Chapter 10 Random Walks and Other Applications

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

• Starting at the 9th line on page 463, the textbook wrote

We shall show that $\boldsymbol{x}(t) = \boldsymbol{a}(t) \cos(\omega_0 t) - \boldsymbol{b}(t) \sin(\omega_0 t)$ is WSS iff the processes $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are such that $R_{aa}(\tau) = R_{bb}(\tau) \qquad R_{ab}(\tau) = -R_{ba}(\tau) \qquad (10\text{-}126).$

The forward part is correct, but the converse may not be right!

Lemma The process $\boldsymbol{x}(t) = \boldsymbol{a}(t) \cos(\omega_0 t) - \boldsymbol{b}(t) \sin(\omega_0 t)$ is WSS if $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are zero-mean WSS with $R_{aa}(\tau) = R_{bb}(\tau)$ and $R_{ab}(\tau) = -R_{ba}(\tau)$.

Proof: If $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are zero-mean WSS with $R_{aa}(\tau) = R_{bb}(\tau)$ and $R_{ab}(\tau) = -R_{ba}(\tau)$, then $E[\boldsymbol{x}(t)] = 0$ and

$$E[\boldsymbol{x}(t_1)\boldsymbol{x}(t_2)] = E\{[\boldsymbol{a}(t_1)\cos(\omega_0 t_1) - \boldsymbol{b}(t_1)\sin(\omega_0 t_1)][\boldsymbol{a}(t_2)\cos(\omega_0 t_2) - \boldsymbol{b}(t_2)\sin(\omega_0 t_2)]\}$$

$$= R_{aa}(t_1 - t_2)\cos(\omega_0 t_1)\cos(\omega_0 t_2) - R_{ab}(t_1 - t_2)\cos(\omega_0 t_1)\sin(\omega_0 t_2)$$

$$-R_{ba}(t_1 - t_2)\sin(\omega_0 t_1)\cos(\omega_0 t_2) + R_{bb}(t_1 - t_2)\sin(\omega_0 t_1)\sin(\omega_0 t_2)$$

$$= R_{aa}(t_1 - t_2)\cos[\omega_0(t_1 - t_2)] + R_{ab}(t_1 - t_2)\sin[\omega_0(t_1 - t_2)],$$

which indicates the WSS of $\boldsymbol{x}(t)$.

Fallacy If the process $\boldsymbol{x}(t) = \boldsymbol{a}(t) \cos(\omega_0 t) - \boldsymbol{b}(t) \sin(\omega_0 t)$ is WSS, then $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are such that

$$R_{aa}(\tau) = R_{bb}(\tau)$$
 and $R_{ab}(\tau) = -R_{ba}(\tau)$.

Counterexample:

•
$$\boldsymbol{a}(t) = \sin(\omega_0 t), \ \boldsymbol{b}(t) = \cos(\omega_0 t), \text{ and } \boldsymbol{x}(t) = 0.$$

• $\boldsymbol{x}(t)$ is WSS, but

$$R_{aa}(t_1, t_2) = E[\boldsymbol{a}(t_1)\boldsymbol{a}(t_2)] = \sin(\omega_0 t_1)\sin(\omega_0 t_2)$$

and

$$R_{bb}(t_1, t_2) = E[\boldsymbol{b}(t_1)\boldsymbol{b}(t_2)] = \cos(\omega_0 t_1)\cos(\omega_0 t_2)$$

are not equal and are not functions of only $(t_1 - t_2)$.

What will be the correct statement?

Lemma Suppose $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are zero-mean jointly WSS. Then, the process $\boldsymbol{x}(t) = \boldsymbol{a}(t)\cos(\omega_0 t) - \boldsymbol{b}(t)\sin(\omega_0 t)$ is WSS if, and only if, $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are such that

$$R_{aa}(\tau) = R_{bb}(\tau)$$
 and $R_{ab}(\tau) = -R_{ba}(\tau)$.

• The blue-colored presumption is actually given at the first line of Section 10.3.

Proof:

- **1. Forward:** Have been proved in Slide 10-1.
- **2.** Converse: If $\boldsymbol{x}(t)$ is WSS, then

$$\begin{split} E[\boldsymbol{x}(t_1)\boldsymbol{x}(t_2)] &= R_{aa}(t_1, t_2)\cos(\omega_0 t_1)\cos(\omega_0 t_2) - R_{ab}(t_1, t_2)\cos(\omega_0 t_1)\sin(\omega_0 t_2) \\ &- R_{ba}(t_1, t_2)\frac{\sin(\omega_0 t_1)\cos(\omega_0 t_2) + R_{bb}(t_1, t_2)\sin(\omega_0 t_1)\sin(\omega_0 t_2)}{2} \\ &= R_{aa}(t_1, t_2)\frac{\cos[\omega_0(t_1 - t_2)] - \cos[\omega_0(t_1 + t_2)]}{2} \\ &- R_{ab}(t_1, t_2)\frac{\sin[\omega_0(t_1 + t_2)] - \sin[\omega_0(t_1 - t_2)]}{2} \\ &- R_{ba}(t_1, t_2)\frac{\cos[\omega_0(t_1 - t_2)] - \cos[\omega_0(t_1 + t_2)]}{2} \\ &= \frac{1}{2}\cos[\omega_0(t_1 + t_2)][R_{aa}(t_1 - t_2) - R_{bb}(t_1 - t_2)] \\ &+ \frac{1}{2}\cos[\omega_0(t_1 - t_2)][R_{aa}(t_1 - t_2) + R_{bb}(t_1 - t_2)] \\ &- \frac{1}{2}\sin[\omega_0(t_1 + t_2)][R_{ab}(t_1 - t_2) + R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{bb}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{bb}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{bb}(t_1 - t_2)] \\ &+ \frac{1}{2}\sin[\omega_0(t_1 - t_2)][R_{ab}(t_1 - t_2) - R_{bb}(t_1 - t_2)] \\ &$$

10-3 Modulation

imply that

$$R_{aa}(t_1 - t_2) = R_{bb}(t_1 - t_2) \quad \text{and} \quad R_{aa}(t_1 - t_2) + R_{bb}(t_1 - t_2) = 2R_{aa}(t_1 - t_2)$$
$$R_{ab}(t_1 - t_2) = -R_{ba}(t_1 - t_2) \quad \text{and} \quad R_{ab}(t_1 - t_2) - R_{ba}(t_1 - t_2) = 2R_{ab}(t_1 - t_2).$$

Remarks

• The above lemma yields that

 $R_{xx}(\tau) = R_{aa}(\tau)\cos(\omega_0\tau) + R_{ab}(\tau)\sin(\omega_0\tau)$

for zero-mean WSS $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ with $R_{aa}(\tau) = R_{bb}(\tau)$ and $R_{ab}(\tau) = -R_{ba}(\tau)$.

• Define $\boldsymbol{w}(t) = \boldsymbol{a}(t) + j\boldsymbol{b}(t)$. Then, it is easy to see that

$$\boldsymbol{x}(t) = \operatorname{Re}\{\boldsymbol{w}(t)e^{j\omega_0 t}\}$$

10-3 Modulation

• We can define a dual function of $\boldsymbol{x}(t)$ as:

$$\boldsymbol{y}(t) = \operatorname{Im}\{\boldsymbol{w}(t)e^{j\omega_0 t}\} = \boldsymbol{a}(t)\sin(\omega_0 t) + \boldsymbol{b}(t)\cos(\omega_0 t)$$

In summary,

$$\begin{split} \boldsymbol{w}(t) &= \boldsymbol{a}(t) + j\boldsymbol{b}(t) \text{ with } R_{aa}(\tau) = R_{bb}(\tau), R_{ab}(\tau) = -R_{ba}(\tau) \\ \boldsymbol{x}(t) &= \operatorname{Re}\{\boldsymbol{w}(t)e^{j\omega_0 t}\} \\ \boldsymbol{y}(t) &= \operatorname{Im}\{\boldsymbol{w}(t)e^{j\omega_0 t}\} \\ \boldsymbol{z}(t) &= \boldsymbol{x}(t) + j\boldsymbol{y}(t) = \boldsymbol{w}(t)e^{j\omega_0 t} \end{split}$$

In the sequel, we assume that $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are zero-mean jointly WSS and $\boldsymbol{x}(t)$ is WSS (so $R_{aa}(\tau) = R_{bb}(\tau)$ and $R_{ab}(\tau) = -R_{ba}(\tau)$).

10-3 Modulation

Observation 1 $\boldsymbol{z}(t)$ is zero-mean WSS if $\boldsymbol{w}(t)$ is zero-mean WSS.

Proof: Observe that $\boldsymbol{z}(t) = \boldsymbol{h}(\tau; t) * \boldsymbol{w}(t)$ with $\boldsymbol{h}(\tau; t) = \boldsymbol{h}_1(\tau)\boldsymbol{h}_2(t)$, where $\boldsymbol{h}_1(\tau) = \delta(\tau)$ and $\boldsymbol{h}_2(t) = e^{j\omega_0 t}$. Hence, by Theorem 9-2 (cf. Slide 9-104),

$$R_{zz}(t+s,t) = E\{ \mathbf{h}_2(t+s)\mathbf{h}_2^*(t) [\mathbf{h}_1^*(-s) * \mathbf{h}_1(s) * R_{ww}(s)] \}$$

= $\mathbf{h}_2(t+s)\mathbf{h}_2^*(t) \cdot \delta(-s) * \delta(s) * R_{ww}(s)$
= $e^{j\omega_0 s} R_{ww}(s).$

The proof is completed by noting that $E[\mathbf{z}(t)] = 0$. \Box **Observation 2** $R_{xx}(\tau) = R_{yy}(\tau)$ and $R_{xy}(\tau) = -R_{yx}(\tau)$ if Observation 1 is true.

Proof: A direct consequence of the Lemma in Slide 10-2. Note that $\boldsymbol{a}(t) = \operatorname{Re}\{\boldsymbol{w}(t)\} = \operatorname{Re}\{\boldsymbol{z}(t)e^{-\omega_0 t}\} = \boldsymbol{x}(t)\cos(\omega_0 t) - \boldsymbol{y}(t)\sin(\omega_0 t)$ is WSS and $\boldsymbol{z}(t)$ is zero-mean WSS (equivalently, $\boldsymbol{x}(t)$ and $\boldsymbol{y}(t)$ are zero-mean jointly WSS). \Box

Observation 3 $R_{ww}(\tau) = 2R_{aa}(\tau) - 2jR_{ab}(\tau)$ and $R_{zz}(\tau) = 2R_{xx}(\tau) - 2jR_{xy}(\tau)$. **Proof:** Follow Observation 2 and the definition of $\boldsymbol{w}(t)$ and $\boldsymbol{z}(t)$. Observation 4

$$S_{xx}(\omega) = \frac{1}{4} [S_{zz}(\omega) + S_{zz}(-\omega)] = \frac{1}{4} [S_{ww}(\omega - \omega_0) + S_{ww}(-\omega - \omega_0)]$$

and

$$S_{xy}(\omega) = \frac{j}{4} [S_{zz}(\omega) - S_{zz}(-\omega)] = \frac{j}{4} [S_{ww}(\omega - \omega_0) - S_{ww}(-\omega - \omega_0)].$$

Proof: First, $R_{xx}(-\tau) = R_{xx}(\tau)$ implies $S_{xx}(-\omega) = S_{xx}(\omega)$. Secondly, $R_{xy}(-\tau) = -R_{yx}(-\tau) = -R_{xy}(\tau)$ implies

$$S_{xy}(-\omega) = \int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j(-\omega)\tau} d\tau = \int_{-\infty}^{\infty} R_{xy}(-\tau) e^{-j\omega\tau} d\tau$$
$$= -\int_{-\infty}^{\infty} R_{xy}(\tau) e^{-j\omega\tau} d\tau = -S_{xy}(\omega)$$

Then, the observation follows from

$$S_{zz}(\omega) = 2S_{xx}(\omega) - 2jS_{xy}(\omega) \quad \text{(Observation 3)}$$

$$S_{zz}(-\omega) = 2S_{xx}(-\omega) - 2jS_{xy}(-\omega) = 2S_{xx}(\omega) + 2jS_{xy}(\omega)$$

$$S_{zz}(\omega) = S_{ww}(\omega - \omega_0) \quad \text{(Observation 1)}$$

<u>Hilbert Transform</u>

Rice's representation

• The Lemma on Slide 10-1 states that the process

$$\boldsymbol{x}(t) = \boldsymbol{a}(t)\cos(\omega_0 t) - \boldsymbol{b}(t)\sin(\omega_0 t)$$

is WSS if $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ are zero-mean WSS with $R_{aa}(\tau) = R_{bb}(\tau)$ and $R_{ab}(\tau) = -R_{ba}(\tau)$.

• Rice claims that for any zero-mean WSS process $\boldsymbol{x}(t)$, there exists

$$\omega_0, \quad \boldsymbol{a}(t) \quad \text{and} \quad \boldsymbol{b}(t)$$

such that $\boldsymbol{x}(t)$ can be represented as $\boldsymbol{x}(t) = \boldsymbol{a}(t)\cos(\omega_0 t) - \boldsymbol{b}(t)\sin(\omega_0 t)$, which is named the *Rice's representation*. (Here, "=" in the MS sense.)

• Rice's representation is not *unique*!

$$\boldsymbol{a}(t) = \operatorname{Re}\left\{ (\boldsymbol{x}(t) + j\boldsymbol{y}(t))e^{-j\omega_0 t} \right\}$$

$$\boldsymbol{b}(t) = \operatorname{Im}\left\{ (\boldsymbol{x}(t) + j\boldsymbol{y}(t))e^{-j\omega_0 t} \right\},$$

for any ω_0 and any zero-mean WSS $\boldsymbol{y}(t)$ satisfying $R_{xx}(\tau) = R_{yy}(\tau)$ and $R_{xy}(\tau) = -R_{yx}(\tau)$.

How to choose y(t) that satisfies $R_{xx}(\tau) = R_{yy}(\tau)$ and $R_{xy}(\tau) = -R_{yx}(\tau)$

- Choose or restrict $\boldsymbol{y}(t)$ to be $\boldsymbol{Y}(\omega) = \boldsymbol{X}(\omega)H(\omega)$.
- By Theorem 9-4 (cf. Slide 9-104),

$$S_{xy}(\omega) = S_{xx}(\omega)H^*(\omega)$$
 and $S_{yy}(\omega) = S_{xx}(\omega)|H(\omega)|^2$.

• From $\boldsymbol{X}(\omega) = \boldsymbol{Y}(\omega)[1/H(\omega)]$ and Theorem 9-4 (exchanging the roles of $\boldsymbol{x}(t)$ and $\boldsymbol{y}(t)$), we obtain

$$S_{yx}(\omega) = S_{yy}(\omega)[1/H(\omega)]^* = S_{xx}(\omega)|H(\omega)|^2[1/H(\omega)]^* = S_{xx}(\omega)H(\omega).$$

• In order to have

$$S_{xx}(\omega) = S_{yy}(\omega) = S_{xx}(\omega)|H(\omega)|^2$$
 and $S_{xy}(\omega) = -S_{yx}(\omega)$,

we require

$$i$$
 $|H(\omega)|^2 = 1$ and ii $H(\omega) = -H^*(\omega)$.

<u>Hilbert Transform</u>

- In addition, by $R_{xy}(-\tau) = -R_{yx}(-\tau) = -R_{xy}(\tau)$, we have $S_{xy}(-\omega) = -S_{xy}(\omega)$ or equivalently $S_{xx}(-\omega)H^*(-\omega) = -S_{xx}(\omega)H^*(\omega)$. Together with $S_{xx}(\omega) = S_{xx}(-\omega)$, we require *iii*) $H(-\omega) = -H(\omega)$.
- i) $|H(\omega)|^2 = 1$ implies $H(\omega) = e^{j\phi(\omega)}$ for some $\phi(\omega)$.
- $e^{j\phi(\omega)} = \underbrace{H(\omega) = -H^*(\omega)}_{ii} = -e^{-j\phi(\omega)}$ implies $e^{j2\phi(\omega)} = -1$, which in turns

implies

$$\phi(\omega) = \left(k(\omega) + \frac{1}{2}\right)\pi$$

for some integer function $k(\omega)$. For convenience, we restrict $k(\omega) \in \{0, 1\}$.

• Hence,

$$H(\omega) = je^{j\pi k(\omega)} = j(-1)^{k(\omega)}$$

• Finally, *iii*)
$$H(-\omega) = -H(\omega)$$
 implies $k(\omega) \neq k(-\omega)$ for $k(\omega) \in \{0, 1\}$.

Claim For a given $S_{xx}(\omega)$, the choice of Hilbert transform $\boldsymbol{y}(t)$ of $\boldsymbol{x}(t)$ minimizes the average rate of variation of the complex envelope of $\boldsymbol{x}(t)$, namely, $E[|\boldsymbol{w}'(t)|^2]$. **Proof:**

• Since the transfer function of a differentiator is $j\omega$,

$$S_{w'w'}(\omega) = S_{ww}(\omega)|j\omega|^2 = S_{ww}(\omega)\omega^2.$$

- Observation 1 indicates that $S_{ww}(\omega) = S_{zz}(\omega + \omega_0)$.
- Hence, the problem becomes to minimize

$$M \triangleq 2\pi E[|\boldsymbol{w}'(t)|^2] = \int_{-\infty}^{\infty} S_{w'w'}(\omega)d\omega$$
$$= \int_{-\infty}^{\infty} \omega^2 S_{ww}(\omega)d\omega = \int_{-\infty}^{\infty} (\omega - \omega_0)^2 S_{zz}(\omega)d\omega.$$
(10.1)

• For a selected $S_{zz}(\omega)$, the best $\bar{\omega}_0$ that minimizes (10.1) should satisfy

$$\bar{\omega}_0 = \frac{\int_{-\infty}^{\infty} \omega S_{zz}(\omega) d\omega}{\int_{-\infty}^{\infty} S_{zz}(\omega) d\omega}.$$

• Taking $\bar{\omega}_0$ into (10.1) yields

$$M = \int_{-\infty}^{\infty} (\omega^2 - \bar{\omega}_0^2) S_{zz}(\omega) d\omega.$$

Observe that

$$M = \int_{-\infty}^{\infty} (\omega^2 - \bar{\omega}_0^2) S_{zz}(-\omega) d\omega$$

= $\frac{1}{2} \left(\int_{-\infty}^{\infty} (\omega^2 - \bar{\omega}_0^2) S_{zz}(\omega) d\omega + \int_{-\infty}^{\infty} (\omega^2 - \bar{\omega}_0^2) S_{zz}(-\omega) d\omega \right)$
= $\frac{1}{2} \left(\int_{-\infty}^{\infty} (\omega^2 - \bar{\omega}_0^2) [S_{zz}(\omega) + S_{zz}(-\omega)] d\omega \right)$
= $2 \int_{-\infty}^{\infty} (\omega^2 - \bar{\omega}_0^2) S_{xx}(\omega) d\omega, \quad \left(= 2 \int_{-\infty}^{\infty} \omega^2 S_{xx}(\omega) d\omega - 2\bar{\omega}_0^2 \int_{-\infty}^{\infty} S_{xx}(\omega) d\omega \right)$

where the last equality follows from $4S_{xx}(\omega) = S_{zz}(\omega) + S_{zz}(-\omega)$ (cf. Observation 4). As a result, it suffices to maximize $\bar{\omega}_0^2$ for the minimization of M for a given $S_{xx}(\omega)$.

• By $S_{zz}(\omega) = 2S_{xx}(\omega) - 2jS_{xy}(\omega)$ (Observation 3), $S_{xx}(\omega) = S_{xx}(-\omega)$ (Observation 4) and $R_{xy}(-\tau) = -R_{yx}(-\tau) = -R_{xy}(\tau)$ (or equivalently, $S_{xy}(-\omega) = -S_{xy}(\omega)$), we have

$$\int_{-\infty}^{\infty} \omega S_{zz}(\omega) d\omega = 2 \int_{-\infty}^{\infty} (-j) \omega S_{xy}(\omega) d\omega = 4 \int_{0}^{\infty} (-j) \omega S_{xy}(\omega) d\omega$$

Also,

$$\int_{-\infty}^{\infty} S_{zz}(\omega) d\omega = \int_{-\infty}^{\infty} S_{zz}(-\omega) d\omega = \frac{1}{2} \left(\int_{-\infty}^{\infty} S_{zz}(\omega) d\omega + \int_{-\infty}^{\infty} S_{zz}(-\omega) d\omega \right)$$
$$= 2 \int_{-\infty}^{\infty} S_{xx}(\omega) d\omega = 4 \int_{0}^{\infty} S_{xx}(\omega) d\omega.$$

Hence,

$$\bar{\omega}_0 = \frac{\int_0^\infty (-j)\omega S_{xy}(\omega)d\omega}{\int_0^\infty S_{xx}(\omega)d\omega} = \frac{\int_0^\infty (-j)\omega S_{xx}(\omega)H^*(\omega)d\omega}{\int_0^\infty S_{xx}(\omega)d\omega} = \frac{\int_0^\infty \omega S_{xx}(\omega)(-1)^{k(\omega)+1}d\omega}{\int_0^\infty S_{xx}(\omega)d\omega}.$$

Consequently, the maximum $\bar{\omega}_0$ is obtained if $(-1)^{k(\omega)+1} = 1$ for $\omega > 0$. \Box

Hilbert transform $\boldsymbol{y}(t)$ of $\boldsymbol{x}(t)$

• Since $k(\omega) = 0$ for $\omega < 0$ and $k(\omega) = 1$ for $\omega > 0$, $H(\omega) = j(-1)^{k(\omega)} = -j \operatorname{sgn}(\omega)$ is the Hilbert transformer, and $\omega_0 = \int_0^\infty w S_{xx}(\omega) d\omega / \int_0^\infty S_{xx}(\omega) d\omega$.

Terminologies

$$\begin{split} \boldsymbol{w}(t) &= \boldsymbol{a}(t) + j\boldsymbol{b}(t) & \text{Complex envelope or Lowpass signal} \\ &= \boldsymbol{r}(t)e^{j\boldsymbol{\varphi}(t)} & \text{Bandpass signal} \\ \boldsymbol{x}(t) &= \operatorname{Re}\{\boldsymbol{w}(t)e^{j\omega_0 t}\} & \text{Bandpass signal} \\ &= \boldsymbol{a}(t)\cos(\omega_0 t) - \boldsymbol{b}(t)\sin(\omega_0 t) \\ &= \boldsymbol{r}(t)\cos[\omega_0 t + \boldsymbol{\varphi}(t)] & \text{Inphase component} \\ \boldsymbol{b}(t) & \text{Quadrature component} \\ \boldsymbol{\omega}_i(t) &= \frac{\partial}{\partial t}\left(\omega_0 t + \boldsymbol{\varphi}(t)\right) = \omega_0 + \boldsymbol{\varphi}'(t) & \text{Instantaneous freququency} \end{split}$$

Definition (Bandpass) A process $\boldsymbol{x}(t) = \boldsymbol{a}(t) \cos(\omega_0 t) - \boldsymbol{b}(t) \sin(\omega_0 t)$ is called *bandpass* if $S_{xx}(\omega) = 0$ for $|\omega|$ outside an interval (ω_1, ω_2) .

Definition (Narrowband) A bandpass process $\boldsymbol{x}(t) = \boldsymbol{a}(t)\cos(\omega_0 t) - \boldsymbol{b}(t)\sin(\omega_0 t)$ is called *narrowband* or *quasimonochromatic* if $|\omega_2 - \omega_1| \ll \omega_0$.

Definition (Monochromatic) A bandpass process $\boldsymbol{x}(t) = \boldsymbol{a}(t)\cos(\omega_0 t) - \boldsymbol{b}(t)\sin(\omega_0 t)$ is called *monochromatic* if $S_{xx}(\omega)$ is an impulse.

Instantaneous Frequency and Optimal Center Frequency₁₀₋₁₇

The optimal center frequency is given by

$$\bar{\omega}_0 = \frac{\int_{-\infty}^{\infty} \omega S_{zz}(\omega) d\omega}{\int_{-\infty}^{\infty} S_{zz}(\omega) d\omega} = j \frac{\frac{1}{2\pi} \int_{-\infty}^{\infty} (-j\omega) S_{zz}(\omega) d\omega}{\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{zz}(\omega) d\omega} = j \frac{E[\boldsymbol{z}(t)(\boldsymbol{z}'(t))^*]}{E[|\boldsymbol{z}(t)|^2]}.$$

Now observe that $\boldsymbol{z}(t) = \boldsymbol{r}(t)e^{j(\omega_0 t + \boldsymbol{\varphi}(t))}$ implies $\boldsymbol{z}'(t) = [\boldsymbol{r}'(t) + j\boldsymbol{r}(t)\boldsymbol{\omega}_i(t)]e^{j(\omega_0 t + \boldsymbol{\varphi}(t))}$. Then,

$$E[\boldsymbol{z}(t)(\boldsymbol{z}'(t))^*] = E\left[\boldsymbol{r}(t)e^{j(\omega_0 t + \boldsymbol{\varphi}(t))}[\boldsymbol{r}'(t) - j\boldsymbol{r}(t)\boldsymbol{\omega}_i(t)]e^{-j(\omega_0 t + \boldsymbol{\varphi}(t))}\right]$$
$$= E\left[\boldsymbol{r}(t)\boldsymbol{r}'(t)\right] - jE\left[\boldsymbol{r}^2(t)\boldsymbol{\omega}_i(t)\right].$$

Since $S_{xx}(\omega) = S_{xx}(-\omega) = S_{yy}(\omega) = S_{yy}(-\omega)$, we have

$$E[\boldsymbol{x}(t)\boldsymbol{x}'(t)] = E[\boldsymbol{y}(t)\boldsymbol{y}'(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} (-j\omega)S_{xx}(\omega)d\omega = 0,$$

and $E[\boldsymbol{r}(t)\boldsymbol{r}'(t)] = E[\boldsymbol{x}(t)\boldsymbol{x}'(t)] + E[\boldsymbol{y}(t)\boldsymbol{y}'(t)] = 0.$ This concludes that $E[\boldsymbol{z}(t)(\boldsymbol{z}'(t))^*] = -jE[\boldsymbol{r}^2(t)\boldsymbol{\omega}_i(t)]$, which together with $E[|\boldsymbol{z}(t)|^2] = E[|\boldsymbol{r}(t)|^2]$ implies

optimal carrier freq
$$\bar{\omega}_0 = \frac{E[\mathbf{r}^2(t)\boldsymbol{\omega}_i(t)]}{E[\mathbf{r}^2(t)]}$$
 = weighted average of $\boldsymbol{\omega}_i \left(= \omega_0 + \frac{E[\mathbf{r}^2(t)\boldsymbol{\varphi}'(t)]}{E[\mathbf{r}^2(t)]} \right)$

Frequency Modulation

Consider the frequency modulation with modulation index λ .

Let $\boldsymbol{x}(t) = \cos[\omega_0 t + \lambda \boldsymbol{\varphi}(t) + \boldsymbol{\varphi}_0]$, where $\boldsymbol{\varphi}(t) = \int_0^t \boldsymbol{c}(\alpha) d\alpha$.

 $\begin{aligned} \boldsymbol{r}(t) &= 1\\ \boldsymbol{w}(t) &= e^{j(\lambda \boldsymbol{\varphi}(t) + \boldsymbol{\varphi}_0)}\\ \boldsymbol{x}(t) &= \operatorname{Re}\{\boldsymbol{w}(t)e^{j\omega_0 t}\}\\ \boldsymbol{z}(t) &= \boldsymbol{w}(t)e^{j\omega_0 t} \end{aligned}$

Theorem 10-3 If $\boldsymbol{c}(t)$ is SSS, and $\boldsymbol{\varphi}_0 \perp \boldsymbol{c}(t)$, and $E[e^{j\boldsymbol{\varphi}_0}] = E[e^{j2\boldsymbol{\varphi}_0}] = 0$, then $\boldsymbol{x}(t)$ is zero-mean WSS, where " $\perp \!\!\!\perp$ " means "independent."

Proof: Since $E[\boldsymbol{z}(t)] = E[\boldsymbol{w}(t)e^{j\omega_0 t}] = E[e^{j\lambda\boldsymbol{\varphi}(t)}]E[e^{j\boldsymbol{\varphi}_0}]e^{j\omega_0 t} = 0$,

$$E[\boldsymbol{x}(t)] = E[\operatorname{Re} \{\boldsymbol{z}(t)\}] = \operatorname{Re} \{E[\boldsymbol{z}(t)]\} = 0.$$

In addition,

$$R_{xx}(t+\tau,t) = E[\boldsymbol{x}(t+\tau)\boldsymbol{x}(t)] \quad \text{(because } \boldsymbol{x}(t) \text{ real})$$

= $\frac{1}{4}E[(\boldsymbol{z}(t+\tau) + \boldsymbol{z}^*(t+\tau))(\boldsymbol{z}(t) + \boldsymbol{z}^*(t))]. \quad \text{(since } \boldsymbol{x}(t) = \frac{1}{2}(\boldsymbol{z}(t) + \boldsymbol{z}^*(t)))$

Frequency Modulation

Observe that

$$E[\boldsymbol{z}(t+\tau)\boldsymbol{z}(t)] = E\left[e^{j(\omega_0(t+\tau)+\lambda\boldsymbol{\varphi}(t+\tau)+\boldsymbol{\varphi}_0)}e^{j(\omega_0t+\lambda\boldsymbol{\varphi}(t)+\boldsymbol{\varphi}_0)}\right]$$
$$= E\left[e^{j(\omega_0(2t+\tau)+\lambda\boldsymbol{\varphi}(t+\tau)+\lambda\boldsymbol{\varphi}(t))}\right]E\left[e^{j2\boldsymbol{\varphi}_0}\right] = 0,$$

and

$$R_{zz}(t+\tau,t) = E[\mathbf{z}(t+\tau)\mathbf{z}^{*}(t)]$$

$$= E\left[e^{j(\omega_{0}(t+\tau)+\lambda\varphi(t+\tau)+\varphi_{0})}e^{-j(\omega_{0}t+\lambda\varphi(t)+\varphi_{0})}\right]$$

$$= e^{j\omega_{0}\tau}E\left[e^{j\lambda[\varphi(t+\tau)-\varphi(t)]}\right]$$

$$= e^{j\omega_{0}\tau}E\left[e^{j\lambda\int_{t}^{t+\tau}\mathbf{c}(\alpha)d\alpha}\right]$$

$$= e^{j\omega_{0}\tau}E\left[e^{j\lambda\int_{0}^{\tau}\mathbf{c}(\alpha)d\alpha}\right] \text{ (because } \mathbf{c}(t) \text{ is SSS)}$$

$$= e^{j\omega_{0}\tau}E[e^{j\lambda\varphi(\tau)}].$$

Consequently,

$$R_{xx}(t+\tau,t) = \frac{1}{4} \left(R_{zz}(\tau) + R_{zz}^*(\tau) \right),$$

which together with $E[\boldsymbol{x}(t)] = 0$ implies the WSS of $\boldsymbol{x}(t)$.

10-19

Frequency Modulation

Remarks on Theorem 10-3

• From the proof of Theorem 10-3, we also learn that:

$$R_{xx}(\tau) = \frac{1}{2} \operatorname{Re} \left\{ R_{zz}(\tau) \right\} \quad \text{and} \quad R_{ww}(\tau) = E[e^{j\lambda\varphi(\tau)}] \text{ (since } R_{zz}(\tau) = R_{ww}(\tau)e^{j\omega_0\tau})$$

- In addition, $\boldsymbol{x}(t)$ is in general not WSS if φ_0 is deterministic since $E[e^{j\varphi_0}] = e^{j\varphi_0} \neq 0$.
- Further classification of $\boldsymbol{x}(t)$:
 - The process $\boldsymbol{x}(t)$ is generally classified to "*phase modulated*" if the statistics of $\boldsymbol{\varphi}(t)$ is known (i.e., $\boldsymbol{\varphi}(t)$ is the information process).

 $R_{xx}(\tau) = \frac{1}{2} \operatorname{Re} \left\{ E\left[e^{j\lambda\varphi(\tau)}\right] e^{j\omega_0\tau} \right\}$ is well-defined for the random process $\varphi(t)$ because "any finite-dimensional (including one-dimensional) sample distribution is well-defined for a random process."

- The process $\boldsymbol{x}(t)$ is generally classified to "frequency modulated" if the statistics of $\boldsymbol{c}(t)$ is known (i.e., $\boldsymbol{c}(t)$ is the information process).

 $R_{xx}(\tau) = \frac{1}{2} \operatorname{Re} \left\{ E\left[e^{j\lambda\varphi(\tau)}\right] e^{j\omega_0\tau} \right\}$ may not be well-defined even if the distribution of $\boldsymbol{c}(t)$ is known. An extreme example is that $\boldsymbol{c}(t)$ is not Lebesque-integrable in t.

Woodward's Theorem

Remarks on *frequency modulation*

- In order for $\boldsymbol{x}(t)$ to be zero-mean WSS, Theorem 10-3 (cf. Slide 10-18) requires that $\boldsymbol{c}(t)$ is SSS, and $\boldsymbol{\varphi}_0 \perp \boldsymbol{c}(t)$, and $E[e^{j\boldsymbol{\varphi}_0}] = E[e^{j2\boldsymbol{\varphi}_0}] = 0$.
- Without SSS of $\boldsymbol{c}(t), \boldsymbol{x}(t)$ may not be WSS, and the calculation of $S_{xx}(\omega)$ (or $R_{xx}(\tau)$) lacks of its footing!
- Question is that how to approximate $S_{xx}(\omega)$ under known statistics of SSS c(t)?

Answer: Woodward's Theorem.

Theorem 10-4 (Woodward's Theorem) If the process $\boldsymbol{c}(t)$ is continuous and SSS with marginal density $f_{\boldsymbol{c}}(c)$, and also if $\boldsymbol{c}(t) \perp \boldsymbol{\varphi}_0$, and $E[e^{j\boldsymbol{\varphi}_0}] = E[e^{j2\boldsymbol{\varphi}_0}] = 0$, then for large λ ,

$$S_{xx}(\omega) \approx \frac{\pi}{2\lambda} \left[f_c \left(\frac{\omega - \omega_0}{\lambda} \right) + f_c \left(\frac{-\omega - \omega_0}{\lambda} \right) \right].$$

Proof:

• By the continuity of $\boldsymbol{c}(t)$,

$$\boldsymbol{\varphi}(t) \approx \boldsymbol{c}(0)t$$
 for $|t| < \tau_0$

for some τ_0 sufficiently small. So,

$$\boldsymbol{x}(t) = \operatorname{Re} \left\{ \boldsymbol{z}(t) \right\} \approx \bar{\boldsymbol{x}}(t) \triangleq \operatorname{Re} \left\{ \bar{\boldsymbol{z}}(t) \right\} \text{ for } |t| < \tau_0,$$

where

$$\boldsymbol{z}(t) \triangleq e^{j(\omega_0 t + \lambda \int_0^t \boldsymbol{c}(\alpha) d\alpha + \boldsymbol{\varphi}_0)}$$
 and $\bar{\boldsymbol{z}}(t) \triangleq e^{j(\omega_0 t + \lambda t \boldsymbol{c}(0) + \boldsymbol{\varphi}_0)}.$

Take a look at the lemmas on Slide 9-105 and compare them with $\bar{z}(t)$!

Woodward's Theorem

• Treating $t\mathbf{c}(0)$ as $\int_0^t \bar{\mathbf{c}}(\alpha) d\alpha$ with $\bar{\mathbf{c}}(t) = \mathbf{c}(0)$ for every $t \in \Re$, we observe that $\bar{\mathbf{c}}(t)$ is SSS and $\bar{\mathbf{c}}(t) \perp \varphi_0$, and hence, we can follow the proof of Theorem 10-3 to obtain:

$$R_{\bar{z}\bar{z}}(\tau) = E\left[e^{j\lambda\tau\boldsymbol{c}(0)}\right]e^{j\omega_0\tau} = e^{j\omega_0\tau}\int_{-\infty}^{\infty}f_{\boldsymbol{c}}(c)e^{j\lambda\tau c}dc = \frac{1}{\lambda}e^{j\omega_0\tau}\int_{-\infty}^{\infty}f_{\boldsymbol{c}}\left(\frac{u}{\lambda}\right)e^{ju\tau}du,$$

which implies

$$S_{\bar{z}\bar{z}}(\omega) = \int_{-\infty}^{\infty} R_{\bar{z}\bar{z}}(\tau) e^{-j\omega\tau} d\tau$$

$$= \frac{1}{\lambda} \int_{-\infty}^{\infty} f_{c} \left(\frac{u}{\lambda}\right) \int_{-\infty}^{\infty} e^{-j\tau(\omega-\omega_{0}-u)} d\tau du$$

$$= \frac{1}{\lambda} \int_{-\infty}^{\infty} f_{c} \left(\frac{u}{\lambda}\right) \cdot 2\pi \delta(\omega-\omega_{0}-u) du$$

$$= \frac{2\pi}{\lambda} f_{c} \left(\frac{\omega-\omega_{0}}{\lambda}\right).$$

Then, Observation 4 (cf. Slide 10-8) implies that

$$S_{\bar{x}\bar{x}}(\omega) = \frac{1}{4} \left[S_{\bar{z}\bar{z}}(\omega) + S_{\bar{z}\bar{z}}(-\omega) \right] = \frac{\pi}{2\lambda} \left[f_c \left(\frac{\omega - \omega_0}{\lambda} \right) + f_c \left(\frac{-\omega - \omega_0}{\lambda} \right) \right].$$

<u>Woodward's Theorem</u>

• Now in order for $S_{\bar{x}\bar{x}}(\omega)$ to well-approximate $S_{xx}(\omega)$, we hope that

$$R_{\bar{z}\bar{z}}(\tau) = e^{j\omega_0\tau} E[e^{j\lambda\tau\boldsymbol{c}(0)}]$$
(10.2)

well-approximates

$$R_{zz}(\tau) = e^{j\omega_0\tau} E\left[e^{j\lambda\int_0^\tau \boldsymbol{c}(\alpha)d\alpha}\right]$$
(10.3)

for most $\tau \in \Re$. We already know that (10.2) is close to (10.3) for $|\tau| < \tau_0$. As for $|\tau| \ge \tau_0$, because $\boldsymbol{c}(0)$ and $\int_0^{\tau} \boldsymbol{c}(\alpha) d\alpha$ assume to have densities, we can make:

$$E[e^{j\lambda\tau \boldsymbol{c}(0)}] \approx 0$$
 and $E\left[e^{j\lambda\int_0^{\tau} \boldsymbol{c}(\alpha)d\alpha}\right] \approx 0$ if λ is sufficiently large.

This proves the requirement that "for large λ " in the theorem.

We will see how well the approximate in Woodward's theorem is for the special case that c(t) is a Gaussian process.

Riemann-Lebesgue Theorem (Thm. 26.1 in P. Billingsley, *Probability and Measure*, 3rd Ed., Wiley, 1995) If X has a density, then $\varphi_X(t) \triangleq E[e^{jtX}] \xrightarrow{|t| \to \infty} 0.$

Definition (Gaussian process) [p. 122, *Random Processes: A Mathematical Approach for Engineers*, R. M. Gray & L. D. Davisson] A random process $\{\boldsymbol{x}(t), t \in \mathcal{I}\}$ is said to be a *Gaussian random process* if all finite collections of samples of the process are Gaussian random vectors.

• This is exactly the definition used in the textbook (cf. Slide 9-42).

Lemma [p. 122, *Random Processes: A Mathematical Approach for Engineers*, R. M. Gray & L. D. Davisson] A Gaussian random process is completely determined by a real-valued mean function $\mu(t)$ and a symmetric positive definite function $C(t_1, t_2)$.

• This is exactly what states in **Existence Theorem** in Slide 9-42.

Definition (Gaussian process) [p. 54, *Communication Systems*, 4th edition, S. Haykin] A random process $\boldsymbol{x}(t)$ is said to be a *Gaussian process*, if every (Lebesque-integrable) linear functional of $\boldsymbol{x}(t)$ in the form of

$$\boldsymbol{y} = \int_{-\infty}^{\infty} g(t) \boldsymbol{x}(t) dt$$

is a Gaussian random variable, provided that \boldsymbol{y} has finite variance.

Gaussian Processes

• By this definition, $\boldsymbol{\varphi}(t) = \int_0^t \boldsymbol{c}(\alpha) d\alpha$ is certainly a Gaussian process, if $\boldsymbol{c}(t)$ is a Gaussian process.

$$\begin{split} \int_{-\infty}^{\infty} g(t) \boldsymbol{\varphi}(t) dt &= \int_{0}^{\infty} \int_{0}^{t} g(t) \boldsymbol{c}(\alpha) d\alpha dt - \int_{0}^{\infty} \int_{-t}^{0} g(-t) \boldsymbol{c}(\alpha) d\alpha dt \\ &= \int_{0}^{\infty} \boldsymbol{c}(\alpha) \int_{\alpha}^{\infty} g(t) dt d\alpha - \int_{-\infty}^{0} \boldsymbol{c}(\alpha) \int_{-\alpha}^{\infty} g(-t) dt d\alpha \\ &= \int_{-\infty}^{\infty} \tilde{g}(\alpha) \boldsymbol{c}(\alpha) d\alpha \end{split}$$

where $\tilde{g}(\alpha) \triangleq \mathbf{1}\{\alpha > 0\} \cdot \int_{\alpha}^{\infty} g(t) dt - \mathbf{1}\{\alpha < 0\} \cdot \int_{-\alpha}^{\infty} g(-t) dt. \end{split}$

Hakin's definition of Gaussian processes implies the definition in the textbook.
 A random vector is Gaussian if every linear combination of the vector component is a Gaussian random variable.

<u>Gaussian Processes</u>

• The converse is also true since every Lebesque-integrable function can be approximated by some Riemann-integrable function (cf. Slide 26-16 in my course: Advanced Probability in Communications). E.g., the integral of the Lebesque-integrable-but-Riemann-nonintegrable function that f(x) = 0 if x is irrational, and 1, if x is rational, can be approximated by the integral of the Riemann-integrable function $\bar{f}(x) = 0$. Thus, the integral result \boldsymbol{y} can be obtained by taking finite number of samples of $g(t)\boldsymbol{x}(t)$, and then letting the number of samples go to infinity. The limiting distribution is certainly Gaussian because for each sampled number, the samples are constituted of a Gaussian vector by the text's definition.

10-28

The accuracy of Woodward's approximate is determined by how well

$$R_{\bar{z}\bar{z}}(\tau) = e^{j\omega_0\tau} E[e^{j\lambda\tau \boldsymbol{c}(0)}] \quad \text{approximates} \quad R_{zz}(\tau) = e^{j\omega_0\tau} E[e^{j\lambda\varphi(\tau)}].$$

For zero-mean Gaussian SSS $\boldsymbol{c}(t)$ with

$$R_{cc}(\tau) \approx \begin{cases} \rho, & \text{for } |\tau| < \tau_0; \\ 0, & \text{otherwise.} \end{cases}$$

 $\boldsymbol{\varphi}(t) = \int_0^t \boldsymbol{c}(\alpha) d\alpha$ is also zero-mean Gaussian. This implies

$$\begin{split} E[\boldsymbol{\varphi}^{2}(\tau)] &= \int_{0}^{\tau} \int_{0}^{\tau} E[\boldsymbol{c}(\alpha)\boldsymbol{c}(\beta)] d\alpha d\beta = \int_{0}^{\tau} \int_{0}^{\tau} R_{cc}(\alpha-\beta) d\alpha d\beta = \int_{0}^{\tau} \int_{-\beta}^{\tau-\beta} R_{cc}(u) du d\beta \\ &= \int_{-\tau}^{0} R_{cc}(u) \int_{-u}^{\tau} d\beta du + \int_{0}^{\tau} R_{cc}(u) \int_{0}^{\tau-u} d\beta du \quad (\text{Note } R_{cc}(u) = R_{cc}(-u)) \\ &= 2 \int_{0}^{\tau} (\tau-u) R_{cc}(u) du = \begin{cases} \rho \tau^{2}, & \text{if } |\tau| < \tau_{0}; \\ \rho \tau_{0}(2|\tau|-\tau_{0}), & \text{otherwise,} \end{cases} \end{split}$$

and for zero-mean Gaussian $\boldsymbol{\varphi}(t)$,

$$R_{zz}(\tau) = e^{j\omega_0\tau} e^{-\frac{1}{2}\lambda^2 E[\varphi^2(\tau)]} = \begin{cases} e^{j\omega_0\tau} e^{-\frac{1}{2}\lambda^2\rho\tau^2}, & \text{if } |\tau| < \tau_0; \\ e^{j\omega_0\tau} e^{-\frac{1}{2}\lambda^2\rho\tau_0(2|\tau|-\tau_0)}, & \text{otherwise.} \end{cases}$$

Similarly,

$$R_{\bar{z}\bar{z}}(\tau) = e^{j\omega_0\tau} e^{-\frac{1}{2}\lambda^2\tau^2 E[\mathbf{c}^2(0)]} = e^{j\omega_0\tau} e^{-\frac{1}{2}\lambda^2\rho\tau^2}$$

Thus,

$$\begin{aligned} |S_{zz}(\omega) - S_{\bar{z}\bar{z}}(\omega)| &= \left| \int_{|\tau| \ge \tau_0} \left(e^{-\frac{1}{2}\lambda^2 \rho \tau^2} - e^{-\frac{1}{2}\lambda^2 \rho \tau_0(2|\tau| - \tau_0)} \right) e^{-j(\omega - \omega_0)\tau} d\tau \right| \\ &\leq \int_{|\tau| \ge \tau_0} \left| \left(e^{-\frac{1}{2}\lambda^2 \rho \tau^2} - e^{-\frac{1}{2}\lambda^2 \rho \tau_0(2|\tau| - \tau_0)} \right) e^{-j(\omega - \omega_0)\tau} \right| d\tau \\ &= 2 \int_{\tau_0}^{\infty} \left(e^{-\frac{1}{2}\lambda^2 \rho \tau_0(2\tau - \tau_0)} - e^{-\frac{1}{2}\lambda^2 \rho \tau^2} \right) d\tau \\ &= \frac{2}{\lambda^2 \rho \tau_0} e^{-\lambda^2 \rho \tau_0^2/2} - \frac{2}{\lambda} \sqrt{\frac{2\pi}{\rho}} \Phi\left(-\lambda \sqrt{\rho} \tau_0 \right), \end{aligned}$$

where $\Phi(\cdot)$ is the cdf of the standard normal. A well-known approximation for $\Phi(-x)$ is

$$\Phi(-x) = \frac{1}{\sqrt{2\pi}x} e^{-x^2/2} \left(1 - \frac{1}{x^2} + \frac{1 \cdot 3}{x^4} - \frac{1 \cdot 3 \cdot 5}{x^6} + \cdots \right)$$

and

$$\frac{1}{\sqrt{2\pi}x}e^{-x^2/2}\left(1-\frac{1}{x^2}\right) \le \Phi(-x) \Rightarrow \frac{1}{\sqrt{2\pi}x}e^{-x^2/2} - \Phi(x) \le \frac{1}{\sqrt{2\pi}x^3}e^{-x^2/2}.$$

Consequently, letting $x = \lambda \sqrt{\rho} \tau_0$ yields

$$|S_{zz}(\omega) - S_{\bar{z}\bar{z}}(\omega)| \leq \frac{2\tau_0\sqrt{2\pi}}{x} \left(\frac{1}{\sqrt{2\pi}x}e^{-x^2/2} - \Phi\left(-x\right)\right) \leq \frac{2\tau_0\sqrt{2\pi}}{x}\frac{1}{\sqrt{2\pi}x^3}e^{-x^2/2} = \frac{2}{\lambda^4\rho^2\tau_0^3}e^{-\lambda^2\rho\tau_0^2/2}.$$

We finally conclude that:

$$S_{xx}(\omega) - S_{\bar{x}\bar{x}}(\omega)| = \left| \frac{1}{4} \left(S_{zz}(\omega) + S_{zz}(-\omega) \right) - \frac{1}{4} \left(S_{\bar{z}\bar{z}}(\omega) + S_{\bar{z}\bar{z}}(-\omega) \right) \right| \\ \leq \frac{1}{4} \left| S_{zz}(\omega) - S_{\bar{z}\bar{z}}(\omega) \right| + \frac{1}{4} \left| S_{zz}(-\omega) - S_{\bar{z}\bar{z}}(-\omega) \right| \\ \leq \frac{\tau_0}{(\lambda^2 \rho \tau_0^2)^2} e^{-\lambda^2 \rho \tau_0^2/2},$$

and the difference of $S_{xx}(\omega)$ and $S_{\bar{x}\bar{x}}(\omega)$ uniformly decreases to zero as λ large.

• Wideband FM: If λ is chosen such that $\lambda^2 \rho \tau_0^2 \gg 1$, $S_{xx}(\omega) \approx S_{\bar{x}\bar{x}}(\omega)$. In such case,

$$S_{zz}(\omega + \omega_0) \approx S_{\bar{z}\bar{z}}(\omega + \omega_0) = \frac{2\pi}{\lambda} f_c\left(\frac{\omega}{\lambda}\right), \quad (\text{See Slide 10-23.})$$

and the bandwidth of $S_{\bar{z}\bar{z}}(\omega + \omega_0)$ is *wide* (as proportional to λ), and so is the bandwidth of its approximate target $S_{zz}(\omega + \omega_0)$. Thus, the system is named *wideband FM*.

• Narrowband FM: If λ is not large enough such that $\lambda^2 \rho \tau_0^2 \ll 1$, (and assume τ_0 is very small such that most $|\tau| \geq \tau_0$), then by Slide 10-28,

$$R_{zz}(\tau) \approx e^{j\omega_0\tau} e^{-\lambda^2 \rho \tau_0^2(|\tau|/\tau_0 - 1/2)} \Rightarrow S_{zz}(\omega + \omega_0) \approx \frac{2\lambda^2 \rho \tau_0 e^{\lambda^2 \rho \tau_0^2/2}}{\omega^2 + \lambda^4 \rho^2 \tau_0^2}$$

with 3dB-bandwidth $\omega_{3dB} = \lambda^2 \rho \tau_0$.

In such case, $S_{zz}(\omega)$ is named *narrowband FM*, and cannot be well-approximated by $S_{\bar{z}\bar{z}}(\omega)$.

The end of Section 10-3 Modulation

10-4 Cyclostationary Processes

- **Cyclostationarity:** A random process $\boldsymbol{x}(t)$ is called *strictly-sense cyclostation*ary stationary (SSCS) with period T if its statistical properties are invariant to a shift of the origin by integer multiples of T.
- Wide-Sense Cyclostationarity: A random process $\boldsymbol{x}(t)$ is called *wide-sense* cyclostationary stationary (WSCS) with period T if $\eta_{xx}(t+mT) = \eta_{xx}(t)$ and $R_{xx}(t_1+mT, t_2+mT) = R_{xx}(t_1, t_2)$ for every integer m.

Theorem 10-5 (SSCS and SSS) If $\boldsymbol{x}(t)$ is an SSCS process with period T, then $\boldsymbol{y}(t) = \boldsymbol{x}(t - \boldsymbol{\theta})$ is SSS, where random variable $\boldsymbol{\theta}$ that is independent of $\boldsymbol{x}(t)$ is uniformly distributed over [0, T).

Moreover, the cdf of $\boldsymbol{y}(t)$ can be obtained from the cdf of $\boldsymbol{x}(t)$ as:

$$F_y(x_1, \dots, x_n; t_1, \dots, t_n) = \frac{1}{T} \int_0^T F_x(x_1, \dots, x_n; t_1 - \alpha, \dots, t_n - \alpha) d\alpha. \quad (10.4)$$

Proof: It suffices to show that the probability of the event

$$P(\{\zeta \in S : \boldsymbol{y}(t_1 + c, \zeta) \le x_1 \text{ and } \cdots \text{ and } \boldsymbol{y}(t_n + c, \zeta) \le x_n\})$$

is independent of c, and is given by (10.4). This can be proved as follows.

By the uniformity of $\boldsymbol{\theta}$, and independence between $\boldsymbol{x}(t)$ and $\boldsymbol{\theta}$,

$$P(\{\zeta \in S : \boldsymbol{y}(t_1 + c, \zeta) \leq x_1 \text{ and } \cdots \text{ and } \boldsymbol{y}(t_n + c, \zeta) \leq x_n\})$$

$$= \int_0^T P(\{\zeta \in S : \boldsymbol{x}(t_1 + c - \theta, \zeta) \leq x_1 \text{ and } \cdots \text{ and } \boldsymbol{x}(t_n + c - \theta, \zeta) \leq x_n\}) \left(\frac{1}{T}\right) d\theta$$

$$= \frac{1}{T} \int_{-c}^{T-c} P(\{\zeta \in S : \boldsymbol{x}(t_1 - \alpha, \zeta) \leq x_1 \text{ and } \cdots \text{ and } \boldsymbol{x}(t_n - \alpha, \zeta) \leq x_n\}) d\alpha \quad (\alpha = \theta - c)$$

$$= \frac{1}{T} \int_0^T P(\{\zeta \in S : \boldsymbol{x}(t_1 - \alpha, \zeta) \leq x_1 \text{ and } \cdots \text{ and } \boldsymbol{x}(t_n - \alpha, \zeta) \leq x_n\}) d\alpha \quad (By \text{ SSCS of } \boldsymbol{x}(t))$$

$$= \frac{1}{T} \int_0^T F_x(x_1, \dots, x_n; t_1 - \alpha, \dots, t_n - \alpha) d\alpha.$$

Cyclostationary Processes

Theorem 10-6 (WSCS and WSS) If $\boldsymbol{x}(t)$ is a WSCS process with period T, then $\boldsymbol{y}(t) = \boldsymbol{x}(t - \boldsymbol{\theta})$ is WSS, where random variable $\boldsymbol{\theta}$ that is independent of $\boldsymbol{x}(t)$ is uniformly distributed over [0, T).

Moreover, the mean and autocorrelation function of $\boldsymbol{y}(t)$ are

$$\eta_y = \frac{1}{T} \int_0^T \eta_x(t) dt$$
 and $R_{yy}(\tau) = \frac{1}{T} \int_0^T R_{xx}(t+\tau, t) dt.$

Proof:

$$E[\boldsymbol{y}(t)] = E[\boldsymbol{x}(t-\boldsymbol{\theta})] = E[E[\boldsymbol{x}(t-\theta)|\boldsymbol{\theta} = \theta]] = \frac{1}{T} \int_0^T E[\boldsymbol{x}(t-\theta)|\boldsymbol{\theta} = \theta] d\theta$$

$$= \frac{1}{T} \int_0^T E[\boldsymbol{x}(t-\theta)] d\theta \quad \text{(Independence between } \boldsymbol{x}(t) \text{ and } \boldsymbol{\theta}\text{)}$$

$$= \frac{1}{T} \int_0^T \eta_x(t-\theta) d\theta$$

$$= \frac{1}{T} \int_{t-T}^t \eta_x(s) ds \quad (s = t-\theta)$$

$$= \frac{1}{T} \int_0^T \eta_x(s) ds \quad \text{(WSCS of } \boldsymbol{x}(t)\text{)},$$

Cyclostationary Processes

and similarly

$$R_{yy}(t+\tau,t) = E[\boldsymbol{y}(t+\tau)\boldsymbol{y}(t)] = E[\boldsymbol{x}(t+\tau-\boldsymbol{\theta})\boldsymbol{x}(t-\boldsymbol{\theta})]$$

$$= E[E[\boldsymbol{x}(t+\tau-\boldsymbol{\theta})\boldsymbol{x}(t-\boldsymbol{\theta})|\boldsymbol{\theta} = \boldsymbol{\theta}]]$$

$$= \frac{1}{T} \int_{0}^{T} E[\boldsymbol{x}(t+\tau-\boldsymbol{\theta})\boldsymbol{x}(t-\boldsymbol{\theta})]d\boldsymbol{\theta} \quad (\text{Uniformity of } \boldsymbol{\theta})$$

$$= \frac{1}{T} \int_{0}^{T} E[\boldsymbol{x}(t+\tau-\boldsymbol{\theta})\boldsymbol{x}(t-\boldsymbol{\theta})]d\boldsymbol{\theta} \quad (\text{Independence between } \boldsymbol{x}(t) \text{ and } \boldsymbol{\theta})$$

$$= \frac{1}{T} \int_{0}^{T} R_{xx}(t+\tau-\boldsymbol{\theta},t-\boldsymbol{\theta})d\boldsymbol{\theta}$$

$$= \frac{1}{T} \int_{t-T}^{t} R_{xx}(s+\tau,s)ds \quad (s=t-\boldsymbol{\theta})$$

$$= \frac{1}{T} \int_{0}^{T} R_{xx}(s+\tau,s)ds \quad (\text{WSCS of } \boldsymbol{x}(t)).$$
Cyclostationary Processes

Remarks

• In the literature, $R_{yy}(\tau)$ is called the *time-average autocorrelation function* of the WSCS process $\boldsymbol{x}(t)$, because it averages over one period of the periodic autocorrelation function of $\boldsymbol{x}(t)$, and is usually denoted by $\bar{R}_{xx}(\tau)$.

For a non-WSCS process $\boldsymbol{x}(t)$, its time-average autocorrelation function is defined as:

$$\bar{R}_{xx}(\tau) \triangleq \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} R_{xx}(t+\tau, t) dt,$$

provided the limit exists.

The above limit always exists for a WSCS process, and is equal to

$$\bar{R}_{xx}(\tau) = \frac{1}{2kT} \int_{-kT}^{kT} R_{xx}(t+\tau,t) dt \quad \text{for any positive integer } k.$$

• In the textbook, $\bar{\boldsymbol{x}}(t) = \boldsymbol{x}(t - \boldsymbol{\theta})$ is named the *shifted process* of $\boldsymbol{x}(t)$.

Examples of WSCS processes: Show that the pulse train

$$oldsymbol{z}(t) = \sum_{n=-\infty}^{\infty} oldsymbol{c}_n \delta(t - nT)$$

is WSCS, where $\{c_n\}_{n=-\infty}^{\infty}$ is a discrete-time SSS sequence. Then, determine the time-average autocorrelation function and time-average power spectrum of $\boldsymbol{z}(t)$. Answer: Apparently,

$$\mu_z(t) = E[\boldsymbol{z}(t)] = \sum_{n=-\infty}^{\infty} E[\boldsymbol{c}_n]\delta(t-nT) = \mu_c \sum_{n=-\infty}^{\infty} \delta(t-nT)$$

and

$$R_{zz}(t_1, t_2) = \sum_{n=-\infty}^{\infty} \sum_{r=-\infty}^{\infty} E[\mathbf{c}_n \mathbf{c}_r] \delta(t_1 - nT) \delta(t_2 - rT)$$

$$= \sum_{n=-\infty}^{\infty} \sum_{r=-\infty}^{\infty} R_{cc}[n - r] \delta(t_1 - nT) \delta(t_2 - rT)$$

$$= \sum_{m=-\infty}^{\infty} R_{cc}[m] \sum_{r=-\infty}^{\infty} \delta(t_1 - (m + r)T) \delta(t_2 - rT) \quad (m = n - r)$$

are periodic with period T.

To determine the time-average autocorrelation function for $\boldsymbol{x}(t)$, we derive that

$$\begin{split} \bar{R}_{zz}(\tau) &= \frac{1}{T} \int_{0}^{T} R_{zz}(t+\tau,t) dt = \frac{1}{T} \int_{0}^{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \sum_{r=-\infty}^{\infty} \delta(t+\tau-(m+r)T) \delta(t-rT) dt \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \sum_{r=-\infty}^{\infty} \int_{0}^{T-rT} \delta(t+\tau-(m+r)T) \delta(t-rT) dt \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \sum_{r=-\infty}^{\infty} \int_{-rT}^{T-rT} \delta(s+\tau-mT) \delta(s) ds \quad (s=t-rT) \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \int_{-\infty}^{\infty} \delta(s+\tau-mT) \delta(s) ds \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \int_{-\infty}^{\infty} g_{\tau,m}(s) \delta(s) ds \quad (g_{\tau,m}(s) = \delta(s+\tau-mT)) \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] g_{\tau,m}(0) \quad \text{Replication Property (Slide 9-87):} \begin{cases} g_{\tau,m}(s) \text{ continuous at } s = 0; \\ \text{exception occurs at } \dots \end{cases} \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \delta(\tau-mT). \end{cases}$$

For any τ not equal to a multiple of T, $g_{\tau,m}(s)$ is zero at the vicinity of zero, and is certainly continuous at s = 0.

The same claim holds if $\tau = kT$ for some integer k, and $m \neq k$.

At the situation where $\tau = kT$ and k = m, we use the "convention" that $\int_{-\infty}^{\infty} \delta(s + mT - mT)\delta(s)ds = \int_{-\infty}^{\infty} \delta(s)\delta(s)ds = \delta(s)$ to complete the derivation.

The expression on page 475 of the textbook, namely,

$$\int_0^T \delta(t+\tau-(m+r)T)\delta(t-rT)dt = \delta(\tau-mT)$$

is incorrect. Note that the left-hand-side is a function of r while the right-hand-side does not depend on r. The correct expression should be:

$$\sum_{r=-\infty}^{\infty} \int_0^T \delta(t+\tau - (m+r)T)\delta(t-rT)dt = \delta(\tau - mT).$$

An easier way to do the derivation in the previous slide is that

$$\int_{-\infty}^{\infty} \delta(t-a)\delta(t-b)dt = \int_{-\infty}^{\infty} \delta(a-b)\delta(t-b)dt = \delta(a-b).$$

The time-average power spectrum of $\boldsymbol{x}(t)$ is then given by:

$$\begin{split} \bar{S}_{zz}(\omega) &= \int_{-\infty}^{\infty} \bar{R}_{zz}(\tau) e^{-j\omega\tau} d\tau \\ &= \int_{-\infty}^{\infty} \left(\frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \delta(\tau - mT) \right) e^{-j\omega\tau} d\tau \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] \int_{-\infty}^{\infty} \delta(\tau - mT) e^{-j\omega\tau} d\tau \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} R_{cc}[m] e^{-j\omega mT} \\ &= \frac{1}{T} S_{cc}[\omega T], \end{split}$$

where

$$S_{cc}[\omega] = \sum_{m=-\infty}^{\infty} R_{cc}[m]e^{-j\omega m}.$$

10-40

Fundamental Theorem and Theorems 9-2 and 9-4 Revisited For any linear time-invariant system,

$$\vec{\eta}_{x} \qquad \mathbf{h}(\tau) \qquad \vec{\eta}_{y} = E[\mathbf{h}(\tau) * \vec{\eta}_{x}]$$

$$\vec{R}_{xx}(\tau) \qquad \mathbf{h}^{*}(-\tau) \qquad \mathbf{h}(\tau) \qquad \vec{R}_{yy}(\tau) = E[\mathbf{h}^{*}(-\tau) * \mathbf{h}(\tau) * \vec{R}_{xx}(\tau)]$$

$$\vec{S}_{xx}(\omega) \qquad \mathbf{H}^{*}(\omega) \qquad \mathbf{H}(\omega) \qquad \vec{S}_{yy}(\omega) = E[|\mathbf{H}(\omega)|^{2} \vec{S}_{xx}(\omega)]$$

provided the listed conditions hold.

1.
$$E[\mathbf{P}_{h}^{2}] < \infty$$
, where $\mathbf{P}_{h} \triangleq \int_{-\infty}^{\infty} |\mathbf{h}(\tau)| d\tau$;
2. $\limsup_{w \to \infty} \max\left\{ \left| \frac{1}{2w} \int_{-w}^{w} \eta_{x}(t-a) dt \right|, \left| \frac{1}{2w} \int_{-w}^{w} R_{xx}(t-a,t-b) dt \right| \right\} < M$ for some finite M holds almost everywhere (a.e.) in a, b ;
3. $\lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \eta_{x}(t-\tau) dt = \bar{\eta}_{x}$ for every τ ;
4. $\lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} R_{xx}(t-a,t-b) dt = \bar{R}_{xx}(b-a)$ for every a, b .

Proof:

$$\bar{\eta}_{y} = \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \eta_{y}(t) dt = \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} E[\boldsymbol{y}(t)] dt$$
$$= \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} E\left[\int_{-\infty}^{\infty} \boldsymbol{h}(\tau) \boldsymbol{x}(t-\tau) d\tau\right] dt$$
$$= \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \int_{-\infty}^{\infty} E[\boldsymbol{h}(\tau)] E[\boldsymbol{x}(t-\tau)] d\tau dt$$
$$= \lim_{w \to \infty} \int_{-\infty}^{\infty} \left(E[\boldsymbol{h}(\tau)] \frac{1}{2w} \int_{-w}^{w} \eta_{x}(t-\tau) dt\right) d\tau$$
$$= \int_{-\infty}^{\infty} \lim_{w \to \infty} \left(E[\boldsymbol{h}(\tau)] \frac{1}{2w} \int_{-w}^{w} \eta_{x}(t-\tau) dt\right) d\tau$$

This step requires the existence of a function $g(\tau) = M \cdot E[|\mathbf{h}(\tau)|]$ such that for sufficiently large ω

$$\left| E[\boldsymbol{h}(\tau)] \frac{1}{2w} \int_{-w}^{w} \eta_x(t-\tau) dt \right| \le g(\tau) \text{ a.e. in } \tau \text{ and } \int_{-\infty}^{\infty} g(\tau) d\tau = M \cdot E[\boldsymbol{P}_h] < \infty$$

$$= \int_{-\infty}^{\infty} \left(E[\boldsymbol{h}(\tau)] \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \eta_x(t-\tau) dt \right) d\tau = \bar{\eta}_x \int_{-\infty}^{\infty} E[\boldsymbol{h}(\tau)] d\tau.$$

$$\begin{split} \bar{R}_{yy}(\tau) &= \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} R_{yy}(t+\tau,t) dt \\ &= \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[\boldsymbol{h}^{*}(u)\boldsymbol{h}(v)] R_{xx}(t+\tau-v,t-u) dv du dt \\ &= \lim_{w \to \infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{1}{2w} \int_{-w}^{w} E[\boldsymbol{h}^{*}(u)\boldsymbol{h}(v)] R_{xx}(t+\tau-v,t-u) dt \right) dv du \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \lim_{w \to \infty} \left(\frac{1}{2w} \int_{-w}^{w} E[\boldsymbol{h}^{*}(u)\boldsymbol{h}(v)] R_{xx}(t+\tau-v,t-u) dt \right) dv du \end{split}$$

There exists function $g(u, v) = M \cdot E[|\mathbf{h}^*(u)\mathbf{h}(v)|]$ such that for sufficiently large w, $\left| E[\mathbf{h}^*(u)\mathbf{h}(v)] \frac{1}{2w} \int_{-w}^{w} R_{xx}(t+\tau-v,t-u)dt \right| \leq g(u,v)$

and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u, v) dv du = M \cdot E[\mathbf{P}_{h}^{2}] < \infty.$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[\boldsymbol{h}^{*}(u)\boldsymbol{h}(v)] \lim_{w \to \infty} \left(\frac{1}{2w} \int_{-w}^{w} R_{xx}(t+\tau-v,t-u)dt\right) dv du$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[\boldsymbol{h}^{*}(u)\boldsymbol{h}(v)] \bar{R}_{xx}(\tau-v+u) dv du.$$

<u>Fundamental Thm. and Thms. 9-2 and 9-4 Revisited</u> 10-44 Theorem 9-4 follows immediately from Theorem 9-2; hence, we omit it. □ **Example 10-4** Suppose that

$$\boldsymbol{x}(t) = \sum_{n=-\infty}^{\infty} \boldsymbol{c}_n \delta(t - nT)$$
 with $\{\boldsymbol{c}_n\}_{n=-\infty}^{\infty}$ zero-mean i.i.d

and

$$h(\tau) = \begin{cases} 1, & 0 \le t < T; \\ 0, & \text{otherwise} \end{cases}$$

Please find the time-average autocorrelation function and time-average power spectrum of the output process $\boldsymbol{y}(t)$.

Answer: Examine the four conditions as follows.

1. $E[\boldsymbol{P}_{h}^{2}] = T^{2} < \infty$, where $\boldsymbol{P}_{h} \triangleq \int_{-\infty}^{\infty} |\boldsymbol{h}(\tau)| d\tau = \int_{0}^{T} d\tau = T$;

2. Since $\eta_x(t) = 0$ and

$$R_{cc}[m] = E[\boldsymbol{c}_{n+m}\boldsymbol{c}_n^*] = 0 \text{ if } m \neq 0$$

$$R_{xx}(t_1, t_2) = \sum_{m=-\infty}^{\infty} R_{cc}[m] \sum_{r=-\infty}^{\infty} \delta(t_1 - (m+r)T) \delta(t_2 - rT)$$

= $R_{cc}[0] \sum_{r=-\infty}^{\infty} \delta(t_1 - rT) \delta(t_2 - rT)$ (cf. Slide 10-37)

$$\lim_{w \to \infty} \max \left\{ \underbrace{\left| \frac{1}{2w} \int_{-w}^{w} \eta_x(t-a) dt \right|}_{=0}, \left| \frac{1}{2w} \int_{-w}^{w} R_{xx}(t-a,t-b) dt \right| \right\}$$
$$= \lim_{w \to \infty} \sup \left| \frac{1}{2w} \int_{-w}^{w} R_{cc}[0] \sum_{r=-\infty}^{\infty} \delta(t-a-rT) \delta(t-b-rT) dt \right|$$
$$= R_{cc}[0] \delta(a-b) \cdot \limsup_{w \to \infty} \left| \frac{1}{2w} \int_{-w}^{w} \sum_{r=-\infty}^{\infty} \delta(t-b-rT) dt \right|$$
$$= R_{cc}[0] \delta(a-b) \cdot \limsup_{w \to \infty} \left| \frac{1}{2w} \left[\frac{2w}{T} \right] \right|$$
$$= \frac{1}{T} R_{cc}[0] \delta(a-b); \text{ (which is bounded a.e. in } a, b)$$

3. $\bar{\eta}_x = \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \eta_x(t-\tau) dt = 0$ for every τ ;

$$\bar{R}_{xx}(b-a) = \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} R_{xx}(t-a,t-b)dt$$

$$= \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} R_{cc}[0] \sum_{r=-\infty}^{\infty} \delta(t-a-rT)\delta(t-b-rT)dt$$

$$= R_{cc}[0]\delta(b-a) \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} \sum_{r=-\infty}^{\infty} \delta(t-b-rT)dt$$

$$= \frac{1}{T} R_{cc}[0]\delta(b-a)$$

for every a, b.

By the validity of the four conditions, Fundamental Theorem and Theorems 9-2 and 9-4 give

$$\eta_y = \eta_x \int_{-\infty}^{\infty} h(\tau) d\tau = \eta_x T = 0,$$

$$\begin{split} \bar{R}_{yy}(\tau) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h^{*}(u)h(v)\bar{R}_{xx}(\tau-v+u)dvdu \\ &= \int_{0}^{T} \int_{0}^{T} \frac{1}{T} R_{cc}[0]\delta(\tau-v+u)dvdu \quad (0 < v = u + \tau < T) \\ &= \frac{1}{T} R_{cc}[0] \int_{0}^{T} \mathbf{1}\{-\tau < u < T - \tau\}du \\ &= R_{cc}[0] \left(1 - \frac{|\tau|}{T}\right) \cdot \mathbf{1}\{|\tau| < T\}. \end{split}$$

and

$$\bar{S}_{yy}(\omega) = |H(\omega)|^2 \bar{S}_{xx}(\omega) = \left| \int_0^T e^{-j\omega\tau} d\tau \right|^2 \left(\frac{1}{T} R_{cc}[0] \right)$$
$$= \left(\frac{\sin(\omega T/2)}{\omega/2} \right)^2 \left(\frac{1}{T} R_{cc}[0] \right) = R_{cc}[0] \frac{4\sin^2(\omega T/2)}{\omega^2 T}.$$

The end of Section 10-4 Cyclostationary Processes

10-5 Bandlimited Processes and Sampling Theory 10-48

Definition (Bandlimited processes) A process $\boldsymbol{x}(t)$ is called *bandlimited* (BL) if $\bar{S}_{xx}(\omega) = 0$ for $|\omega| > \sigma$, and $\bar{R}_{xx}(0) < \infty$.

Most books do not require $\bar{R}_{xx}(0) < \infty$ for the definition of bandlimited processes. Here, we additionally require $\bar{R}_{xx}(0) < \infty$ for theoretical manipulation convenience. See the next lemma.

Lemma A bandlimited process $\boldsymbol{x}(t)$ has Taylor expansion (in the MS sense).

Proof: Since $\bar{S}_{xx}(\omega)$ is real and non-negative, and

$$\infty > \bar{R}_{xx}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{S}_{xx}(\omega) e^{j\omega \cdot 0} d\omega = \frac{1}{2\pi} \int_{-\sigma}^{\sigma} \bar{S}_{xx}(\omega) d\omega,$$

we have

$$\int_{-\infty}^{\infty} |j\omega|^{2n} \bar{S}_{xx}(\omega) d\omega \le \sigma^{2n} \int_{-\sigma}^{\sigma} \bar{S}_{xx}(\omega) d\omega < \infty.$$

Hence, the inverse Fourier transform of $|j\omega|^{2n}\bar{S}_{xx}(\omega)$ exists, which implies the *n*th derivative of $\bar{R}_{xx}(\tau)$ exists. Specifically, by Theorem 9-4,

$$\bar{R}_{xx}^{(n)}(\tau) = \frac{1}{2\pi} \int_{-\sigma}^{\sigma} (j\omega)^{2n} \bar{S}_{xx}(\omega) e^{j\omega\tau} d\omega. \quad \text{(Hence, } \boldsymbol{x}^{(n)}(t) \text{ exists in the MS sense.)}$$

10-5 Bandlimited Processes and Sampling Theory 10-49

Observe that

$$e^{j\omega v} = \sum_{n=0}^{\infty} \frac{v^n}{n!} (j\omega)^n.$$

So, passing the process $\boldsymbol{x}(t)$ via filter $H(\omega) = e^{j\omega v}$ and filter $H(\omega) = \sum_{n=0}^{\infty} \frac{v^n}{n!} (j\omega)^n$ should result in the same output. Accordingly,

$$\boldsymbol{x}(t+v) = \sum_{n=0}^{\infty} \boldsymbol{x}^{(n)}(t) \frac{v^n}{n!}$$
 in the MS sense.

 \Box

Remarks

- The above lemma indicates that a BL process is very "smooth" since it has derivatives of any order.
- The next lemma shows further that a BL process is not only "smooth" but also "slow-varying in time."

Lemma If $\boldsymbol{x}(t)$ is BL (not necessarily a real process as required in the textbook),

$$\lim_{w\to\infty}\frac{1}{2w}\int_{-w}^{w}E\left[|\boldsymbol{x}(t+\tau)-\boldsymbol{x}(t)|^2\right]dt\leq\sigma^2\tau^2\bar{R}_{xx}(0),$$

provided the limit exists.

10-5 Bandlimited Processes and Sampling Theory 10-50

Proof: Let $\boldsymbol{y}(t)$ be the output due to input $\boldsymbol{x}(t)$ and filter $H(\omega) = e^{j\omega\tau} - 1$. Then, $\boldsymbol{y}(t) = \boldsymbol{x}(t+\tau) - \boldsymbol{x}(t)$, and

$$\lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} E\left[|\boldsymbol{x}(t+\tau) - \boldsymbol{x}(t)|^2 \right] dt = \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} E[|\boldsymbol{y}(t)|^2] dt$$
$$= \lim_{w \to \infty} \frac{1}{2w} \int_{-w}^{w} R_{yy}(t,t) dt = \bar{R}_{yy}(0).$$

Theorem 9-4 states that

$$\bar{R}_{yy}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 \bar{S}_{xx}(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\sigma}^{\sigma} |e^{j\omega\tau} - 1|^2 \bar{S}_{xx}(\omega) d\omega$$

$$= \frac{1}{2\pi} \int_{-\sigma}^{\sigma} 4 \sin^2 \left(\frac{\omega\tau}{2}\right) \bar{S}_{xx}(\omega) d\omega$$

$$\leq \frac{1}{2\pi} \int_{-\sigma}^{\sigma} \omega^2 \tau^2 \bar{S}_{xx}(\omega) d\omega \quad (|\sin(\theta)| < |\theta|)$$

$$\leq \sigma^2 \tau^2 \frac{1}{2\pi} \int_{-\sigma}^{\sigma} \bar{S}_{xx}(\omega) d\omega = \sigma^2 \tau^2 \bar{R}_{xx}(0).$$

Stochastic Sampling Theorem

Theorem 10-9 (Stochastic sampling theorem) If $\boldsymbol{x}(t)$ is BL, then

$$\boldsymbol{x}(t+\tau) = \sum_{n=-\infty}^{\infty} \boldsymbol{x}(t+nT) \frac{\sin[\sigma(\tau-nT)]}{\sigma(\tau-nT)} \quad \text{(in the MS sense)},$$

where $T = \pi / \sigma$.

Proof: By Fourier series,

$$e^{j\omega\tau} = \sum_{n=-\infty}^{\infty} a_{n,\tau} e^{jnT\omega}$$
 for $|\omega| \le \sigma_{\tau}$

where

$$a_{n,\tau} = \frac{1}{2\sigma} \int_{-\sigma}^{\sigma} e^{j\omega\tau} e^{-jnT\omega} d\omega = \frac{\sin[\sigma(\tau - nT)]}{\sigma(\tau - nT)}.$$

Again, passing the BL-to- σ process $\boldsymbol{x}(t)$ via filter $H_1(\omega) = e^{j\omega\tau}$ and filter $H_2(\omega) = \sum_{n=-\infty}^{\infty} a_{n,\tau} e^{jnT\omega}$ with $H_1(\omega) = H_2(\omega)$ for $|\omega| \leq \sigma$ (We actually don't care whether $H_1(\omega) = H_2(\omega)$ for $|\omega| > \sigma$. Why?) should result in the same output. Accordingly,

$$\boldsymbol{x}(t+\tau) = \sum_{n=-\infty}^{\infty} a_{n,\tau} \boldsymbol{x}(t+nT).$$

10-51

Completeness with Past Samples

- A deterministic BL signal x(t), defined as $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = 0$ for $|\omega| > \sigma$, can be completely determined only when all samples, including **past** samples and **future** samples, are known.
- However, a stochastic BL signal $\boldsymbol{x}(t)$ can be asymptotically determined only with **past** samples!

Theorem 10-10 Fix (*i*) a BL process $\boldsymbol{x}(t)$ with bandwidth σ , (*ii*) a number $T_0 < (1/3)\pi/\sigma$, and (*iii*) a constant $\varepsilon > 0$ arbitrarily small. There exists a (sufficiently large) positive integer *n* and a set of coefficients $\{a_k\}_{k=1}^n$ such that

$$\lim_{w\to\infty}\frac{1}{2w}\int_{-w}^{w} E\left[\left\|\boldsymbol{x}(t)-\sum_{k=1}^{n}a_{k}\boldsymbol{x}(t-kT_{0})\right\|^{2}\right]dt<\varepsilon.$$

Proof: Let $\boldsymbol{y}(t) = \boldsymbol{x}(t) - \sum_{k=1}^{n} a_k \boldsymbol{x}(t - kT_0)$. Then, $\boldsymbol{y}(t)$ is the output due to input $\boldsymbol{x}(t)$ and filter

$$H(\omega) = 1 - \sum_{k=1}^{n} a_k e^{-jkT_0\omega}.$$

Completeness with Past Samples

Hence,

$$\bar{R}_{yy}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 \bar{S}_{xx}(\omega) d\tau = \frac{1}{2\pi} \int_{-\sigma}^{\sigma} |H(\omega)|^2 \bar{S}_{xx}(\omega) d\tau.$$

This indicates that if

$$|H(\omega)|^2 < \frac{\epsilon}{\bar{R}_{xx}(0)} \text{ for } |\omega| \le \sigma,$$

then

$$\bar{R}_{yy}(0) \leq \frac{\epsilon}{\bar{R}_{xx}(0)} \frac{1}{2\pi} \int_{-\sigma}^{\sigma} \bar{S}_{xx}(\omega) d\tau = \epsilon.$$

The availability of such $H(\omega)$ is proved as follows. Let $a_k = -(-1)^k \binom{n}{k}$. Then,

$$H(\omega) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} e^{-jkT_0\omega} = \left(1 - e^{-j\omega T_0}\right)^n,$$

which gives that for $|\omega| \leq \sigma$,

$$|H(\omega)|^2 = |1 - e^{-j\omega T_0}|^n = |2\sin(\omega T_0/2)|^n \to 0 \text{ as } n \to \infty,$$

because

$$\frac{|\omega T_0|}{2} \le \frac{\sigma T_0}{2} < \frac{\pi}{6}.$$

Completeness with Past Samples

Remarks

• In Chapter 11, we will see that a desire to make $|H(\omega)|^2 = 0$ for $|\omega| \leq \sigma$ will violate the Paley-Wiener condition, which is the sufficient condition for the existence of $H(e^{j\omega})$ with $|H(e^{j\omega})|^2$ equal to a target $S(e^{j\omega})$.

A power spectrum $S[e^{j\omega}]$ (equiv. S[z]) can be factorized to $|H[e^{j\omega}]|^2$ (equiv. H[z]H[1/z]) if the Paley-Wiener condition

$$\int_{-\pi}^{\pi} |\log S[e^{j\omega}]| d\omega < \infty.$$

J

is valid.

- Theorem 10-10 is actually valid for any $T_0 < \pi/\sigma$. In the case of $(1/3)\pi/\sigma \leq T_0 < \pi/\sigma$, a different $H(\omega)$ needs to be chosen. For details, you may refer to the Weierstrass approximation theorem or the Fejer-Riesz factorization theorem.
- Theorem 10-11 further increases the sampling period bound from π/σ to $N\pi/\sigma$, if the samples of the outputs $\boldsymbol{y}_1(t), \boldsymbol{y}_2(t), \ldots, \boldsymbol{y}_N(t)$ of N linear systems $H_1(\omega), H_2(\omega), \ldots, H_N(\omega)$ due to input $\boldsymbol{x}(t)$ are available.

Theorem 10-11 Fix a BL process $\boldsymbol{x}(t)$ with bandwidth σ , and a constant τ . Let $c = 2\sigma/N$ and $T_0 = 2\pi/c$. Then,

$$\boldsymbol{x}(t+\tau) = \sum_{n=-\infty}^{\infty} \left[\boldsymbol{y}_1(t+nT_0)p_1(\tau-nT_0) + \dots + \boldsymbol{y}_N(t+nT_0)p_N(\tau-nT_0) \right]$$

where $\boldsymbol{y}_k(t)$ is the output of the linear system $H_k(\omega)$ due to input $\boldsymbol{x}(t)$, and

$$p_k(\tau) = \frac{1}{c} \int_{-\sigma}^{-\sigma+c} P_k(\omega,\tau) e^{j\omega\tau} d\omega, \quad \left(P_k(\omega,\tau) = \sum_{n=-\infty}^{\infty} p_k(\tau - nT_0) e^{-j\omega(\tau - nT_0)} \right)$$
(10.5)

and $\{H_k(\omega)\}_{k=1}^N$ and $\{P_k(\omega, \tau)\}_{k=1}^N$ are the solutions of

$$H_1(\omega)P_1(\omega,\tau) + \dots + H_N(\omega)P_N(\omega,\tau) = 1$$

$$H_1(\omega+c)P_1(\omega,\tau) + \dots + H_N(\omega+c)P_N(\omega,\tau) = e^{jc\tau}$$

 $\begin{cases} H_1(\omega+c)P_1(\omega,\tau)+\cdots+H_N(\omega+c)P_N(\omega,\tau) &= e^{jc\tau}\\ \dots\\ H_1(\omega+(N-1)c)P_1(\omega,\tau)+\cdots+H_N(\omega+(N-1)c)P_N(\omega,\tau) &= e^{j(N-1)c\tau}\\ \text{for }\omega\in(-\sigma,-\sigma+c]. \end{cases}$ (10.6)

Proof:

• It suffices to show that

$$\underbrace{e^{j\omega\tau}}_{\boldsymbol{x}(t+\tau)} = \sum_{n=-\infty}^{\infty} p_1(\tau - nT_0) \underbrace{H_1(\omega)e^{jn\omega T_0}}_{\boldsymbol{y}_1(t+nT_0)} + \dots + \sum_{n=-\infty}^{\infty} p_N(\tau - nT_0) \underbrace{H_N(\omega)e^{jn\omega T_0}}_{\boldsymbol{y}_N(t+nT_0)}$$
(10.7)
for $|\omega| \leq \sigma$ (namely for ω in $(-\sigma - \sigma + c]$ $(-\sigma + c - \sigma + 2c]$

for $|\omega| \leq \sigma$ (namely, for ω in $(-\sigma, -\sigma + c]$, $(-\sigma + c, -\sigma + 2c]$, ..., $(-\sigma + (N-1)c, -\sigma + Nc = \sigma]$).

• Replacing ω by $(\tilde{\omega} + kc)$ for the right-hand-side of (10.7) yields:

$$\begin{split} H_{1}(\tilde{\omega}+kc)\sum_{n=-\infty}^{\infty}p_{1}(\tau-nT_{0})e^{jn(\tilde{\omega}+kc)T_{0}}+\cdots+H_{N}(\tilde{\omega}+kc)\sum_{n=-\infty}^{\infty}p_{N}(\tau-nT_{0})e^{jn(\tilde{\omega}+kc)T_{0}}\\ &=H_{1}(\tilde{\omega}+kc)\sum_{n=-\infty}^{\infty}p_{1}(\tau-nT_{0})e^{jn\tilde{\omega}T_{0}}+\cdots+H_{N}(\tilde{\omega}+kc)\sum_{n=-\infty}^{\infty}p_{N}(\tau-nT_{0})e^{jn\tilde{\omega}T_{0}}\quad (\text{since }e^{jnkcT_{0}}=e^{jnk\cdot 2\pi}=1.)\\ &=H_{1}(\tilde{\omega}+kc)\left(e^{j\tilde{\omega}\tau}P_{1}(\tilde{\omega},\tau)\right)+\cdots+H_{N}(\tilde{\omega}+kc)\left(e^{j\tilde{\omega}\tau}P_{N}(\tilde{\omega},\tau)\right)\quad (\text{by definition of }\{P_{\ell}(\omega,\tau)\}_{\ell=1}^{N}\text{ or }(10.5))\\ &=e^{j\tilde{\omega}\tau}\left[H_{1}(\tilde{\omega}+kc)P_{1}(\tilde{\omega},\tau)+\cdots+H_{N}(\tilde{\omega}+kc)P_{N}(\tilde{\omega},\tau)\right]\\ &=e^{j\tilde{\omega}\tau}e^{jkc\tau}\quad (\text{by the }(k+1)\text{th equation in }(10.6), \text{ which is true for }\tilde{\omega}\in(-\sigma,\sigma+c])\\ &=e^{j(\tilde{\omega}+kc)\tau} \end{split}$$

Therefore, (10.7) is true for $\omega = \tilde{\omega} + kc \in (-\sigma + kc, \sigma + (k+1)c]$ for $0 \le k < N.\square$

Claim:
$$p_k(\tau) = \frac{1}{c} \int_{-\sigma}^{-\sigma+c} P_k(\omega, \tau) e^{j\omega\tau} d\omega \Rightarrow P_k(\omega, \tau) = \sum_{n=-\infty}^{\infty} p_k(\tau - nT_0) e^{-j\omega(\tau - nT_0)} e^{-j\omega(\tau - nT_0)}$$

Proof: From (10.6), it can be induced that $P_k(\omega, \tau)$ are periodic with period T_0 because $e^{jkc(\tau-nT_0)} = e^{jkc\tau}$. Thus,

$$P_k(\omega, \tau - nT_0) = P_k(\omega, \tau),$$

which implies

$$p_{k}(\tau - nT_{0}) = \frac{1}{c} \int_{-\sigma}^{-\sigma + c} P_{k}(\omega, \tau - nT_{0}) e^{j\omega(\tau - nT_{0})} d\omega$$
$$= \frac{1}{c} \int_{-\sigma}^{-\sigma + c} P_{k}(\omega, \tau) e^{j\omega(\tau - nT_{0})} d\omega$$
$$= \frac{1}{c} \int_{-\sigma}^{-\sigma + c} P_{k}(\omega, \tau) e^{j\omega\tau} e^{-jn\omega T_{0}} d\omega$$

Accordingly,

$$P_k(\omega, au)e^{j\omega au} = \sum_{n=-\infty}^\infty p_k(au-nT_0)e^{jn\omega T_0}.$$

Remarks

• For
$$N = 1$$
, we have $c = 2\sigma$, $T_0 = \pi/\sigma$,

$$\boldsymbol{x}(t+\tau) = \sum_{n=-\infty}^{\infty} \boldsymbol{y}_1(t+nT_0)p_1(\tau-nT_0) \text{ and } H_1(\omega)P_1(\omega,\tau) = 1 \text{ for } -\sigma < \omega \leq \sigma.$$

Taking $H_1(\omega) = 1$ (hence, $\boldsymbol{y}_1(t) = \boldsymbol{x}(t)$ and

$$p_1(\tau) = \frac{1}{c} \int_{-\sigma}^{-\sigma+c} P_k(\omega,\tau) e^{j\omega\tau} d\omega = \frac{1}{2\sigma} \int_{-\sigma}^{\sigma} e^{j\omega\tau} d\omega)$$

reduces Theorem 10-11 to Theorem 10-9 (cf. Slide 10-51).

Theorem 10-9 (Stochastic sampling theorem) If $\boldsymbol{x}(t)$ is BL, then $\boldsymbol{x}(t+\tau) = \sum_{n=-\infty}^{\infty} \boldsymbol{x}(t+nT) \frac{\sin[\sigma(\tau-nT)]}{\sigma(\tau-nT)}$ (in the MS sense), where $T = \pi/\sigma$.

• For N > 1, sampling is performed at every $T_0 = N(\pi/\sigma)$; however, N samples are taken each time. Thus, no saving in "complexity" is obtained.

Random Sampling

Observations and motivation

• The relationship between the (discrete) Fourier transform of equidistance samples $\{x[nT]\}$ of a deterministic parent signal x(t) and the parent signal itself is given by

$$X[\omega] \quad \left(=\sum_{n=-\infty}^{\infty} x(nT)e^{-jnT\omega}\right) = \sum_{n=-\infty}^{\infty} X(\omega+2n\sigma),$$

where $\sigma = \pi/T$ (cf. Slide 9-132).

- The difference $X(\omega) X[\omega]$ is called *aliasing error*.
- Question: How about the Fourier transform of random samples $\{t_n\}$ of x(t), where $\{t_n\}$ is a Poisson point process (cf. Slide 9-47) with average density λ ?

Lemma The normalized (discrete) Fourier transform of random samples $\{t_n\}$ of (continuous) x(t), namely,

$$\frac{1}{\lambda} \sum_{n=-\infty}^{\infty} x(\boldsymbol{t}_n) e^{-j\omega \boldsymbol{t}_n},$$

is an unbiased estimate of $X(\omega)$.

Random Sampling

Proof: Let $\boldsymbol{z}(t) = \sum_{n=-\infty}^{\infty} \delta(t - \boldsymbol{t}_n)$. Then,

$$\sum_{n=-\infty}^{\infty} x(\boldsymbol{t}_n) e^{-j\omega \boldsymbol{t}_n} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \left(\sum_{n=-\infty}^{\infty} \delta(t - \boldsymbol{t}_n) \right) dt$$
$$= \int_{-\infty}^{\infty} x(t) \boldsymbol{z}(t) e^{-j\omega t} dt.$$

Hence,

$$\begin{split} E\left[\sum_{n=-\infty}^{\infty} x(\boldsymbol{t}_n) e^{-j\omega \boldsymbol{t}_n}\right] &= \int_{-\infty}^{\infty} x(t) E[\boldsymbol{z}(t)] e^{-j\omega t} dt \\ &= \int_{-\infty}^{\infty} x(t) \lambda e^{-j\omega t} dt = \lambda X(\omega). \end{split}$$

 $E[\boldsymbol{z}(t)] = \frac{\partial E[\boldsymbol{x}(t)]}{\partial t} = \frac{\partial(\lambda t)}{\partial t} = \lambda, \text{ where } \boldsymbol{x}(t) \text{ is the Poison process defined in}$ Example 9-5 (cf. Slide 9-48 and Slide 9-98).

10-60

Random Sampling

Lemma Follow the previous lemma. The estimate variance of the unbiased estimator, namely,

$$E\left[\left|\frac{1}{\lambda}\sum_{n=-\infty}^{\infty}x(\boldsymbol{t}_{n})e^{-j\omega\boldsymbol{t}_{n}}-X(\omega)\right|^{2}\right]$$

approaches zero as $\lambda \to \infty$, provided that the energy of x(t), i.e., $\int_{-\infty}^{\infty} x^2(t) dt$, is finite.

Proof:

$$E\left[\left|\sum_{n=-\infty}^{\infty} x(t_n)e^{-j\omega t_n}\right|^2\right] = E\left[\left(\int_{-\infty}^{\infty} x(t)\boldsymbol{z}(t)e^{-j\omega t}dt\right)\left(\int_{-\infty}^{\infty} x(s)\boldsymbol{z}(s)e^{j\omega s}ds\right)\right]$$
$$= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} x(t)x(s)E[\boldsymbol{z}(t)\boldsymbol{z}(s)]e^{-j\omega(t-s)}dtds$$
$$= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} x(t)x(s)R_{zz}(t,s)e^{-j\omega(t-s)}dtds$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t)x(s) \frac{\partial^2 R_{xx}(t,s)}{\partial t \partial s} e^{-j\omega(t-s)} dt ds$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t)x(s) \frac{\partial^2 (\lambda \min\{t,s\} + \lambda^2 ts)}{\partial t \partial s} e^{-j\omega(t-s)} dt ds$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t)x(s) \left[\lambda \delta(t-s) + \lambda^2\right] e^{-j\omega(t-s)} dt ds$$

$$= \lambda \int_{-\infty}^{\infty} x^2(t) dt + \lambda^2 |X(\omega)|^2.$$

Hence,

$$E\left[\left|\frac{1}{\lambda}\sum_{n=-\infty}^{\infty}x(t_n)e^{-j\omega t_n} - X(\omega)\right|^2\right] = \frac{1}{\lambda^2}E\left[\left|\sum_{n=-\infty}^{\infty}x(t_n)e^{-j\omega t_n}\right|^2\right] - |X(\omega)|^2$$
$$= \frac{1}{\lambda}\int_{-\infty}^{\infty}x^2(t)dt \to 0 \text{ as } \lambda \to \infty.$$

The end of Section 10-5 Bandlimited Processes and Sampling Theory

10-6 Deterministic Signals in Noise

- A central problem in communications is the *estimation* of a sample $y_f(t_0)$ at a specific time of filter output of a deterministic signal f(t) in presence of noise.
- In absence of noise $\boldsymbol{v}(t)$,

$$\boldsymbol{y}(t_0) = y_f(t_0) \triangleq \int_{-\infty}^{\infty} h(\tau) f(t_0 - \tau) d\tau.$$

• The noise however will change the errorfree system to:

$$\boldsymbol{y}(t_0) = y_f(t_0) + \boldsymbol{y}_v(t_0),$$

where

$$\boldsymbol{y}_{v}(t_{0}) \triangleq \int_{-\infty}^{\infty} h(\tau) \boldsymbol{v}(t_{0}-\tau) d\tau.$$

Question: How to design the filter $h(\tau)$ such that the *output signal-to-noise* ratio $\gamma_o = \frac{|y_f(t_0)|^2}{E[\boldsymbol{y}_v^2(t_0)]}$ is maximized, provided the PSD of WSS $\boldsymbol{v}(t)$ is $S_{vv}(\omega)$?

Answer: The matched filter.

$$\begin{split} \gamma_{o} &= \frac{|y_{f}(t_{0})|^{2}}{E[\boldsymbol{y}_{v}^{2}(t_{0})]} = \frac{\left|\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)H(\omega)e^{j\omega t_{0}}d\omega\right|^{2}}{\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{vv}(\omega)|H(\omega)|^{2}d\omega} \\ &= \frac{\left|\int_{-\infty}^{\infty} F(\omega)S_{vv}^{-1/2}(\omega) \cdot S_{vv}^{1/2}(\omega)H(\omega)e^{j\omega t_{0}}d\omega\right|^{2}}{2\pi \int_{-\infty}^{\infty} S_{vv}(\omega)|H(\omega)|^{2}d\omega} \\ &\leq \frac{\int_{-\infty}^{\infty} \left|F(\omega)S_{vv}^{-1/2}(\omega)\right|^{2}d\omega \cdot \int_{-\infty}^{\infty} \left|S_{vv}^{1/2}(\omega)H(\omega)e^{j\omega t_{0}}\right|^{2}d\omega}{2\pi \int_{-\infty}^{\infty} S_{vv}(\omega)|H(\omega)|^{2}d\omega} \quad \text{(Schwartz inequality)} \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^{2} S_{vv}^{-1}(\omega)d\omega, \end{split}$$

with equality holding if, and only if, $k \left(F(\omega)S_{vv}^{-1/2}(\omega)\right)^* = S_{vv}^{1/2}(\omega)H(\omega)e^{j\omega t_0}$ for some complex number k, or equivalently $H(\omega) = kF^*(\omega)S_{vv}^{-1}(\omega)e^{-j\omega t_0}$.

10-64

Lemma (Schwartz inequality)

$$\left| \int_{a}^{b} f(x)g(x)dx \right|^{2} \leq \int_{a}^{b} |f(x)|^{2}dx \int_{a}^{b} |g(x)|^{2}dx$$

with equality holding if, and only if, $f(x) = kg^*(x)$ for some complex number k. **Proof:** Define $I(a, \theta) \triangleq \int_a^b |f(x) - ae^{j\theta}g^*(x)|^2 dx$ for real $a \ge 0$ and real θ . Then,

$$\begin{split} I(a,\theta) &= \int_{a}^{b} \left| f(x) - ae^{j\theta}g^{*}(x) \right|^{2} dx \\ &= \int_{a}^{b} (f(x) - ae^{j\theta}g^{*}(x))(f^{*}(x) - ae^{-j\theta}g(x))dx \\ &= \underbrace{\int_{a}^{b} |f(x)|^{2} dx}_{C} - 2a \underbrace{\operatorname{Re}\left\{ e^{-j\theta} \int_{a}^{b} f(x)g(x)dx \right\}}_{B} + a^{2} \underbrace{\int_{a}^{b} |g(x)|^{2} dx}_{A} \\ &= A \left(a - \frac{B}{A} \right)^{2} + \frac{AC - B^{2}}{A}, \end{split}$$

where

$$A \triangleq \int_a^b |g(x)|^2 dx, \ B \triangleq \operatorname{Re}\left\{e^{-j\theta} \int_a^b f(x)g(x)dx\right\}, \text{ and } C \triangleq \int_a^b |f(x)|^2 dx.$$

Since $I(a, \theta) \ge 0$ for any $a \ge 0$ and any θ , taking $\theta = \angle \int_a^b f(x)g(x)dx$ such that

$$B = \operatorname{Re}\left\{e^{-j\theta}\int_{a}^{b}f(x)g(x)dx\right\}$$
$$= \operatorname{Re}\left\{e^{-j\theta}\left|\int_{a}^{b}f(x)g(x)dx\right|e^{j\angle\int_{a}^{b}f(x)g(x)dx}\right\} = \left|\int_{a}^{b}f(x)g(x)dx\right| \ge 0$$

yields that $I(B/A, \theta) = (AC - B^2)/A \ge 0$. I.e.,

$$\int_a^b |g(x)|^2 dx \int_a^b |f(x)|^2 dx \ge \left| \int_a^b f(x)g(x) dx \right|^2.$$

It remains to show the sufficiency and necessity of the equality condition. If $f(x) = kg^*(x)$, equality subsequently holds. On the contrary, if equality holds, then $I(B/A, \angle \int_a^b f(x)g(x)dx) = 0$ implies the desired $k = (B/A)e^{j\angle \int_a^b f(x)g(x)dx}$.

Special case on matched filter principle

• When $\boldsymbol{v}(t)$ is white, $S_{vv}(\omega) = N_0/2$.

•
$$H(\omega) = kF^*(\omega)S_{vv}^{-1}(\omega)e^{-j\omega t_0} = \frac{2k}{N_0}F^*(\omega)e^{-j\omega t_0}$$
 and $k = N_0/2$ implies
$$h(\tau) = f(t_0 - \tau).$$

The system so obtained is called the *matched filter*.

Tapped Delay Line Approximate of Matched Filter 10-68

Definition (Causal filter) A causal filter is one whose output depends only on past and present inputs.

Based on this definition, a causal linear time-invariant filter should satisfy $h(\tau) = 0$ for $\tau < 0$.

$$\begin{split} h(\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{j\omega\tau} d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{F^*(\omega)}{S_{vv}(\omega)} e^{j\omega(\tau-t_0)} d\omega \\ &= f(-s) * q(s)|_{s=\tau-t_0} \,, \end{split}$$

where $q(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{vv}^{-1}(\omega) e^{j\omega s} d\omega$.

- To convolve f(-s) (even satisfying $f(-s) \neq 0$ only for $-t_0 \leq s \leq 0$) with q(s) may "enlarge" the "non-zero range" of f(s), and hence, may make $h(\tau)$ unrealistically noncausal.
- In addition, the resultant $h(\tau)$ may not be *practically realizable*.
- This motivates the development of a *suboptimal* but *directly realizable* alternative filter.

Tapped Delay Line Approximate of Matched Filter

Best filter under tapped delay line structure

• Given that $H(\omega)$ is of the shape:

$$H(\omega) = a_0 + a_1 e^{-j\omega T} + \dots + a_m e^{-jm\omega T},$$

find the best (real) $\{a_0, a_1, \ldots, a_m\}$ such that γ_o is maximized.

Solution:

- $y_f(t_0) = \sum_{i=0}^m a_i f(t_0 iT)$ and $y_v(t_0) = \sum_{i=0}^m a_i v(t iT)$.
- To maximize

$$\gamma_o = |y_f(t_0)|^2 / E[\boldsymbol{y}_v^2(t_0)] = c^2 / E[\boldsymbol{y}_v^2(t_0)]$$

is equivalent to the minimization of $E[\boldsymbol{y}_v^2(t_0)]$ subject to $y_f(t_0) = c$ (followed by the maximization with respect to c).

• Using the Lagrange multiplier technique, we minimize

$$V \triangleq E[\mathbf{y}_{v}^{2}(t_{0})] - 2\lambda(y_{f}(t_{0}) - c)$$

= $\sum_{n=0}^{m} \sum_{i=0}^{m} a_{n}a_{i}R_{vv}(nT - iT) - 2\lambda\left(\sum_{n=0}^{m} a_{n}f(t_{0} - nT) - c\right).$

Derive

$$\frac{\partial V}{\partial a_n} = \sum_{i=0}^m a_i R_{vv} (nT - iT) + \sum_{i=0}^m a_i R_{vv} (iT - nT) - 2\lambda f(t_0 - nT) = 0.$$

Under $R_{vv}(\tau) = R_{vv}(-\tau)$, this leads to:

$$\mathbb{R}\vec{a} = \lambda \vec{f},$$

where

$$\mathbb{R} = \begin{bmatrix} R_{vv}(0) & R_{vv}(-T) & R_{vv}(-2T) & \cdots & R_{vv}(-mT) \\ R_{vv}(T) & R_{vv}(0) & R_{vv}(-T) & \cdots & R_{vv}(-(m-1)T) \\ R_{vv}(2T) & R_{vv}(T) & R_{vv}(0) & \cdots & R_{vv}(-(m-2)T) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{vv}(mT) & R_{vv}((m-1)T) & R_{vv}((m-2)T) & \cdots & R_{vv}(0) \end{bmatrix},$$

$$\vec{a} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \text{ and } \vec{f} = \begin{bmatrix} f(t_0) \\ f(t_0 - T) \\ f(t_0 - 2T) \\ \vdots \\ f(t_0 - mT) \end{bmatrix}.$$

As a result, $\vec{a}_{opt} = \lambda \mathbb{R}^{-1} f$, where λ is chosen such that $\vec{a}_{opt}^T f = c$, namely,

$$\vec{a}_{\rm opt}^T \vec{f} = \left(\lambda \mathbb{R}^{-1} \vec{f}\right)^T \vec{f} = c \implies \lambda = \frac{c}{\vec{f}^T (\mathbb{R}^{-1})^T \vec{f}},$$

Tapped Delay Line Approximate of Matched Filter 10-71

With the availability of the result that

$$\vec{a}_{\text{opt}} = c \frac{\mathbb{R}^{-1} \vec{f}}{\vec{f}^T (\mathbb{R}^{-1})^T \vec{f}}$$

we finally obtain:

$$\gamma_o = \frac{y_f^2(t_0)}{E[\boldsymbol{y}_v^2(t_0)]} = \frac{c^2}{\vec{a}_{opt}^T \mathbb{R} \vec{a}_{opt}} = \frac{c^2}{c^2 \frac{\vec{f}^T (\mathbb{R}^{-1})^T \mathbb{R} \mathbb{R}^{-1} \vec{f}}{\left(\vec{f}^T (\mathbb{R}^{-1})^T \vec{f}\right)^2}} = \vec{f}^T (\mathbb{R}^{-1})^T \vec{f},$$

which is nothing to do with the choice of constant c.

Problem 10-26(b) in the textbook indicates that

$$\sqrt{\gamma_o} = \sqrt{\frac{y_f(t_0)}{\lambda}}.$$

Since $y_f(t_0) = c$ and $\lambda = c/\vec{f}^T (\mathbb{R}^{-1})^T \vec{f}$,

$$\sqrt{\gamma_o} = \sqrt{\frac{y_f(t_0)}{\lambda}} = \sqrt{\frac{c}{\lambda}} = \sqrt{\vec{f}^T (\mathbb{R}^{-1})^T \vec{f}}.$$

- A central problem in communications is the *estimation* of a sample $f(t_0)$ at a specific time of filter **input** of a deterministic signal f(t) in presence of noise.
- In absence of noise $\boldsymbol{v}(t)$,

$$\boldsymbol{y}(t_0) = y_f(t_0) \triangleq \int_{-\infty}^{\infty} h(\tau) f(t_0 - \tau) d\tau.$$

• The noise however will change the errorfree system to:

$$\boldsymbol{y}(t_0) = y_f(t_0) + \boldsymbol{y}_v(t_0),$$

where

$$\boldsymbol{y}_{v}(t_{0}) \triangleq \int_{-\infty}^{\infty} h(\tau) \boldsymbol{v}(t_{0}-\tau) d\tau.$$

Question: How to design the filter $h(\tau)$ such that $e \triangleq E\{[\boldsymbol{y}(t_0) - f(t_0)]^2\}$ is minimized, provided $\boldsymbol{v}(t)$ is (possibly time-varying) zero-mean white (i.e., $R_{vv}(t + \tau, t) = q(t)\delta(\tau)$)?

Answer:

$$\begin{split} e &= E\{[\boldsymbol{y}(t_0) - f(t_0)]^2\} \\ &= E\left\{[y_f(t_0) + \boldsymbol{y}_v(t_0) - f(t_0)]^2\right\} \\ &= (y_f(t_0) - f(t_0))^2 + E[\boldsymbol{y}_v^2(t_0)] \quad (\boldsymbol{y}_v(t) \text{ zero mean}) \\ &= \left(\int_{-\infty}^{\infty} h(\tau)f(t_0 - \tau)d\tau - f(t_0)\right)^2 + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u)h(v)E[\boldsymbol{v}(t_0 - u)\boldsymbol{v}(t_0 - v)]dudv \\ &= \left(\int_{-\infty}^{\infty} h(\tau)f(t_0 - \tau)d\tau - f(t_0)\right)^2 + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u)h(v)q(t_0 - v)\delta(v - u)dudv \\ &= \left(\int_{-\infty}^{\infty} h(\tau)f(t_0 - \tau)d\tau - f(t_0)\right)^2 + \int_{-\infty}^{\infty} h^2(v)q(t_0 - v)dv \\ &= b^2 + \sigma^2, \end{split}$$

where

bias
$$b = \int_{-\infty}^{\infty} h(\tau) f(t_0 - \tau) d\tau - f(t_0)$$
 and variance $\sigma^2 = \int_{-\infty}^{\infty} h^2(v) q(t_0 - v) dv$.

10-73

Assumptions

•
$$h(t) = 0$$
 for $|t| > T$, $h(-t) = h(t)$, and $\int_{-T}^{T} h(t)dt = 1$,
• $q(t_0 - v) = N_0/2$. $\Rightarrow \sigma^2 = \frac{N_0}{2} \int_{-T}^{T} h^2(v)dv$.

•
$$f(t_0 - \tau) = f(t_0) - \tau f'(t_0) + \frac{\tau^2}{2} f''(t_0).$$

$$b = \int_{-\infty}^{\infty} h(\tau) \left[f(t_0) - \tau f'(t_0) + \frac{\tau^2}{2} f''(t_0) \right] d\tau - f(t_0)$$

$$= \underbrace{\left(f(t_0) \int_{-T}^{T} h(\tau) d\tau - f(t_0) \right)}_{-T} - f'(t_0) \underbrace{\int_{-T}^{T} \tau h(\tau) d\tau}_{2} + \frac{f''(t_0)}{2} \int_{-T}^{T} \tau^2 h(\tau) d\tau$$

$$= \underbrace{\frac{f''(t_0)}{2} \int_{-T}^{T} \tau^2 h(\tau) d\tau}_{2} \cdot f(\tau) d\tau.$$

By Lagrange multiplier technique, we minimize e subject to

$$\int_{-T}^{T} h(\tau) d\tau = 1 \quad \text{and} \quad \int_{-T}^{T} \tau^2 h(\tau) d\tau = c,$$

and obtain:

$$\frac{\partial e}{\partial h(v)} = \frac{\partial \left[\frac{[f''(t_0)]^2}{4}c^2 + \frac{N_0}{2}\int_{-T}^{T}h^2(\tau)d\tau - \lambda_1\left(\int_{-T}^{T}h(\tau)d\tau - 1\right) - \lambda_2\left(\int_{-T}^{T}\tau^2h(\tau)d\tau - c\right)\right]}{\partial h(v)}$$
$$= N_0h(v) - \lambda_1 - \lambda_2v^2 = 0.$$

This implies $h_{\text{opt}}(v) = \frac{1}{N_0} \left(\lambda_1 + \lambda_2 v^2 \right)$ for $|v| \le T$.

Some people may be dubious about (or have troubles to understand) how we can take partial derivative onto e with respect to h(v). Here, I provide an alternative approach to determine the optimal $h_{\text{opt}}(v)$.

$$e = \frac{[f''(t_0)]^2}{4}c^2 + \frac{N_0}{2}\int_{-T}^{T}h^2(\tau)d\tau - \lambda_1\left(\int_{-T}^{T}h(\tau)d\tau - 1\right) - \lambda_2\left(\int_{-T}^{T}\tau^2h(\tau)d\tau - c\right)$$

10-75

$$= \int_{-T}^{T} \left(\frac{N_0}{2} h^2(\tau) - \left(\lambda_1 + \lambda_2 \tau^2\right) h(\tau) \right) d\tau + \frac{[f''(t_0)]^2}{4} c^2 + \lambda_1 + \lambda_2 c$$

$$= \int_{-T}^{T} \left(\frac{N_0}{2} \left[h(\tau) - \frac{(\lambda_1 + \lambda_2 \tau^2)}{N_0} \right]^2 - \frac{(\lambda_1 + \lambda_2 \tau)^2}{2N_0} \right) d\tau + \frac{[f''(t_0)]^2}{4} c^2 + \lambda_1 + \lambda_2 c$$

Apparently, choosing $h(\tau)$ other than $\frac{(\lambda_1 + \lambda_2 \tau^2)}{N_0}$ can only grow e . Thus, $h_{\text{opt}}(\tau) = \frac{(\lambda_1 + \lambda_2 \tau^2)}{N_0}$.

Solving

$$\int_{-T}^{T} h_{\text{opt}}(\tau) d\tau = \frac{2T}{N_0} \lambda_1 + \frac{2T^3}{3N_0} \lambda_2 = 1 \quad \text{and} \quad \int_{-T}^{T} \tau^2 h_{\text{opt}}(\tau) d\tau = \frac{2T^3}{3N_0} \lambda_1 + \frac{2T^5}{5N_0} \lambda_2 = c$$

yields

$$\lambda_1 = -\frac{15N_0}{8T^3} \left(c - \frac{3}{5}T^2 \right) \text{ and } \lambda_2 = \frac{45N_0}{8T^5} \left(c - \frac{1}{3}T^2 \right),$$

and

$$h_{\rm opt}(v) = \frac{15}{8T} \left[\left(3\frac{c}{T^2} - 1 \right) \frac{v^2}{T^2} - \left(\frac{c}{T^2} - \frac{3}{5} \right) \right].$$

The textbook also requires that h(t) > 0 for $|t| \le T$. By examining $h_{\text{opt}}(0) = \frac{15}{8T} \left(\frac{3}{5} - \frac{c}{T^2}\right) > 0$ and $h_{\text{opt}}(T) = \frac{15}{4T} \left(\frac{c}{T^2} - \frac{1}{5}\right) > 0$, this requirement is equivalent to $\frac{3}{5} > \frac{c}{T^2} > \frac{1}{5}$.

By letting $\bar{c} = c/T^2$ and $\bar{\tau} = \tau/T$, we derive:

$$e = \frac{[f''(t_0)]^2}{4}c^2 + \frac{N_0}{2}\int_{-T}^{T}h^2(\tau)d\tau$$

= $\frac{[f''(t_0)]^2T^4}{4}\bar{c}^2 + \frac{N_0T}{2}\int_{-1}^{1}h^2(T\bar{\tau})d\bar{\tau}$
= $\frac{[f''(t_0)]^2T^4}{4}\bar{c}^2 + \frac{225N_0}{128T}\int_{-1}^{1}[(3\bar{c}-1)\bar{\tau}^2 - (\bar{c}-3/5)]^2d\bar{\tau}$
= $\frac{[f''(t_0)]^2T^4}{4}\bar{c}^2 + \frac{3N_0}{16T}(3-10\bar{c}+15\bar{c}^2)$
= $\left(\frac{[f''(t_0)]^2T^4}{4} + \frac{45N_0}{16T}\right)\bar{c}^2 - \frac{15N_0}{8T}\bar{c} + \frac{9N_0}{16T}.$

Consequently,

$$\bar{c}_{\min} = \frac{\frac{15N_0}{8T}}{2\left(\frac{[f''(t_0)]^2 T^4}{4} + \frac{45N_0}{16T}\right)} = \frac{15/4}{[f''(t_0)]^2 T^5/N_0 + 45/4}$$

and

$$e_{\min} = \frac{9N_0}{16T} \cdot \frac{[f''(t_0)]^2 T^5 / N_0 + 5}{[f''(t_0)]^2 T^5 / N_0 + 45/4}.$$

Finally,

$$h_{\text{opt}}(v) = \frac{15}{8T} \left[(3\bar{c}_{\min} - 1)\frac{v^2}{T^2} - \left(\bar{c}_{\min} - \frac{3}{5}\right) \right]$$

= $\frac{15}{8T} \left[-\frac{A}{(A+45/4)}\frac{v^2}{T^2} + \frac{3(A+5)}{5(A+45/4)} \right]$
= $\frac{3A}{8T(A+45/4)} \left(-5\frac{v^2}{T^2} + 3 + \frac{15}{A} \right),$

where $A = [f''(t_0)]^2 T^5 / N_0$.

		l
		L
	_	l

This filter does not satisfy h(t) > 0 for $|t| \le T$ since it may happen that -2 + 15/A < 0. An advantage of this design is

$$e_{\min} = \frac{9N_0}{16T} \cdot \frac{A+5}{A+45/4} = O(1/T) \to 0 \text{ as } T \to \infty.$$

This is different from the design from textbook (satisfying h(t) > 0 for $|t| \leq T$) in which there exists $0 < T_{\min} < \infty$ that minimizes *e*. Such behavior can also be observed in the subsequent *moving average* estimator.

Moving Average Estimator

Let $h(\tau) = 1/(2T)$ for $|\tau| \leq T$, and zero, otherwise.

Then,

$$e = b^{2} + \sigma^{2}$$

$$= \frac{[f''(t_{0}]^{2}}{4} \left(\int_{-T}^{T} \tau^{2} h(\tau) d\tau\right)^{2} + \frac{N_{0}}{2} \int_{-T}^{T} h^{2}(\tau) d\tau$$

$$= \frac{[f''(t_{0}]^{2}}{4} \left(\frac{1}{2T} \int_{-T}^{T} \tau^{2} d\tau\right)^{2} + \frac{N_{0}}{2} \int_{-T}^{T} \frac{1}{4T^{2}} d\tau$$

$$= \frac{[f''(t_{0}]^{2}T^{4}}{36} + \frac{N_{0}}{4T},$$

and

$$\frac{\partial e}{\partial T} = \frac{[f''(t_0)]^2}{9}T^3 - \frac{N_0}{4}T^{-2} = 0$$

implies that

$$T_{\min}^{\max} = \left(\frac{9N_0}{4[f''(t_0)]^2}\right)^{1/5} \quad \text{and} \quad e_{\min}^{\max} = \frac{[f''(t_0)]^2}{36} \frac{9N_0}{4[f''(t_0)]^2 T_{\min}^{\max}} + \frac{N_0}{4T_{\min}^{\max}} = \frac{5N_0}{16T_{\min}^{\max}}.$$

Let
$$h(\tau) = \frac{3}{4T} \left(1 - \frac{\tau^2}{T^2} \right)$$
 for $|\tau| \le T$, and zero, otherwise.

Then,

$$e = b^{2} + \sigma^{2}$$

$$= \frac{[f''(t_{0}]^{2}}{4} \left(\int_{-T}^{T} \tau^{2} h(\tau) d\tau \right)^{2} + \frac{N_{0}}{2} \int_{-T}^{T} h^{2}(\tau) d\tau$$

$$= \frac{[f''(t_{0}]^{2}T^{4}}{100} + \frac{3N_{0}}{10T},$$

and

$$\frac{\partial e}{\partial T} = \frac{[f''(t_0)]^2}{25}T^3 - \frac{3N_0}{10}T^{-2} = 0$$

implies that

$$T_{\min}^{\text{pwe}} = \left(\frac{15N_0}{2[f''(t_0)]^2}\right)^{1/5} \quad \text{and} \quad e_{\min}^{\text{pwe}} = \frac{[f''(t_0)^2}{100} \frac{15N_0}{2[f''(t_0)^2 T_{\min}^{\text{pwe}}} + \frac{3N_0}{10T_{\min}^{\text{pwe}}} = \frac{3N_0}{8T_{\min}^{\text{pwe}}}.$$

Comparison of Three Estimators

Near-Optimal Estimator

$$h_{\rm opt}(v) = \frac{15}{8T} \frac{A}{(A+45/4)} \left(\frac{3}{5} - \frac{v^2}{T^2} + \frac{3}{A}\right),$$

where $A = [f''(t_0)]^2 T^5 / N_0$.

Let $h(\tau) = \frac{15}{8T} \left(\frac{3}{5} - \frac{\tau^2}{T^2} \right)$	for $ \tau \leq T$, and zero, otherwise.
---	--

Then,

$$\begin{split} e &= b^2 + \sigma^2 \\ &= \frac{[f''(t_0]^2}{4} \left(\int_{-T}^T \tau^2 h(\tau) d\tau \right)^2 + \frac{N_0}{2} \int_{-T}^T h^2(\tau) d\tau \\ &= \frac{[f''(t_0]^2 T^4}{4} \left(\int_{-1}^1 \tau^2 w(\tau) d\tau \right)^2 + \frac{N_0}{2T} \int_{-1}^1 w^2(\tau) d\tau \\ &= 0 + \frac{9N_0}{16T}. \end{split}$$

This is an unbiased estimator with asymptotic zero variance!

The end of Section 10-6 Deterministic Signals in Noise

Lemma (Poisson sum formula) For any positive c,

$$\sum_{n=-\infty}^{\infty} f(x+nc) = \frac{1}{c} \sum_{n=-\infty}^{\infty} F(nu_0) e^{jnu_0 x}$$

where $F(u) = \int_{-\infty}^{\infty} f(x) e^{-jux} dx$ is the Fourier transform of f(x), and $u_0 = 2\pi/c$.

On Slide 9-131 \sim 9-132, we respectively obtain

$$S_{xx}[\omega] = \sum_{n=-\infty}^{\infty} R_{xx}(n)e^{j\omega n}$$
 and $S_{xx}[\omega] = \sum_{n=-\infty}^{\infty} S_{xx}(\omega + 2n\pi).$

Hence,

$$\sum_{n=-\infty}^{\infty} S_{xx} \left(\omega + 2n\pi\right) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} 2\pi R_{xx}(n) e^{jn\omega},$$

where $R_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{xx}(\omega) e^{j\omega\tau} d\omega.$

Let $f(\omega) = S_{xx}(\omega)$ be real and symmetric, which implies $R_{xx}(\tau)$ is also real and symmetric. Then, $F(u) = \int_{-\infty}^{\infty} f(\omega)e^{-ju\omega}d\omega = \int_{-\infty}^{\infty} S_{xx}(\omega)e^{j\omega(-u)}d\omega = 2\pi R_{xx}(-u) = 2\pi R_{xx}(u),$ and (with $c = 2\pi$) $\sum_{n=-\infty}^{\infty} f(x + n(2\pi)) = \frac{1}{2\pi}\sum_{n=-\infty}^{\infty} F\left(\frac{2\pi}{2\pi}n\right)e^{jn(2\pi/(2\pi))x}.$ Poisson sum formula is an extension of this result by replacing 2π by c, which leads

Poisson sum formula is an extension of this result by replacing 2π by c, which leads to:

$$\sum_{n=-\infty}^{\infty} f(x+n\mathbf{c}) = \frac{1}{\mathbf{c}} \sum_{n=-\infty}^{\infty} F\left(\frac{2\pi}{\mathbf{c}}n\right) e^{jn(2\pi/\mathbf{c})x}$$

Operational meaning:

The Inverse Fourier transform of samples causes aliasing.

Fourier series: For a periodic function g with period T_0 ,

$$g(x) = \sum_{m=-\infty}^{\infty} c_m e^{jm\omega_0 x}$$

where
$$\omega_0 = 2\pi/T_0$$
 and $c_m = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} g(x) e^{-jm\omega_0 x} dx$

Proof of Poisson Sum Formula: Fourier series said that for $T_0 = c$, $\omega_0 = u_0$, and $g(x) = \sum_{n=-\infty}^{\infty} \delta(x + nc)$,

$$c_m = \frac{1}{c} \int_{-c/2}^{c/2} \sum_{n = -\infty}^{\infty} \delta(x + nc) e^{-jmu_0 x} dx = \frac{1}{c}$$

and

$$g(x) = \sum_{n = -\infty}^{\infty} \left(\frac{1}{c}\right) e^{jnu_0 x}.$$

Hence,

$$\sum_{n=-\infty}^{\infty} f(x+nc) = f(x) * \left(\sum_{n=-\infty}^{\infty} \delta(x+nc)\right) = f(x) * \left(\frac{1}{c} \sum_{n=-\infty}^{\infty} e^{jnu_0 x}\right)$$
$$= \frac{1}{c} \sum_{n=-\infty}^{\infty} \left(f(x) * e^{jnu_0 x}\right)$$
$$= \frac{1}{c} \sum_{n=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(\alpha) e^{jnu_0 (x-\alpha)} d\alpha\right)$$
$$= \frac{1}{c} \sum_{n=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(\alpha) e^{-jnu_0 \alpha} d\alpha\right) e^{jnu_0 x}$$
$$= \frac{1}{c} \sum_{n=-\infty}^{\infty} F(nu_0) e^{jnu_0 x}.$$

10-87