output. Accordingly,

0

x(t+71)= Z anrx(t +nT).

n=——oo
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e A deterministic BL signal z(t), defined as X (w) = [~ a(t)e /¥'dt = 0 for
lw| > o, can be completely determined only when all samples, including past
samples and future samples, are known.

e However, a stochastic BL signal x(t) can be asymptotically determined only

with past samples!

Theorem 10-10 Fix (i) a BL process a(t) with bandwidth o, (i) a number
To < (1/3)m/o, and (iii) a constant € > 0 arbitrarily small. There exists a
(sufficiently large) positive integer n and a set of coefficients {ay }}_; such that

. 2

z(t) — Y ap(t — kTy)| | dt <e.
k=1

1 w
lim — E

w—00 2W J_,,

Proof: Let y(t) = (t) — >, _; agx(t — kTp). Then, y(t) is the output due to
input a(t) and filter

n

Hw)=1- Z ape M0,

k=1
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Hence,
_ 1 [~ - 1 [° _
Ry0) = o [ H@PSulw)ir = o~ [ [H@PS.w)dr
21 J_ oo 2 ),
This indicates that if )
|H(w)|* < R 0) for |w| < o,

then

_ € 1 g _
< = — = €.
R,,(0) < R 0)2n /U Spe(w)dr =€

The availability of such H(w) is proved as follows. Let a = —(—1)*(}). Then,

) = S () = ey

which gives that for |w| < o,

[H(w)]* = [1— e = 2sin(wTp/2)[" = 0 as n — oo,

’ n

because
‘CUT()’ < O'TO

2 T 2

<7T
6.
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Remarks

e In Chapter 11, we will see that a desire to make |H(w)|* = 0 for |w| < o will
violate the Paley-Wiener condition, which is the sufficient condition for the

existence of H(e/*) with |H (e/“)|* equal to a target S(e/).

A power spectrum S[e/“] (equiv. S[z]) can be factorized to |H[e/*]|?
(equiv. H|[z|H|[1/z]) if the Paley-Wiener condition

/ | log S[e’]|dw < 0.

—T

is valid.

e Theorem 10-10 is actually valid for any Ty < /0. In the case of (1/3)7/0 <
Ty < /o, adifferent H(w) needs to be chosen. For details, you may refer to the
Weierstrass approximation theorem or the Fejer-Riesz factorization theorem.

e Theorem 10-11 further increases the sampling period bound from 7 /o to N7 /o,
if the samples of the outputs y,(t), y,(t), . . ., yn(t) of N linear systems Hi(w),
Hy(w), ..., Hy(w) due to input x(t) are available.
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Theorem 10-11 Fix a BL process «(t) with bandwidth o, and a constant 7.
Let ¢ = 20 /N and Ty = 27 /c. Then,

(©.9]

x(t+71)= Z [y, (t +nTo)pi (T — nTp) + - - - + yn(t + nTo)pn (T — nTh)]

n—=——oo

where y,,(t) is the output of the linear system Hy(w) due to input «(t), and

1o . oo |
pi(T) = —/ Pr(w, )’ dw, (Pk(w, T) = Z pi(T — nT())er(TnTo))

¢ o n=—00
(10.5)
and { Hp(w)}_, and {Py(w, 7)}4_, are the solutions of
( Hy(w)Pi(w, T) + -+ + Hy(w) Py (w, 7) =1
Hi(w+c)P(w,7) + -+ Hy(w + ¢)Py(w, T) = /7

Hi(w+ (N —1)¢)Pi(w, 7))+ + Hy(w+ (N — 1)e)Py(w, 7) = elV-ler
(10.6)

\

for w € (—o,—0 + (.
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Proof:
e [t suffices to show that
&= > mr =) @)™ 4o+ 3 | p(r = nTy) Hy(w)e™
x(t+7) n=—00 Y, (t+nTp) n=-c0 yy (t+nTh)
(10.7)
for |w| < o (namely, for win (—o,—0 +¢|, (—o +¢,—0 + 2¢], ..., (—o +

(N —1)e,—0 + Nc = a]).
e Replacing w by (w + kc) for the right-hand-side of (10.7) yields:

Hi(® + kc) Z pi(T — nTy)e/™ @R o 4 H (@ + ke) Z p (T — nTp)em @tk To

n=—0oo n=—oo

= Hy(@+ ko) Z (7 —nTp)ed™ 0 ..+ Hy(2 + ke) Z pn (T = nTp)e™ o (since /"FeT0 = ink2m — 1)
= Hi(©+ ke) (TP (@,7)) + -+ Hy(@ + ke) (T Py (@, 7)) (by definition of {P(w, )}, or (10.5))
= T [H\(@+ ke)Pi(@,7) + -+ + Hy (& + ke) Py (@, 7))

= Tl (by the (k 4 1)th equation in (10.6), which is true for @ € (—0o, 0 + ¢])
ej(d)-i—kc)T

Therefore, (10.7) is true for w = @ + ke € (—o + ke,0 + (k+ 1)c| for 0 < k < N.O
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1 —0—+c . 00 .
Claim: py(7) = _/ Py(w, 7)™ dw = Py(w,m) = Y pr(r—nTp)e 0"
c.J_

g n=—oo

Proof: From (10.6), it can be induced that Py(w,T) are periodic with period Tj
because efke(T=nT) — eiker  Thys,

Pi(w, 7 —nTy) = Pp(w, 1),

which implies

1 =@ ‘
pr(T —nTy) = —/ P/g(W,T—nTO)e]w<T_nTO)dw
C —0
1 —0—+c .
— _/ Py(w, 7)€ 1T0) qyy
C —0
1 =@ _ ‘
= —/ Py(w, T)elTe 7™ gy
C —0

Accordingly,
Pp(w, )M = Z (T — nTo)ej"WTO.

n—=——oo
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Remarks

e For N =1, we have ¢ = 20, Ty = 7 /0,

x(t+7) = Z Yy, (t+nTy)p1(t—nTy) and Hy(w)Pi(w, 7) = 1 for —0 < w < 0.

Taking Hi(w) = 1 (hence, y,(t) = x(t) and
1 _U+C ) 1 o ‘
pl(T) = — Pk(w, T)GJWwa — e]wwa)
CJ-o 20 J_,

reduces Theorem 10-11 to Theorem 10-9 (cf. Slide 10-51).

Theorem 10-9 (Stochastic sampling theorem) If (t) is BL, then

= sinjo (1 — nT)]

x(t+71)= Z x(t +nT) o(r —nT)

n—=——oo

(in the MS sense),

where T =7 /0.

e For N > 1, sampling is performed at every Ty = N(m/0); however, N samples
are taken each time. Thus, no saving in “complexity” is obtained.
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Observations and motivation

e The relationship between the (discrete) Fourier transform of equidistance sam-
ples {x[nT]} of a deterministic parent signal (¢) and the parent signal itself
is given by

X [w] (— Z x(nT)ej”T”> = Z X(w + 2no),

where o = 7 /T (cf. Slide 9-132).

e The difference X (w) — X|w] is called aliasing error.

e Question: How about the Fourier transform of random samples {t, } of z(¢),
where {t,} is a Poisson point process (cf. Slide 9-47) with average density A?

Lemma The normalized (discrete) Fourier transform of random samples {¢,,} of
(continuous) z(t), namely,

is an unbiased estimate of X (w).
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Proof: Let z(t)=> " §(t —t,). Then,

> a(ty)e W = / x(t)e 7! < > 5(t—tn)> dt
— / x(t)z(t)e ¥ dt.
Hence,
E Z a:(tn)ejwt”] = / o(t)E[z(t)]e 7 dt
= / () e ¥dt = A X (w).
[
Elz(t)] = 0Blz(t)] _ 5X) = \, where x(t) is the Poison process defined in

o ot
Example 9-5 (cf. Slide 9-48 and Slide 9-98).




Random Sampling 1061

Lemma Follow the previous lemma. The estimate variance of the unbiased esti-
mator, namely,
2
1 < .
E |5 n;@@ z(t,)e ¥t — X (w)
approaches zero as A — oo, provided that the energy of x(t), i.e. f t)dt, is
finite.
Proof:
o0 2 00 00
E|Y alty)e || = E K / a:(t)z(t)ej“’tdt) ( / a:(s)z(s)ejwsds)]

(t)z(s)Ez(t)z(s)]e " dtds

I
—
™

)

= / N / 2(8)2(5)Ros (£, 5)e 0 dtds
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82 Ry(t, ) p—Jw(t=s)
= / / EYER dtds
B O*(Amin{t, s} + A\*ts) L lt-s)
= / / ETER dtds

_ / / s) [M6(t — ) + 2] e =) dtds
_ /OO 2(t)dt + 2| X (W)

Hence
B |5 X alte ™ = X() | = =F 3 altaen | | - X
L[~
=5 r=(t)dt — 0 as A — oo.
[

The end of Section 10-5 Bandlimited Processes and Sampling Theory
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f(t) x(t) y(t) y(to)
P h(T) 0—1 .
sample
o(t) at t = t,
channel receiver

e A central problem in communications is the estimation of a sample y¢(t9) at a
specific time of filter output of a deterministic signal f(¢) in presence of noise.

e In absence of noise v(t),

09

y(to) = ys(to) = / h(t)f(ty — 7)dr.

—0o0

e The noise however will change the errorfree system to:

Y(to) = yyr(to) + y.(to),

where

y,(to) = /OO h(T)v(ty — 7)dT.

©.¢]

Question: How to design the filter A(7) such that the output signal-to-noise

]yf(to)\z . . : .
——— is maximized, provided the PSD of WSS v(t) is Syp(w)?
) Sl

ratio vy, =
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Answer: The matched filter.

2

1 0 o
- lys(to)* %/mF(w)H(w)e d
i Elyz(to)] 1 [ :

%/OO Syo(w)|H(w)|"dw

2

[ P st He
o / Sl Hw)d

/ ‘F(w)s;ﬂ(w)‘ de - / 120V H (w)el | du
a—— = = (Schwartz inequality)
27r/ Syo(w) | H (w)]*dw
1 [~ -
= — [ |F)" S, (w)dw
2T J_ o
with equality holding if, and only if, k ( 1/ 2 ) = Su Y 2 H(w)e!* for

some complex number k. or equivalently H(w ) = kF*( (w)e ]”to
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10-65
Lemma (Schwartz inequality)
o] /!f rd:c/rg )2d
with equality holdmg if, and only if, f(x) = kg*(x) for some complex number k.
Proof: Define I(a,0) ’f — aeje *( ’ d:r: for real @ > 0 and real 6.
Then,

b
I(a,0) = / ‘f(x) —aejeg*(a:)’Qda:

b
= [ (@) = ae’g @) (@) — ae Mg(a)o

- / \f de 2aRe{e JQ/f d:c}+a/!g
A

_A _§2+M—_B2
B A

)

2daz

7
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where

/yg )|?dz, B = Re{eﬁ/f

dw},andC’ / | f(z)|*dx.

Since I(a,d) > 0 for any a > 0 and any 6, taking § = £ fa f(x)g(x)dz such
that
b
B = Re {6]0/ f(a:)g(a:)da:}

{1

yields that I(B/A, 0)

x)dx

ejéf f(x }_

= (AC — B*)/A > 0. lLe,

b
/f(a;)g(az)da: > ()

/\g Qda;/\f )|*dz >

[t remains to show the sufficiency and necessity of the equality condition.
If f(x) = kg*(x), equality subsequently holds.
ity holds, then I(B/A,Z/ fab flz)g(x)dx) =
(B/A)eH J2 f(@)g(x)d

0 implies the desired £

On the contrary, if equal-

O

10-66
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Special case on matched filter principle

e When v(t) is white, Sy, (w) = Ny/2.
2k

o H(w) = kF*(w)S, ! (w)e ¥ = ZZF*(w)e 7" and k = Ny/2 implies

vv

Ny
h(r) = flto— 7).
The system so obtained is called the matched filter.

10-67
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Definition (Causal filter) A causal filter is one whose output depends only on
past and present inputs.

Based on this definition, a causal linear time-invariant filter should satisfy h(7) = 0
for 7 < 0.

®
1 o
h(t) = — H(w)e!* dw
21 oo
b v W) eIw(r=to) g,
27 ) _ oo Spw(w)

= (=) als)] ey
where ¢(s) = 5= 7S, (w)e/**dw.

o0 (Y

e To convolve f(—s) (even satisfying f(—s) # 0 only for —t5 < s < 0) with
q(s) may “enlarge” the “non-zero range” of f(s), and hence, may make h(7)
unrealistically noncausal.

e In addition, the resultant h(7) may not be practically realizable.

e This motivates the development of a suboptimal but directly realizable alter-
native filter.
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Best filter under tapped delay line structure
e Given that H(w) is of the shape:
H(w) =ag+ae ! + .- +a,e ™7,
find the best (real) {ag, a1, ..., a,;} such that v, is maximized.
Solution:
o ys(to) = DLy aif(to —iT) and y,(to) = > i1 aiv(t —iT).
e To maximize

Yo = lys(to)|*/ Ely,(to)] = ¢/ Ely,(to)]

is equivalent to the minimization of E[y?(t)] subject to ys(ty) = ¢
(followed by the maximization with respect to c).

e Using the Lagrange multiplier technique, we minimize
V£ Ely.(to)] — 2\(ys(to) — ¢)

= ) > anaiRy(nT —iT) — 2X (Z anf(to —nT) — c) ,

10-69

n=0 i=0 =0
Derive
0V < | - |
S Z a; Ry, (nT —iT) + Z a; Ry, (iT —nT) — 2\ f(ty — nT) = 0.

1=0 1=0
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Under R,,(7) = Ry,(—7), this leads to:

R@ = \f,
where
R.(0) Rou(=T) Roo(—2T) Ry (—mT)
RUU(T) RUU(O) va( T) va(_(m o 1)T)
R = | R,.(27T) Ryo(T) R (0) Ry(—(m —2)T) |,
Ron(mT) Ru((m — 1)T) Ruy((m —2)7T) Ron(0)
g | i f(to)
ai f (to - T)

a= a9 and f: f(t() — QT)

_a;71 f(to - mT)

As a result, dopy = AR™! f, where A is chosen such that ELOTpt f = ¢, namely,

7 R c
aOTptf:<)\]R 1f) f=c = )\:fﬂT(R—l)Tf#
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With the availability of the result that

—

, R™'f
Qopt = C= —
JERDES
we finally obtain:
2
y;(to) c? c? o
/YO — f2 — — —T IRV 1 - f_T(R 1)Tf7
Elyi(ty)] @l Raoy 2/T® ) RR— f
(PR 7Y

which is nothing to do with the choice of constant c.

10-71

Problem 10-26(b) in the textbook indicates that

Vo =

Since y¢(to) = c and A = ¢/ fT (R~

f\/i\[\/fT
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f(t) x(t) y(t) y(to)
P h(T) .—l .
sample
o(t) at t — 1,
channel receiver

e A central problem in communications is the estimation of a sample f(t() at a
specific time of filter input of a deterministic signal f(¢) in presence of noise.

e In absence of noise v(t),
o0

y(to) = ys(to) = / W) f(to — 7)dr.

—0o0

e The noise however will change the errorfree system to:

y(to) = yy(to) + y.(to),

where

y,(to) = /OO h(T)v(ty — 7)dT.

©.¢]

Question: How to design the filter h(7) such that e = E{[y(ty) — f(to)]*} is
minimized, provided v(t) is (possibly time-varying) zero-mean white (i.e., Ry, (t +

7, t) = q(t)o(7))”
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Answer:

where

o(t0) = f(to))*}
(yr(to) — f(t)) + Elyalto)]  (w,(t) 2

([ s s00) + [~ [ wmeimiotts ~ wotto ~ ol

ero mean)

(/Z h(r)f(to — 7)dr — f(to)) " / / h(w)h(v)q(ty — v)0(v — w)dudv

b’ + o2,

bias b = /Oo h(7)f(to—T)dT—f(ty) and variance o* = /Oo h*(v)q(to—v)dv.



Smoothing in the MS sense

Assumptions
T
e h(t) =0 for |t| > T, h(—t) = h(t), and / h(t)dt =1,
T
N T
o q(tg —v) = Ny/2. = g% = 70/ hQ(v)dv.
T

2

o f(to—7) = flto) = 7f'(t0) + " (to).

10-74

2

T

b = [ nie) | )~ ) + S| ar = a0
f(to)

— T — f(to)) — f/(to)WJr
f//(t())

T
/ 7'2h(7')d7'.
2 Jor

f”(t())
2

/ Z T*h(T)dT
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By Lagrange multiplier technique, we minimize e subject to

T T
/ h(t)dr =1 and / *h(7)dr = c,

and obtain: B N
5 0 [[f”(j())]Qc? + % /Z RA(T)dr — A (/Z h(r)dr — 1) — X (/Z 2h(r)dr — c)]
Oh(v) Oh(v)

= Noh(?)) — )\1 — )\2?)2 = 0.

This implies hop(v) = Nio ()\1 - )\27)2) for |v] <T.
Some people may be dubious about (or have troubles to understand) how we can take partial

derivative onto e with respect to h(v). Here, I provide an alternative approach to determine
the optimal hgpt(v).

e = @8 + % /i R*(T)dT — A\ (/i h(T)dr — 1) — X\ (/i 72h(T)dT — c)
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- /T (%fﬂ(r) — (M +Xe7?) h(r)) dr + S + A1+ Agc

o\ 2 1
T 2\72 2 " 2
No (A1 + Ao7?) (A1 + Ao7) Lf"(t0)]”
_ YAl — — d AL+ A
/T<2[(7) N, ] N, T+t ALt A
Apparently, choosing h(7) other than M2 o only grow e. Thus, hopi(T) = Qatr)
No P No
Solving
T 3 T 3 5
2T 2T 2T 2T
Popt (T)dT = == A\j+=———Xy =1 and 2hopt (T)AT = =X+ ==Xy =
/T ot (T)dT N 1+3N0 9 an /TT ot (T)dT 3N, 1+5No 9 =2¢C
yields
15N, 3 45N, 1,
)\1——8T3 (6—5T> and o = N (c—gT :
and
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The textbook also requires that h(t) > 0 for |t| < T.

By examining hop(0) = g—; (% — %) > 0 and hop(T) = = (L -

requirement is equivalent to

) > (), this

T
3
5

O—l|H

C>
”

By letting ¢ = ¢/T?% and 7 = 7/T, we derive:

" 2 N, T
e = i) ZO)] 62+70/Th2(7)d7

" 2T4 N T 1
_ U (ti)] 02+%/1 n*(T7)dr

_\f H(ti)] I 2 + 212258];() /_ 1[(36 —1)7* — (¢ — 3/5)dr

"(to)*T* , 3N,
_ (4)] +F72(3—1Oc+15c)

"tV PT* 45N, 15N, IN,
fT0)]'T | 45No o  15No . ONo
4 16T 8T 16T
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Consequently,
15Ny
E = 8T _ 15/4
e 5 Lf"(t))? T N 45No\  [f ()P T° /Ny + 45/4
4 16T
and
9N [)PTY Ny +5
min 16T [f//(to)]2T5/NO _|_45/4
Finally,

5[, V2 - 3
hopt(v) — 8_T (chin o 1) ﬁ o (Cmin - g)]
15 T A 0?2 3(A+5) ]

ST | (A1 45/4)T2 ' 5(A + 45/4)

" S .
 ST(A +45/4) T2 A’

where A = [f"(t)]*T°/Ny.

10-78
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This filter does not satisty h(t) > 0 for |t| < T since it may happen that —2 +
15/A < 0. An advantage of this design is

9N, A+5
€min = : —
167 A+45/4

This is different from the design from textbook (satisfying h(t) > 0 for |t| < T
in which there exists 0 < T),;, < oo that minimizes e. Such behavior can also be

O(1/T) - 0as T — oo.

observed in the subsequent moving average estimator.




Moving Average Estimator

10-80
Let h(r) = 1/(2T) for |7| < T, and zero, otherwise.
Then,
e = b +0°
”t 2 T 2 N, T
= (o (/ T2h(7')d7’> —I——O/ h*(T)dr
2
[f”(to]z 1 /T ) NO /T 1
= d — ——d
r \ar ). T) T ) i
B [f’/(t0]2T4 N NO
B 36 AT’
and
Oe [f”(to)]z 5 No o
— = 7°——T77"=0
oT 9 4
implies that
qmae _ (_ 9No e g eme — W 9N No 5N
nmin 4[]0// (tO)] 2 nmin 36 4[f”(t0] 2Tmae 4T mae 16Tmae )

min

min min
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10-81
3 72 :
Let h(T) = T 1— T3 for |7| < T, and zero, otherwise.
Then,
e = b +0°
(¢ 2 T 2 N, T
= St (/ T2h(7')d7’> —I——O/ h*(T)dr
4 L 2 |,
[ PT? N 3Ny
100 107"
and
de (o) s 3No s
ge _ U0l ps  200p2 g
oT 25 10
implies that
pove _ (15N /5 ud e - G 1N 3Ny 3N
i = \ ST P =00 AP PTr 0T ST

min



Comparison of Three Estimators

10-82

For |7| <1, define

where A = [f/,(tg)]2T5/N0.

(1A (3 3
3(A + 45/4) ")

5 A

w(r) 2T B(Tr) = ¢ &(g_ﬂ,

8
1
?37
Z(1 = 72
L 4( T )7
and
(9N, A+5
16T A +45/4°
Y
< 167" /
Emin = 4/5
min 5. 41/5 f/l ¢ 2/5N
[16 .(901)/]5 0 = 0.266[f" (to)]2° Ny,
3. 21/5[f”(t0)]2/5N4/5 e
\ T 0.251[f" (to)]*/° Ny,

optimal
near-optimal
moving average

parabolic window

optimal

near-optimal
moving average

parabolic window




Near-Optimal Estimator

) — 54 3 3
P\ T ST AT 45/4)\5 T2 /A)

where A = Lf”(to)]21n5/]Vb.

Let h(r) = -2 (2 iy 7| < T, and therwi
C T) = 8T 5 T2 or |71 , alld Z€Tro, OlNerwise.
Then,

e = b +0°

2

_ [f"gf(ﬂz ( / ZTQh(T)dT) 40 / ZhQ(T)dT

B [f//(t0]2T4 1 2 NO 1
- T ( /_ 17%(7)617) + o /_ o (r)ir
9_]\70

16T

— 0+

This is an unbiased estimator with asymptotic zero variance!

The end of Section 10-6 Deterministic Signals in Noise
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Lemma (Poisson sum formula) For any positive c,

Z f(x 4+ nc) = Z F(nug)e’ ™o

n=—0oo TL——OO

where F(u) = [~ f(xz)e 7*dz is the Fourier transform of f(z), and uy = 27/c.

On Slide 9-131~9-132, we respectively obtain

w| = Z R,.(n)e’™ and S, [w Z Sez(w + 2nm).

n=—00 n=—00
Hence,
o
Z Sez (W + 2nm) = Z 2 Ryr(n W,
1__ > : N
where R,.(T) = —/ Spzr(w)e?* dw.
2T J_ o
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Let f(w) = Syz(w) be real and symmetric,
which implies R, (7) is also real and symmetric.
Then,

Flu) = /_ B flw)e ™ dw = / N Spn(w)e™ W dw = 27 Ryp(—u) = 2w Ryp(w),

and (with ¢ = 2m)

0

1 27 :
gn(2m/(2m))x
E f(x+n2r)) = o E v (—2 n) e :

n—=——oo n—=——oo

Poisson sum formula is an extension of this result by replacing 27 by ¢, which leads

to:
o0

- 1 2m
T+ nc) = - F=n)en@/e,
3 sty # ()
Operational meaning:
The Inverse Fourier transform of samples causes aliasing.
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10-86
Fourier series: For a periodic function g with period Tj,
.
o) = 3 e
m—=—00
where wy = 27 /Ty and ¢, = i f > /2g )e I g
Proof of Poisson Sum Formula Fourier series said that for Ty = ¢, wy = uy,

and g(x) =>° 0z + ne),

1
/ Z §(z 4+ nc)e M0 dy = =
—c/2 = C

and
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Hence,

; flz +nc) = flz)* ( ; 5(az+nc)> — f(x) (é 3 ejnu0x>

n=—oo

(f(lﬂ % ejnu0x>

([
( jnuoada) ejmq)x
F(n

) jnuox

S

M8£M8IM8£M8

/_\

3

ol Ol o |~ | —

3
|
8



