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10-3 Modulation 10-1

• Starting at the 9th line on page 463, the textbook wrote

We shall show that x(t) = a(t) cos(ω0t)− b(t) sin(ω0t) is WSS

iff the processes a(t) and b(t) are such that

Raa(τ ) = Rbb(τ ) Rab(τ ) = −Rba(τ ) (10-126).

The forward part is correct, but the converse may not be right!

Lemma The process x(t) = a(t) cos(ω0t)− b(t) sin(ω0t) is WSS if a(t) and b(t)

are zero-mean WSS with Raa(τ ) = Rbb(τ ) and Rab(τ ) = −Rba(τ ).

Proof: If a(t) and b(t) are zero-mean WSS with Raa(τ ) = Rbb(τ ) and Rab(τ ) =

−Rba(τ ), then E[x(t)] = 0 and

E[x(t1)x(t2)] = E{[a(t1) cos(ω0t1)− b(t1) sin(ω0t1)][a(t2) cos(ω0t2)− b(t2) sin(ω0t2)]}
= Raa(t1 − t2) cos(ω0t1) cos(ω0t2)− Rab(t1 − t2) cos(ω0t1) sin(ω0t2)

−Rba(t1 − t2) sin(ω0t1) cos(ω0t2) +Rbb(t1 − t2) sin(ω0t1) sin(ω0t2)

= Raa(t1 − t2) cos[ω0(t1 − t2)] +Rab(t1 − t2) sin[ω0(t1 − t2)],

which indicates the WSS of x(t). �
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Fallacy If the process x(t) = a(t) cos(ω0t)− b(t) sin(ω0t) is WSS,

then a(t) and b(t) are such that

Raa(τ ) = Rbb(τ ) and Rab(τ ) = −Rba(τ ).

Counterexample:

• a(t) = sin(ω0t), b(t) = cos(ω0t), and x(t) = 0.

• x(t) is WSS, but

Raa(t1, t2) = E[a(t1)a(t2)] = sin(ω0t1) sin(ω0t2)

and

Rbb(t1, t2) = E[b(t1)b(t2)] = cos(ω0t1) cos(ω0t2)

are not equal and are not functions of only (t1 − t2). �

What will be the correct statement?

Lemma Suppose a(t) and b(t) are zero-mean jointly WSS. Then, the process

x(t) = a(t) cos(ω0t)− b(t) sin(ω0t) is WSS if, and only if, a(t) and b(t) are such

that

Raa(τ ) = Rbb(τ ) and Rab(τ ) = −Rba(τ ).

• The blue-colored presumption is actually given at the first line of Section 10.3.
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Proof:

1. Forward: Have been proved in Slide 10-1.

2. Converse: If x(t) is WSS, then

E[x(t1)x(t2)] = Raa(t1, t2) cos(ω0t1) cos(ω0t2)−Rab(t1, t2) cos(ω0t1) sin(ω0t2)

−Rba(t1, t2) sin(ω0t1) cos(ω0t2) +Rbb(t1, t2) sin(ω0t1) sin(ω0t2)

= Raa(t1, t2)
cos[ω0(t1 − t2)] + cos[ω0(t1 + t2)]

2

−Rab(t1, t2)
sin[ω0(t1 + t2)]− sin[ω0(t1 − t2)]

2

−Rba(t1, t2)
sin[ω0(t1 + t2)] + sin[ω0(t1 − t2)]

2

+Rbb(t1, t2)
cos[ω0(t1 − t2)]− cos[ω0(t1 + t2)]

2

=
1

2
cos[ω0(t1 + t2)][Raa(t1 − t2)−Rbb(t1 − t2)] (must be zero!)

+
1

2
cos[ω0(t1 − t2)][Raa(t1 − t2) +Rbb(t1 − t2)] (depends only on (t1 − t2))

−1

2
sin[ω0(t1 + t2)][Rab(t1 − t2) +Rba(t1 − t2)] (must be zero!)

+
1

2
sin[ω0(t1 − t2)][Rab(t1 − t2)−Rba(t1 − t2)] (depends only on (t1 − t2))
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imply that

Raa(t1 − t2) = Rbb(t1 − t2) and Raa(t1 − t2) +Rbb(t1 − t2) = 2Raa(t1 − t2)

Rab(t1 − t2) = −Rba(t1 − t2) and Rab(t1 − t2)− Rba(t1 − t2) = 2Rab(t1 − t2).

�

Remarks

• The above lemma yields that

Rxx(τ ) = Raa(τ ) cos(ω0τ ) +Rab(τ ) sin(ω0τ )

for zero-meanWSS a(t) and b(t) withRaa(τ ) = Rbb(τ ) andRab(τ ) = −Rba(τ ).

• Define w(t) = a(t) + jb(t). Then, it is easy to see that

x(t) = Re{w(t)ejω0t}
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• We can define a dual function of x(t) as:

y(t) = Im{w(t)ejω0t} = a(t) sin(ω0t) + b(t) cos(ω0t)

In summary,

w(t) = a(t) + jb(t) with Raa(τ ) = Rbb(τ ), Rab(τ ) = −Rba(τ )

x(t) = Re{w(t)ejω0t}
y(t) = Im{w(t)ejω0t}
z(t) = x(t) + jy(t) = w(t)ejω0t

In the sequel, we assume that a(t) and b(t) are zero-mean jointly WSS and x(t) is

WSS (so Raa(τ ) = Rbb(τ ) and Rab(τ ) = −Rba(τ )).
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Graphical View:

w(t) = a(t) + jb(t)︸ ︷︷ ︸
zero-mean WSS

�⊗
�

ejω0t

�z(t)
Re{·} �

WSS︷ ︸︸ ︷
x(t) = Re{w(t)ejω0t}
y(t) = Im{w(t)ejω0t}

z(t) = x(t) + jy(t) �⊗
�

e−jω0t

�w(t)
Re{·} �a(t) = Re{z(t)e−jω0t}

b(t) = Im{z(t)ejω0t}
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Observation 1 z(t) is zero-mean WSS if w(t) is zero-mean WSS.

Proof: Observe that z(t) = h(τ ; t) ∗ w(t) with h(τ ; t) = h1(τ )h2(t), where

h1(τ ) = δ(τ ) and h2(t) = ejω0t. Hence, by Theorem 9-2 (cf. Slide 9-104),

Rzz(t + s, t) = E{h2(t + s)h∗
2(t)[h

∗
1(−s) ∗ h1(s) ∗ Rww(s)]}

= h2(t + s)h∗
2(t) · δ(−s) ∗ δ(s) ∗Rww(s)

= ejω0sRww(s).

The proof is completed by noting that E[z(t)] = 0. �

Observation 2 Rxx(τ ) = Ryy(τ ) and Rxy(τ ) = −Ryx(τ ) if Observation 1 is

true.

Proof: A direct consequence of the Lemma in Slide 10-2. Note that a(t) =

Re{w(t)} = Re{z(t)e−ω0t} = x(t) cos(ω0t) − y(t) sin(ω0t) is WSS and z(t) is

zero-mean WSS (equivalently, x(t) and y(t) are zero-mean jointly WSS). �

Observation 3Rww(τ ) = 2Raa(τ )−2jRab(τ ) andRzz(τ ) = 2Rxx(τ )−2jRxy(τ ).

Proof: Follow Observation 2 and the definition of w(t) and z(t). �
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Observation 4

Sxx(ω) =
1

4
[Szz(ω) + Szz(−ω)] =

1

4
[Sww(ω − ω0) + Sww(−ω − ω0)]

and

Sxy(ω) =
j

4
[Szz(ω)− Szz(−ω)] =

j

4
[Sww(ω − ω0)− Sww(−ω − ω0)].

Proof: First, Rxx(−τ ) = Rxx(τ ) implies Sxx(−ω) = Sxx(ω).

Secondly, Rxy(−τ ) = −Ryx(−τ ) = −Rxy(τ ) implies

Sxy(−ω) =

∫ ∞

−∞
Rxy(τ )e

−j(−ω)τdτ =

∫ ∞

−∞
Rxy(−τ )e−jωτdτ

= −
∫ ∞

−∞
Rxy(τ )e

−jωτdτ = −Sxy(ω)

Then, the observation follows from

Szz(ω) = 2Sxx(ω)− 2jSxy(ω) (Observation 3)

Szz(−ω) = 2Sxx(−ω)− 2jSxy(−ω) = 2Sxx(ω) + 2jSxy(ω)

Szz(ω) = Sww(ω − ω0) (Observation 1)

�
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Rice’s representation

• The Lemma on Slide 10-1 states that the process

x(t) = a(t) cos(ω0t)− b(t) sin(ω0t)

is WSS if a(t) and b(t) are zero-mean WSS withRaa(τ ) = Rbb(τ ) andRab(τ ) =

−Rba(τ ).

• Rice claims that for any zero-mean WSS process x(t), there exists

ω0, a(t) and b(t)

such that x(t) can be represented as x(t) = a(t) cos(ω0t)−b(t) sin(ω0t), which

is named the Rice’s representation. (Here, “=” in the MS sense.)

• Rice’s representation is not unique!

a(t) = Re
{
(x(t) + jy(t))e−jω0t

}
b(t) = Im

{
(x(t) + jy(t))e−jω0t

}
,

for any ω0 and any zero-mean WSS y(t) satisfying Rxx(τ ) = Ryy(τ ) and

Rxy(τ ) = −Ryx(τ ).
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How to choose y(t) that satisfies Rxx(τ ) = Ryy(τ ) and Rxy(τ ) = −Ryx(τ )

• Choose or restrict y(t) to be Y (ω) = X(ω)H(ω).

• By Theorem 9-4 (cf. Slide 9-104),

Sxy(ω) = Sxx(ω)H
∗(ω) and Syy(ω) = Sxx(ω)|H(ω)|2.

• From X(ω) = Y (ω)[1/H(ω)] and Theorem 9-4 (exchanging the roles of x(t)

and y(t)), we obtain

Syx(ω) = Syy(ω)[1/H(ω)]∗ = Sxx(ω)|H(ω)|2[1/H(ω)]∗ = Sxx(ω)H(ω).

• In order to have

Sxx(ω) = Syy(ω) = Sxx(ω)|H(ω)|2 and Sxy(ω) = −Syx(ω),

we require

i) |H(ω)|2 = 1 and ii) H(ω) = −H∗(ω) .
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• In addition, by Rxy(−τ ) = −Ryx(−τ ) = −Rxy(τ ), we have Sxy(−ω) =

−Sxy(ω) or equivalently Sxx(−ω)H∗(−ω) = −Sxx(ω)H
∗(ω).

Together with Sxx(ω) = Sxx(−ω), we require iii) H(−ω) = −H(ω) .

• i) |H(ω)|2 = 1 implies H(ω) = ejφ(ω) for some φ(ω).

• ejφ(ω) = H(ω) = −H∗(ω)︸ ︷︷ ︸
ii)

= −e−jφ(ω) implies ej2φ(ω) = −1, which in turns

implies

φ(ω) =

(
k(ω) +

1

2

)
π

for some integer function k(ω). For convenience, we restrict k(ω) ∈ {0, 1}.
• Hence,

H(ω) = jejπk(ω) = j(−1)k(ω).

• Finally, iii) H(−ω) = −H(ω) implies k(ω) �= k(−ω) for k(ω) ∈ {0, 1}.
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Claim For a given Sxx(ω), the choice of Hilbert transform y(t) of x(t) minimizes

the average rate of variation of the complex envelope of x(t), namely, E[|w′(t)|2].
Proof:

• Since the transfer function of a differentiator is jω,

Sw′w′(ω) = Sww(ω)|jω|2 = Sww(ω)ω
2.

• Observation 1 indicates that Sww(ω) = Szz(ω + ω0).

• Hence, the problem becomes to minimize

M � 2πE[|w′(t)|2] =
∫ ∞

−∞
Sw′w′(ω)dω

=

∫ ∞

−∞
ω2Sww(ω)dω =

∫ ∞

−∞
(ω − ω0)

2Szz(ω)dω. (10.1)

• For a selected Szz(ω), the best ω̄0 that minimizes (10.1) should satisfy

ω̄0 =

∫∞
−∞ ωSzz(ω)dω∫∞
−∞ Szz(ω)dω

.
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• Taking ω̄0 into (10.1) yields

M =

∫ ∞

−∞
(ω2 − ω̄2

0)Szz(ω)dω.

Observe that

M =

∫ ∞

−∞
(ω2 − ω̄2

0)Szz(−ω)dω

=
1

2

(∫ ∞

−∞
(ω2 − ω̄2

0)Szz(ω)dω +

∫ ∞

−∞
(ω2 − ω̄2

0)Szz(−ω)dω

)
=

1

2

(∫ ∞

−∞
(ω2 − ω̄2

0)[Szz(ω) + Szz(−ω)]dω

)
= 2

∫ ∞

−∞
(ω2 − ω̄2

0)Sxx(ω)dω,

(
= 2

∫ ∞

−∞
ω2Sxx(ω)dω − 2ω̄2

0

∫ ∞

−∞
Sxx(ω)dω

)
where the last equality follows from 4Sxx(ω) = Szz(ω) + Szz(−ω) (cf. Obser-

vation 4). As a result, it suffices to maximize ω̄2
0 for the minimization of M for

a given Sxx(ω).
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• By Szz(ω) = 2Sxx(ω)− 2jSxy(ω) (Observation 3), Sxx(ω) = Sxx(−ω) (Obser-

vation 4) and Rxy(−τ ) = −Ryx(−τ ) = −Rxy(τ ) (or equivalently, Sxy(−ω) =

−Sxy(ω)), we have∫ ∞

−∞
ωSzz(ω)dω = 2

∫ ∞

−∞
(−j)ωSxy(ω)dω = 4

∫ ∞

0

(−j)ωSxy(ω)dω.

Also,∫ ∞

−∞
Szz(ω)dω =

∫ ∞

−∞
Szz(−ω)dω =

1

2

(∫ ∞

−∞
Szz(ω)dω +

∫ ∞

−∞
Szz(−ω)dω

)
= 2

∫ ∞

−∞
Sxx(ω)dω = 4

∫ ∞

0

Sxx(ω)dω.

Hence,

ω̄0 =

∫∞
0 (−j)ωSxy(ω)dω∫∞

0 Sxx(ω)dω
=

∫∞
0 (−j)ωSxx(ω)H

∗(ω)dω∫∞
0 Sxx(ω)dω

=

∫∞
0 ωSxx(ω)(−1)k(ω)+1dω∫∞

0 Sxx(ω)dω
.

Consequently, the maximum ω̄0 is obtained if (−1)k(ω)+1 = 1 for ω > 0. �
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Hilbert transform y(t) of x(t)

• Since k(ω) = 0 for ω < 0 and k(ω) = 1 for ω > 0, H(ω) = j(−1)k(ω) =

−jsgn(ω) is the Hilbert transformer, and ω0 =
∫∞
0 wSxx(ω)dω/

∫∞
0 Sxx(ω)dω.

�

�

�

�

�

�

Sxx(ω)

Z(ω) = X(ω) + jY (ω)
= X(ω)[1 + jH(ω)]
= X(ω)[1 + sgn(ω)]

Szz(ω) = |1 + sgn(ω)|2Sxx(ω)
= 4Sxx(ω)1{ω > 0}

z(t) = x(t) + jy(t)

Sww(ω)

w(t) = z(t)e−jω0t = a(t) + jb(t)

ω0−ω0

ω0
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w(t) = a(t) + jb(t) Complex envelope or Lowpass signal

= r(t)ejϕ(t)

x(t) = Re{w(t)ejω0t} Bandpass signal

= a(t) cos(ω0t)− b(t) sin(ω0t)

= r(t) cos[ω0t +ϕ(t)]

a(t) Inphase component

b(t) Quadrature component

ωi(t) = ∂
∂t
(ω0t +ϕ(t)) = ω0 +ϕ′(t) Instantaneous freququency

Definition (Bandpass) A process x(t) = a(t) cos(ω0t)−b(t) sin(ω0t) is called

bandpass if Sxx(ω) = 0 for |ω| outside an interval (ω1, ω2).

Definition (Narrowband) A bandpass process x(t) = a(t) cos(ω0t) −
b(t) sin(ω0t) is called narrowband or quasimonochromatic if |ω2 − ω1| � ω0.

Definition (Monochromatic) A bandpass process x(t) = a(t) cos(ω0t) −
b(t) sin(ω0t) is called monochromatic if Sxx(ω) is an impulse.
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The optimal center frequency is given by

ω̄0 =

∫∞
−∞ ωSzz(ω)dω∫∞
−∞ Szz(ω)dω

= j
1
2π

∫∞
−∞(−jω)Szz(ω)dω
1
2π

∫∞
−∞ Szz(ω)dω

= j
E[z(t)(z′(t))∗]

E[|z(t)|2] .

Now observe that z(t) = r(t)ej(ω0t+ϕ(t)) implies z′(t) = [r′(t)+jr(t)ωi(t)]e
j(ω0t+ϕ(t)).

Then,

E[z(t)(z′(t))∗] = E
[
r(t)��������

ej(ω0t+ϕ(t))[r′(t)− jr(t)ωi(t)]���������
e−j(ω0t+ϕ(t))

]
= E [r(t)r′(t)]− jE

[
r2(t)ωi(t)

]
.

Since Sxx(ω) = Sxx(−ω) = Syy(ω) = Syy(−ω), we have

E[x(t)x′(t)] = E[y(t)y′(t)] =
1

2π

∫ ∞

−∞
(−jω)Sxx(ω)dω = 0,

and E[r(t)r′(t)]= E[x(t)x′(t)] + E[y(t)y′(t)] = 0.

This concludes that E[z(t)(z′(t))∗] = −jE
[
r2(t)ωi(t)

]
, which together with

E[|z(t)|2] = E[|r(t)|2] implies

optimal carrier freq ω̄0 =
E[r2(t)ωi(t)]

E[r2(t)]
= weighted average of ωi

(
= ω0 +

E[r2(t)ϕ′(t)]
E[r2(t)]

)
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Consider the frequency modulation with modulation index λ.

Let x(t) = cos[ω0t + λϕ(t) +ϕ0], where ϕ(t) =
∫ t

0 c(α)dα.

r(t) = 1

w(t) = ej(λϕ(t)+ϕ0)

x(t) = Re{w(t)ejω0t}
z(t) = w(t)ejω0t

Theorem 10-3 If c(t) is SSS, and ϕ0 ⊥⊥ c(t), and E[ejϕ0] = E[ej2ϕ0] = 0,

then x(t) is zero-mean WSS, where “⊥⊥” means “independent.”

Proof: Since E[z(t)] = E[w(t)ejω0t] = E[ejλϕ(t)]E[ejϕ0]ejω0t = 0,

E[x(t)] = E [Re {z(t)}] = Re {E [z(t)]} = 0.

In addition,

Rxx(t + τ, t) = E[x(t + τ )x(t)] (because x(t) real)

=
1

4
E [(z(t + τ ) + z∗(t + τ ))(z(t) + z∗(t))] . (since x(t) =

1

2
(z(t) + z∗(t)) )
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Observe that

E[z(t + τ )z(t)] = E
[
ej(ω0(t+τ)+λϕ(t+τ)+ϕ0)ej(ω0t+λϕ(t)+ϕ0)

]
= E

[
ej(ω0(2t+τ)+λϕ(t+τ)+λϕ(t))

]
E
[
ej2ϕ0

]
= 0,

and

Rzz(t + τ, t) = E[z(t + τ )z∗(t)]

= E
[
ej(ω0(t+τ)+λϕ(t+τ)+ϕ0)e−j(ω0t+λϕ(t)+ϕ0)

]
= ejω0τE

[
ejλ[ϕ(t+τ)−ϕ(t)]

]
= ejω0τE

[
ejλ

∫ t+τ
t c(α)dα

]
= ejω0τE

[
ejλ

∫ τ
0 c(α)dα

]
(because c(t) is SSS)

= ejω0τE[ejλϕ(τ)].

Consequently,

Rxx(t + τ, t) =
1

4
(Rzz(τ ) +R∗

zz(τ )) ,

which together with E[x(t)] = 0 implies the WSS of x(t). �
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Remarks on Theorem 10-3

• From the proof of Theorem 10-3, we also learn that:

Rxx(τ ) =
1

2
Re {Rzz(τ )} and Rww(τ ) = E[ejλϕ(τ)] (since Rzz(τ ) = Rww(τ )e

jω0τ )

• In addition, x(t) is in general not WSS if ϕ0 is deterministic since E[ejϕ0] =

ejϕ0 �= 0.

• Further classification of x(t):

– The processx(t) is generally classified to “phase modulated” if the statistics

of ϕ(t) is known (i.e., ϕ(t) is the information process).

Rxx(τ ) =
1
2Re
{
E
[
ejλϕ(τ)

]
ejω0τ

}
is well-defined for the random process

ϕ(t) because “any finite-dimensional (including one-dimensional) sample

distribution is well-defined for a random process.”

– The process x(t) is generally classified to “frequency modulated” if the

statistics of c(t) is known (i.e., c(t) is the information process).

Rxx(τ ) = 1
2
Re
{
E
[
ejλϕ(τ)

]
ejω0τ

}
may not be well-defined even if the

distribution of c(t) is known. An extreme example is that c(t) is not

Lebesque-integrable in t.
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Remarks on frequency modulation

• In order for x(t) to be zero-mean WSS, Theorem 10-3 (cf. Slide 10-18) requires

that c(t) is SSS, and ϕ0 ⊥⊥ c(t), and E[ejϕ0] = E[ej2ϕ0] = 0.

• Without SSS of c(t), x(t) may not be WSS, and the calculation of Sxx(ω) (or

Rxx(τ )) lacks of its footing!

• Question is that how to approximate Sxx(ω) under known statistics of SSS

c(t)?

Answer: Woodward’s Theorem.
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Theorem 10-4 (Woodward’s Theorem) If the process c(t) is continuous

and SSS with marginal density fc(c), and also if c(t) ⊥⊥ ϕ0, and E[ejϕ0] =

E[ej2ϕ0] = 0, then for large λ,

Sxx(ω) ≈ π

2λ

[
fc

(
ω − ω0

λ

)
+ fc

(−ω − ω0

λ

)]
.

Proof:

• By the continuity of c(t),

ϕ(t) ≈ c(0)t for |t| < τ0

for some τ0 sufficiently small. So,

x(t) = Re {z(t)} ≈ x̄(t) � Re {z̄(t)} for |t| < τ0,

where

z(t) � ej(ω0t+λ
∫ t
0 c(α)dα+ϕ0) and z̄(t) � ej(ω0t+λtc(0)+ϕ0).

Take a look at the lemmas on Slide 9-105 and compare them with z̄(t)!
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• Treating tc(0) as
∫ t

0 c̄(α)dα with c̄(t) = c(0) for every t ∈ 
, we observe that
c̄(t) is SSS and c̄(t) ⊥⊥ ϕ0, and hence, we can follow the proof of Theorem

10-3 to obtain:

Rz̄z̄(τ ) = E
[
ejλτc(0)

]
ejω0τ = ejω0τ

∫ ∞

−∞
fc(c)e

jλτcdc =
1

λ
ejω0τ

∫ ∞

−∞
fc

(u
λ

)
ejuτdu,

which implies

Sz̄z̄(ω) =

∫ ∞

−∞
Rz̄z̄(τ )e

−jωτdτ

=
1

λ

∫ ∞

−∞
fc

(u
λ

)∫ ∞

−∞
e−jτ(ω−ω0−u)dτdu

=
1

λ

∫ ∞

−∞
fc

(u
λ

)
· 2πδ(ω − ω0 − u)du

=
2π

λ
fc

(
ω − ω0

λ

)
.

Then, Observation 4 (cf. Slide 10-8) implies that

Sx̄x̄(ω) =
1

4
[Sz̄z̄(ω) + Sz̄z̄(−ω)] =

π

2λ

[
fc

(
ω − ω0

λ

)
+ fc

(−ω − ω0

λ

)]
.
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• Now in order for Sx̄x̄(ω) to well-approximate Sxx(ω), we hope that

Rz̄z̄(τ ) = ejω0τE[ejλτc(0)] (10.2)

well-approximates

Rzz(τ ) = ejω0τE
[
ejλ

∫ τ
0 c(α)dα

]
(10.3)

for most τ ∈ 
. We already know that (10.2) is close to (10.3) for |τ | < τ0.

As for |τ | ≥ τ0, because c(0) and
∫ τ

0 c(α)dα assume to have densities, we can

make:

E[ejλτc(0)] ≈ 0 and E
[
ejλ

∫ τ
0 c(α)dα

]
≈ 0 if λ is sufficiently large.

This proves the requirement that “for large λ” in the theorem. �

We will see how well the approximate in Woodward’s theorem is for the special

case that c(t) is a Gaussian process.

Riemann-Lebesgue Theorem (Thm. 26.1 in P. Billingsley, Probability and

Measure, 3rd Ed., Wiley, 1995) If X has a density, then ϕX(t) � E[ejtX ]
|t|→∞−→ 0.
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Definition (Gaussian process) [p. 122, Random Processes: A Mathemat-

ical Approach for Engineers, R. M. Gray & L. D. Davisson] A random process

{x(t), t ∈ I} is said to be a Gaussian random process if all finite collections of

samples of the process are Gaussian random vectors.

• This is exactly the definition used in the textbook (cf. Slide 9-42).

Lemma [p. 122, Random Processes: A Mathematical Approach for Engineers,

R. M. Gray & L. D. Davisson] A Gaussian random process is completely determined

by a real-valued mean function µ(t) and a symmetric positive definite function

C(t1, t2).

• This is exactly what states in Existence Theorem in Slide 9-42.

Definition (Gaussian process) [p. 54, Communication Systems, 4th edition,

S. Haykin] A random process x(t) is said to be a Gaussian process, if every

(Lebesque-integrable) linear functional of x(t) in the form of

y =

∫ ∞

−∞
g(t)x(t)dt

is a Gaussian random variable, provided that y has finite variance.
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• By this definition, ϕ(t) =
∫ t

0 c(α)dα is certainly a Gaussian process, if c(t) is

a Gaussian process.

∫ ∞

−∞
g(t)ϕ(t)dt =

∫ ∞

0

∫ t

0

g(t)c(α)dαdt−
∫ ∞

0

∫ 0

−t

g(−t)c(α)dαdt

=

∫ ∞

0

c(α)

∫ ∞

α

g(t)dtdα−
∫ 0

−∞
c(α)

∫ ∞

−α

g(−t)dtdα

=

∫ ∞

−∞
g̃(α)c(α)dα

where g̃(α) � 1{α > 0} · ∫∞
α g(t)dt− 1{α < 0} · ∫∞

−α g(−t)dt.

• Hakin’s definition of Gaussian processes implies the definition in the textbook.

A random vector is Gaussian if every linear combination of the vector compo-

nent is a Gaussian random variable.
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• The converse is also true since every Lebesque-integrable function can be

approximated by some Riemann-integrable function (cf. Slide 26-16 in my

course: Advanced Probability in Communications). E.g., the integral of the

Lebesque-integrable-but-Riemann-nonintegrable function that f(x) = 0 if x

is irrational, and 1, if x is rational, can be approximated by the integral of

the Riemann-integrable function f̄ (x) = 0. Thus, the integral result y can

be obtained by taking finite number of samples of g(t)x(t), and then letting

the number of samples go to infinity. The limiting distribution is certainly

Gaussian because for each sampled number, the samples are constituted of a

Gaussian vector by the text’s definition.
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The accuracy of Woodward’s approximate is determined by how well

Rz̄z̄(τ ) = ejω0τE[ejλτc(0)] approximates Rzz(τ ) = ejω0τE[ejλϕ(τ)].

For zero-mean Gaussian SSS c(t) with

Rcc(τ ) ≈
{

ρ, for |τ | < τ0;

0, otherwise.

ϕ(t) =
∫ t

0 c(α)dα is also zero-mean Gaussian. This implies

E[ϕ2(τ )] =

∫ τ

0

∫ τ

0

E[c(α)c(β)]dαdβ =

∫ τ

0

∫ τ

0

Rcc(α− β)dαdβ =

∫ τ

0

∫ τ−β

−β

Rcc(u)dudβ

=

∫ 0

−τ

Rcc(u)

∫ τ

−u

dβdu +

∫ τ

0

Rcc(u)

∫ τ−u

0

dβdu (Note Rcc(u) = Rcc(−u))

= 2

∫ τ

0

(τ − u)Rcc(u)du =

{
ρτ 2, if |τ | < τ0;

ρτ0(2|τ | − τ0), otherwise,

and for zero-mean Gaussian ϕ(t),

Rzz(τ ) = ejω0τe−
1
2λ

2E[ϕ2(τ)] =

{
ejω0τe−

1
2λ

2ρτ2, if |τ | < τ0;

ejω0τe−
1
2λ

2ρτ0(2|τ |−τ0), otherwise.

Similarly,

Rz̄z̄(τ ) = ejω0τe−
1
2λ

2τ2E[c2(0)] = ejω0τe−
1
2λ

2ρτ2.
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Thus,

|Szz(ω)− Sz̄z̄(ω)| =

∣∣∣∣
∫
|τ |≥τ0

(
e−

1
2λ

2ρτ2 − e−
1
2λ

2ρτ0(2|τ |−τ0)
)
e−j(ω−ω0)τdτ

∣∣∣∣
≤
∫
|τ |≥τ0

∣∣∣(e−1
2λ

2ρτ2 − e−
1
2λ

2ρτ0(2|τ |−τ0)
)
e−j(ω−ω0)τ

∣∣∣ dτ
= 2

∫ ∞

τ0

(
e−

1
2λ

2ρτ0(2τ−τ0) − e−
1
2λ

2ρτ2
)
dτ

=
2

λ2ρτ0
e−λ2ρτ20 /2 − 2

λ

√
2π

ρ
Φ (−λ

√
ρτ0) ,

where Φ(·) is the cdf of the standard normal. A well-known approximation for

Φ(−x) is

Φ(−x) =
1√
2πx

e−x2/2

(
1− 1

x2
+

1 · 3
x4

− 1 · 3 · 5
x6

+ · · ·
)

and
1√
2πx

e−x2/2

(
1− 1

x2

)
≤ Φ(−x) ⇒ 1√

2πx
e−x2/2 − Φ(x) ≤ 1√

2πx3
e−x2/2.

Consequently, letting x = λ
√
ρτ0 yields

|Szz(ω)− Sz̄z̄(ω)| ≤ 2τ0
√
2π

x

(
1√
2πx

e−x2/2 − Φ (−x)

)
≤ 2τ0

√
2π

x

1√
2πx3

e−x2/2 =
2

λ4ρ2τ 30
e−λ2ρτ20 /2.
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We finally conclude that:

|Sxx(ω)− Sx̄x̄(ω)| =

∣∣∣∣14 (Szz(ω) + Szz(−ω))− 1

4
(Sz̄z̄(ω) + Sz̄z̄(−ω))

∣∣∣∣
≤ 1

4
|Szz(ω)− Sz̄z̄(ω)| + 1

4
|Szz(−ω)− Sz̄z̄(−ω)|

≤ τ0
(λ2ρτ 20 )

2
e−λ2ρτ20 /2,

and the difference of Sxx(ω) and Sx̄x̄(ω) uniformly decreases to zero as λ large.
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• Wideband FM: If λ is chosen such that λ2ρτ 20 � 1, Sxx(ω) ≈ Sx̄x̄(ω).

In such case,

Szz(ω + ω0) ≈ Sz̄z̄(ω + ω0) =
2π

λ
fc

(ω
λ

)
, (See Slide 10-23.)

and the bandwidth of Sz̄z̄(ω+ω0) is wide (as proportional to λ), and so is the

bandwidth of its approximate target Szz(ω + ω0). Thus, the system is named

wideband FM.

• Narrowband FM: If λ is not large enough such that λ2ρτ 20 � 1, (and assume

τ0 is very small such that most |τ | ≥ τ0), then by Slide 10-28,

Rzz(τ ) ≈ ejω0τe−λ2ρτ20 (|τ |/τ0−1/2) ⇒ Szz(ω + ω0) ≈ 2λ2ρτ0e
λ2ρτ20 /2

ω2 + λ4ρ2τ 20

with 3dB-bandwidth ω3dB = λ2ρτ0.

In such case, Szz(ω) is named narrowband FM, and cannot be well-approximated

by Sz̄z̄(ω).

The end of Section 10-3 Modulation
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Cyclostationarity: A random process x(t) is called strictly-sense cyclostation-

ary stationary (SSCS) with period T if its statistical properties are invariant

to a shift of the origin by integer multiples of T .

Wide-Sense Cyclostationarity: A random process x(t) is called wide-sense

cyclostationary stationary (WSCS) with period T if ηxx(t + mT ) = ηxx(t)

and Rxx(t1 +mT, t2 +mT ) = Rxx(t1, t2) for every integer m.

Theorem 10-5 (SSCS and SSS) If x(t) is an SSCS process with period T ,

then y(t) = x(t− θ) is SSS, where random variable θ that is independent of x(t)

is uniformly distributed over [0, T ).

Moreover, the cdf of y(t) can be obtained from the cdf of x(t) as:

Fy(x1, . . . , xn; t1, . . . , tn) =
1

T

∫ T

0

Fx(x1, . . . , xn; t1 − α, . . . , tn − α)dα. (10.4)
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Proof: It suffices to show that the probability of the event

P ({ζ ∈ S : y(t1 + c, ζ) ≤ x1 and · · · and y(tn + c, ζ) ≤ xn})
is independent of c, and is given by (10.4). This can be proved as follows.

By the uniformity of θ, and independence between x(t) and θ,

P ({ζ ∈ S : y(t1 + c, ζ) ≤ x1 and · · · and y(tn + c, ζ) ≤ xn})
=

∫ T

0

P ({ζ ∈ S : x(t1 + c− θ, ζ) ≤ x1 and · · · and x(tn + c− θ, ζ) ≤ xn})
(
1

T

)
dθ

=
1

T

∫ T−c

−c

P ({ζ ∈ S : x(t1 − α, ζ) ≤ x1 and · · · and x(tn − α, ζ) ≤ xn})dα (α = θ − c)

=
1

T

∫ T

0

P ({ζ ∈ S : x(t1 − α, ζ) ≤ x1 and · · · and x(tn − α, ζ) ≤ xn})dα (By SSCS of x(t))

=
1

T

∫ T

0

Fx(x1, . . . , xn; t1 − α, . . . , tn − α)dα.

�
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Theorem 10-6 (WSCS and WSS) If x(t) is a WSCS process with period

T , then y(t) = x(t− θ) is WSS, where random variable θ that is independent of

x(t) is uniformly distributed over [0, T ).

Moreover, the mean and autocorrelation function of y(t) are

ηy =
1

T

∫ T

0

ηx(t)dt and Ryy(τ ) =
1

T

∫ T

0

Rxx(t + τ, t)dt.

Proof:

E[y(t)] = E[x(t− θ)] = E[E[x(t− θ)|θ = θ]] =
1

T

∫ T

0

E[x(t− θ)|θ = θ]dθ

=
1

T

∫ T

0

E[x(t− θ)]dθ (Independence between x(t) and θ)

=
1

T

∫ T

0

ηx(t− θ)dθ

=
1

T

∫ t

t−T

ηx(s)ds (s = t− θ)

=
1

T

∫ T

0

ηx(s)ds (WSCS of x(t)),
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and similarly

Ryy(t + τ, t) = E[y(t + τ )y(t)] = E[x(t + τ − θ)x(t− θ)]

= E[E[x(t + τ − θ)x(t− θ)|θ = θ]]

=
1

T

∫ T

0

E[x(t + τ − θ)x(t− θ)|θ = θ]dθ (Uniformity of θ)

=
1

T

∫ T

0

E[x(t + τ − θ)x(t− θ)]dθ (Independence between x(t) and θ)

=
1

T

∫ T

0

Rxx(t + τ − θ, t− θ)dθ

=
1

T

∫ t

t−T

Rxx(s + τ, s)ds (s = t− θ)

=
1

T

∫ T

0

Rxx(s + τ, s)ds (WSCS of x(t)).

�
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Remarks

• In the literature, Ryy(τ ) is called the time-average autocorrelation function

of the WSCS process x(t), because it averages over one period of the periodic

autocorrelation function of x(t), and is usually denoted by R̄xx(τ ).

For a non-WSCS process x(t), its time-average autocorrelation function is

defined as:

R̄xx(τ ) � lim
w→∞

1

2w

∫ w

−w

Rxx(t + τ, t)dt,

provided the limit exists.

The above limit always exists for a WSCS process, and is equal to

R̄xx(τ ) =
1

2kT

∫ kT

−kT

Rxx(t + τ, t)dt for any positive integer k.

• In the textbook, x̄(t) = x(t− θ) is named the shifted process of x(t).
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Examples of WSCS processes: Show that the pulse train

z(t) =
∞∑

n=−∞
cnδ(t− nT )

is WSCS, where {cn}∞n=−∞ is a discrete-time SSS sequence. Then, determine the

time-average autocorrelation function and time-average power spectrum of z(t).

Answer: Apparently,

µz(t) = E[z(t)] =

∞∑
n=−∞

E[cn]δ(t− nT ) = µc

∞∑
n=−∞

δ(t− nT )

and

Rzz(t1, t2) =
∞∑

n=−∞

∞∑
r=−∞

E[cncr]δ(t1 − nT )δ(t2 − rT )

=
∞∑

n=−∞

∞∑
r=−∞

Rcc[n− r]δ(t1 − nT )δ(t2 − rT )

=

∞∑
m=−∞

Rcc[m]

∞∑
r=−∞

δ(t1 − (m + r)T )δ(t2 − rT ) (m = n− r)

are periodic with period T .
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To determine the time-average autocorrelation function for x(t), we derive that

R̄zz(τ ) =
1

T

∫ T

0

Rzz(t + τ, t)dt =
1

T

∫ T

0

∞∑
m=−∞

Rcc[m]

∞∑
r=−∞

δ(t + τ − (m + r)T )δ(t− rT )dt

=
1

T

∞∑
m=−∞

Rcc[m]
∞∑

r=−∞

∫ T

0

δ(t + τ − (m + r)T )δ(t− rT )dt

=
1

T

∞∑
m=−∞

Rcc[m]
∞∑

r=−∞

∫ T−rT

−rT

δ(s + τ −mT )δ(s)ds (s = t− rT )

=
1

T

∞∑
m=−∞

Rcc[m]

∫ ∞

−∞
δ(s + τ −mT )δ(s)ds

=
1

T

∞∑
m=−∞

Rcc[m]

∫ ∞

−∞
gτ,m(s)δ(s)ds (gτ,m(s) = δ(s + τ −mT ))

=
1

T

∞∑
m=−∞

Rcc[m]gτ,m(0) Replication Property (Slide 9-87):

{
gτ,m(s) continuous at s = 0;

exception occurs at . . .

=
1

T

∞∑
m=−∞

Rcc[m]δ(τ −mT ).
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For any τ not equal to a multiple of T , gτ,m(s) is zero at the vicinity of zero, and

is certainly continuous at s = 0.

The same claim holds if τ = kT for some integer k, and m �= k.

At the situation where τ = kT and k = m, we use the “convention” that
∫∞
−∞ δ(s+

mT −mT )δ(s)ds =
∫∞
−∞ δ(s)δ(s)ds = δ(s) to complete the derivation.

The expression on page 475 of the textbook, namely,∫ T

0

δ(t + τ − (m + r)T )δ(t− rT )dt = δ(τ −mT )

is incorrect. Note that the left-hand-side is a function of r while the right-hand-side

does not depend on r. The correct expression should be:

∞∑
r=−∞

∫ T

0

δ(t + τ − (m + r)T )δ(t− rT )dt = δ(τ −mT ).

An easier way to do the derivation in the previous slide is that∫ ∞

−∞
δ(t− a)δ(t− b)dt =

∫ ∞

−∞
δ(a− b)δ(t− b)dt = δ(a− b).
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The time-average power spectrum of x(t) is then given by:

S̄zz(ω) =

∫ ∞

−∞
R̄zz(τ )e

−jωτdτ

=

∫ ∞

−∞

(
1

T

∞∑
m=−∞

Rcc[m]δ(τ −mT )

)
e−jωτdτ

=
1

T

∞∑
m=−∞

Rcc[m]

∫ ∞

−∞
δ(τ −mT )e−jωτdτ

=
1

T

∞∑
m=−∞

Rcc[m]e−jωmT

=
1

T
Scc[ωT ],

where

Scc[ω] =
∞∑

m=−∞
Rcc[m]e−jωm.

�
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Fundamental Theorem and Theorems 9-2 and 9-4 Revisited For any
linear time-invariant system,

η̄x
� h(τ) �

η̄y = E[h(τ) ∗ η̄x]

�
R̄xx(τ)

h∗(−τ) � h(τ) �

R̄yy(τ) = E[h∗(−τ) ∗ h(τ) ∗ R̄xx(τ)]

�
S̄xx(ω)

H∗(ω) � H(ω) �

S̄yy(ω) = E[|H(ω)|2S̄xx(ω)]

provided the listed conditions hold.

1. E[P 2
h] < ∞, where P h �

∫∞
−∞ |h(τ )|dτ ;

2. lim sup
w→∞

max

{∣∣∣∣ 12w
∫ w

−w

ηx(t− a)dt

∣∣∣∣ ,
∣∣∣∣ 12w

∫ w

−w

Rxx(t− a, t− b)dt

∣∣∣∣
}

< M for

some finite M holds almost everywhere (a.e.) in a, b;

3. limw→∞ 1
2w

∫ w

−w ηx(t− τ )dt = η̄x for every τ ;

4. limw→∞ 1
2w

∫ w

−w Rxx(t− a, t− b)dt = R̄xx(b− a) for every a, b.
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Proof:

η̄y = lim
w→∞

1

2w

∫ w

−w

ηy(t)dt = lim
w→∞

1

2w

∫ w

−w

E[y(t)]dt

= lim
w→∞

1

2w

∫ w

−w

E

[∫ ∞

−∞
h(τ )x(t− τ )dτ

]
dt

= lim
w→∞

1

2w

∫ w

−w

∫ ∞

−∞
E[h(τ )]E[x(t− τ )]dτdt

= lim
w→∞

∫ ∞

−∞

(
E[h(τ )]

1

2w

∫ w

−w

ηx(t− τ )dt

)
dτ

=

∫ ∞

−∞
lim
w→∞

(
E[h(τ )]

1

2w

∫ w

−w

ηx(t− τ )dt

)
dτ

This step requires the existence of a function g(τ ) = M · E[|h(τ )|] such that for

sufficiently large ω∣∣∣∣E[h(τ )]
1

2w

∫ w

−w

ηx(t− τ )dt

∣∣∣∣ ≤ g(τ ) a.e. in τ and

∫ ∞

−∞
g(τ )dτ = M ·E[P h] < ∞.

=

∫ ∞

−∞

(
E[h(τ )] lim

w→∞
1

2w

∫ w

−w

ηx(t− τ )dt

)
dτ = η̄x

∫ ∞

−∞
E[h(τ )]dτ.
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R̄yy(τ ) = lim
w→∞

1

2w

∫ w

−w

Ryy(t + τ, t)dt

= lim
w→∞

1

2w

∫ w

−w

∫ ∞

−∞

∫ ∞

−∞
E[h∗(u)h(v)]Rxx(t + τ − v, t− u)dvdudt

= lim
w→∞

∫ ∞

−∞

∫ ∞

−∞

(
1

2w

∫ w

−w

E[h∗(u)h(v)]Rxx(t + τ − v, t− u)dt

)
dvdu

=

∫ ∞

−∞

∫ ∞

−∞
lim
w→∞

(
1

2w

∫ w

−w

E[h∗(u)h(v)]Rxx(t + τ − v, t− u)dt

)
dvdu

There exists function g(u, v) = M ·E[|h∗(u)h(v)|] such that for sufficiently large w,∣∣∣∣E[h∗(u)h(v)]
1

2w

∫ w

−w

Rxx(t + τ − v, t− u)dt

∣∣∣∣ ≤ g(u, v)

and ∫ ∞

−∞

∫ ∞

−∞
g(u, v)dvdu = M · E[P 2

h] < ∞.

=

∫ ∞

−∞

∫ ∞

−∞
E[h∗(u)h(v)] lim

w→∞

(
1

2w

∫ w

−w

Rxx(t + τ − v, t− u)dt

)
dvdu

=

∫ ∞

−∞

∫ ∞

−∞
E[h∗(u)h(v)]R̄xx(τ − v + u)dvdu.
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Theorem 9-4 follows immediately from Theorem 9-2; hence, we omit it. �

Example 10-4 Suppose that

x(t) =

∞∑
n=−∞

cnδ(t− nT ) with {cn}∞n=−∞ zero-mean i.i.d.

and

h(τ ) =

{
1, 0 ≤ t < T ;

0, otherwise

Please find the time-average autocorrelation function and time-average power spec-

trum of the output process y(t).

Answer: Examine the four conditions as follows.

1. E[P 2
h] = T 2 < ∞, where P h �

∫∞
−∞ |h(τ )|dτ =

∫ T

0 dτ = T ;

2. Since ηx(t) = 0 and Rcc[m] = E[cn+mc
∗
n] = 0 if m �= 0

Rxx(t1, t2) =
∞∑

m=−∞
Rcc[m]

∞∑
r=−∞

δ(t1 − (m + r)T )δ(t2 − rT )

= Rcc[0]
∞∑

r=−∞
δ(t1 − rT )δ(t2 − rT ) (cf. Slide 10-37)
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lim sup
w→∞

max



∣∣∣∣ 12w

∫ w

−w

ηx(t− a)dt

∣∣∣∣︸ ︷︷ ︸
=0

,

∣∣∣∣ 12w
∫ w

−w

Rxx(t− a, t− b)dt

∣∣∣∣



= lim sup
w→∞

∣∣∣∣∣ 12w
∫ w

−w

Rcc[0]

∞∑
r=−∞

δ(t− a− rT )δ(t− b− rT )dt

∣∣∣∣∣
= Rcc[0]δ(a− b) · lim sup

w→∞

∣∣∣∣∣ 12w
∫ w

−w

∞∑
r=−∞

δ(t− b− rT )dt

∣∣∣∣∣
= Rcc[0]δ(a− b) · lim sup

w→∞

∣∣∣∣ 12w
⌈
2w

T

⌉∣∣∣∣
=

1

T
Rcc[0]δ(a− b); (which is bounded a.e. in a, b)

3. η̄x = limw→∞ 1
2w

∫ w

−w ηx(t− τ )dt = 0 for every τ ;
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4.

R̄xx(b− a) = lim
w→∞

1

2w

∫ w

−w

Rxx(t− a, t− b)dt

= lim
w→∞

1

2w

∫ w

−w

Rcc[0]

∞∑
r=−∞

δ(t− a− rT )δ(t− b− rT )dt

= Rcc[0]δ(b− a) lim
w→∞

1

2w

∫ w

−w

∞∑
r=−∞

δ(t− b− rT )dt

=
1

T
Rcc[0]δ(b− a)

for every a, b.

By the validity of the four conditions, Fundamental Theorem and Theorems 9-2

and 9-4 give

ηy = ηx

∫ ∞

−∞
h(τ )dτ = ηxT = 0,
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R̄yy(τ ) =

∫ ∞

−∞

∫ ∞

−∞
h∗(u)h(v)R̄xx(τ − v + u)dvdu

=

∫ T

0

∫ T

0

1

T
Rcc[0]δ(τ − v + u)dvdu (0 < v = u + τ < T )

=
1

T
Rcc[0]

∫ T

0

1{−τ < u < T − τ}du

= Rcc[0]

(
1− |τ |

T

)
· 1{|τ | < T}.

and

S̄yy(ω) = |H(ω)|2S̄xx(ω) =

∣∣∣∣
∫ T

0

e−jωτdτ

∣∣∣∣2
(
1

T
Rcc[0]

)

=

(
sin(ωT/2)

ω/2

)2(
1

T
Rcc[0]

)
= Rcc[0]

4 sin2(ωT/2)

ω2T
.

�

The end of Section 10-4 Cyclostationary Processes
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Definition (Bandlimited processes) A process x(t) is called bandlimited

(BL) if S̄xx(ω) = 0 for |ω| > σ, and R̄xx(0) < ∞.

Most books do not require R̄xx(0) < ∞ for the definition of bandlimited pro-

cesses. Here, we additionally require R̄xx(0) < ∞ for theoretical manipulation

convenience. See the next lemma.

Lemma A bandlimited process x(t) has Taylor expansion (in the MS sense).

Proof: Since S̄xx(ω) is real and non-negative, and

∞ > R̄xx(0) =
1

2π

∫ ∞

−∞
S̄xx(ω)e

jω·0dω =
1

2π

∫ σ

−σ

S̄xx(ω)dω,

we have ∫ ∞

−∞
|jω|2nS̄xx(ω)dω ≤ σ2n

∫ σ

−σ

S̄xx(ω)dω < ∞.

Hence, the inverse Fourier transform of |jω|2nS̄xx(ω) exists, which implies the nth

derivative of R̄xx(τ ) exists. Specifically, by Theorem 9-4,

R̄(n)
xx (τ ) =

1

2π

∫ σ

−σ

(jω)2nS̄xx(ω)e
jωτdω. (Hence, x(n)(t) exists in the MS sense.)
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Observe that

ejωv =
∞∑
n=0

vn

n!
(jω)n.

So, passing the process x(t) via filterH(ω) = ejωv and filterH(ω) =
∑∞

n=0
vn

n!
(jω)n

should result in the same output. Accordingly,

x(t + v) =

∞∑
n=0

x(n)(t)
vn

n!
in the MS sense.

�

Remarks

• The above lemma indicates that a BL process is very “smooth” since it has

derivatives of any order.

• The next lemma shows further that a BL process is not only “smooth” but also

“slow-varying in time.”

Lemma If x(t) is BL (not necessarily a real process as required in the textbook),

lim
w→∞

1

2w

∫ w

−w

E
[
|x(t + τ )− x(t)|2

]
dt ≤ σ2τ 2R̄xx(0),

provided the limit exists.
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Proof: Let y(t) be the output due to input x(t) and filter H(ω) = ejωτ − 1.

Then, y(t) = x(t + τ )− x(t), and

lim
w→∞

1

2w

∫ w

−w

E
[
|x(t + τ )− x(t)|2

]
dt = lim

w→∞
1

2w

∫ w

−w

E[|y(t)|2]dt

= lim
w→∞

1

2w

∫ w

−w

Ryy(t, t)dt = R̄yy(0).

Theorem 9-4 states that

R̄yy(0) =
1

2π

∫ ∞

−∞
|H(ω)|2S̄xx(ω)dω

=
1

2π

∫ σ

−σ

|ejωτ − 1|2S̄xx(ω)dω

=
1

2π

∫ σ

−σ

4 sin2
(ωτ

2

)
S̄xx(ω)dω

≤ 1

2π

∫ σ

−σ

ω2τ 2S̄xx(ω)dω (| sin(θ)| < |θ|)

≤ σ2τ 2
1

2π

∫ σ

−σ

S̄xx(ω)dω = σ2τ 2R̄xx(0).

�
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Theorem 10-9 (Stochastic sampling theorem) If x(t) is BL, then

x(t + τ ) =
∞∑

n=−∞
x(t + nT )

sin[σ(τ − nT )]

σ(τ − nT )
(in the MS sense),

where T = π/σ.

Proof: By Fourier series,

ejωτ =
∞∑

n=−∞
an,τe

jnTω for |ω| ≤ σ,

where

an,τ =
1

2σ

∫ σ

−σ

ejωτe−jnTωdω =
sin[σ(τ − nT )]

σ(τ − nT )
.

Again, passing the BL-to-σ process x(t) via filter H1(ω) = ejωτ and filter H2(ω) =∑∞
n=−∞ an,τe

jnTω withH1(ω) = H2(ω) for |ω| ≤ σ (We actually don’t care whether

H1(ω) = H2(ω) for |ω| > σ. Why?) should result in the same output. Accordingly,

x(t + τ ) =

∞∑
n=−∞

an,τx(t + nT ).

�
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• A deterministic BL signal x(t), defined as X(ω) =
∫∞
−∞ x(t)e−jωtdt = 0 for

|ω| > σ, can be completely determined only when all samples, including past

samples and future samples, are known.

• However, a stochastic BL signal x(t) can be asymptotically determined only

with past samples!

Theorem 10-10 Fix (i) a BL process x(t) with bandwidth σ, (ii) a number

T0 < (1/3)π/σ, and (iii) a constant ε > 0 arbitrarily small. There exists a

(sufficiently large) positive integer n and a set of coefficients {ak}nk=1 such that

lim
w→∞

1

2w

∫ w

−w

E


∣∣∣∣∣x(t)−

n∑
k=1

akx(t− kT0)

∣∣∣∣∣
2

 dt < ε.

Proof: Let y(t) = x(t) −∑n
k=1 akx(t − kT0). Then, y(t) is the output due to

input x(t) and filter

H(ω) = 1−
n∑

k=1

ake
−jkT0ω.
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Hence,

R̄yy(0) =
1

2π

∫ ∞

−∞
|H(ω)|2S̄xx(ω)dτ =

1

2π

∫ σ

−σ

|H(ω)|2S̄xx(ω)dτ.

This indicates that if

|H(ω)|2 < ε

R̄xx(0)
for |ω| ≤ σ,

then

R̄yy(0) ≤ ε

R̄xx(0)

1

2π

∫ σ

−σ

S̄xx(ω)dτ = ε.

The availability of such H(ω) is proved as follows. Let ak = −(−1)k
(
n
k

)
. Then,

H(ω) =
n∑

k=0

(−1)k
(
n

k

)
e−jkT0ω =

(
1− e−jωT0

)n
,

which gives that for |ω| ≤ σ,

|H(ω)|2 =
∣∣1− e−jωT0

∣∣n = |2 sin(ωT0/2)|n → 0 as n → ∞,

because |ωT0|
2

≤ σT0

2
<

π

6
.

�
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Remarks

• In Chapter 11, we will see that a desire to make |H(ω)|2 = 0 for |ω| ≤ σ will

violate the Paley-Wiener condition, which is the sufficient condition for the

existence of H(ejω) with |H(ejω)|2 equal to a target S(ejω).

A power spectrum S[ejω] (equiv. S[z]) can be factorized to |H[ejω]|2
(equiv. H[z]H[1/z]) if the Paley-Wiener condition∫ π

−π

| logS[ejω]|dω < ∞.

is valid.

• Theorem 10-10 is actually valid for any T0 < π/σ. In the case of (1/3)π/σ ≤
T0 < π/σ, a differentH(ω) needs to be chosen. For details, you may refer to the

Weierstrass approximation theorem or the Fejer-Riesz factorization theorem.

• Theorem 10-11 further increases the sampling period bound from π/σ toNπ/σ,

if the samples of the outputs y1(t), y2(t), . . ., yN(t) ofN linear systemsH1(ω),

H2(ω), . . ., HN(ω) due to input x(t) are available.
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Theorem 10-11 Fix a BL process x(t) with bandwidth σ, and a constant τ .

Let c = 2σ/N and T0 = 2π/c. Then,

x(t + τ ) =

∞∑
n=−∞

[
y1(t + nT0)p1(τ − nT0) + · · · + yN(t + nT0)pN(τ − nT0)

]
where yk(t) is the output of the linear system Hk(ω) due to input x(t), and

pk(τ ) =
1

c

∫ −σ+c

−σ

Pk(ω, τ )e
jωτdω,

(
Pk(ω, τ ) =

∞∑
n=−∞

pk(τ − nT0)e
−jω(τ−nT0)

)
(10.5)

and {Hk(ω)}Nk=1 and {Pk(ω, τ )}Nk=1 are the solutions of


H1(ω)P1(ω, τ ) + · · · +HN(ω)PN(ω, τ ) = 1

H1(ω + c)P1(ω, τ ) + · · · +HN(ω + c)PN(ω, τ ) = ejcτ

· · · · · · · · ·
H1(ω + (N − 1)c)P1(ω, τ ) + · · · +HN(ω + (N − 1)c)PN(ω, τ ) = ej(N−1)cτ

(10.6)

for ω ∈ (−σ,−σ + c].
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Proof:

• It suffices to show that

ejωτ︸︷︷︸
x(t+τ)

=
∞∑

n=−∞
p1(τ − nT0)H1(ω)e

jnωT0︸ ︷︷ ︸
y1(t+nT0)

+ · · ·+
∞∑

n=−∞
pN(τ − nT0)HN(ω)e

jnωT0︸ ︷︷ ︸
yN (t+nT0)

(10.7)

for |ω| ≤ σ (namely, for ω in (−σ,−σ + c], (−σ + c,−σ + 2c], . . ., (−σ +

(N − 1)c,−σ +Nc = σ]).

• Replacing ω by (ω̃ + kc) for the right-hand-side of (10.7) yields:

H1(ω̃ + kc)

∞∑
n=−∞

p1(τ − nT0)e
jn(ω̃+kc)T0 + · · ·+HN(ω̃ + kc)

∞∑
n=−∞

pN(τ − nT0)e
jn(ω̃+kc)T0

= H1(ω̃ + kc)
∞∑

n=−∞
p1(τ − nT0)e

jnω̃T0 + · · ·+HN(ω̃ + kc)
∞∑

n=−∞
pN(τ − nT0)e

jnω̃T0 (since ejnkcT0 = ejnk·2π = 1.)

= H1(ω̃ + kc)
(
ejω̃τP1(ω̃, τ)

)
+ · · ·+HN(ω̃ + kc)

(
ejω̃τPN (ω̃, τ)

)
(by definition of {P�(ω, τ)}N�=1 or (10.5))

= ejω̃τ [H1(ω̃ + kc)P1(ω̃, τ) + · · ·+HN(ω̃ + kc)PN(ω̃, τ)]

= ejω̃τejkcτ (by the (k + 1)th equation in (10.6), which is true for ω̃ ∈ (−σ, σ + c])

= ej(ω̃+kc)τ

Therefore, (10.7) is true for ω = ω̃ + kc ∈ (−σ + kc, σ + (k + 1)c] for 0 ≤ k < N .�
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Claim: pk(τ ) =
1

c

∫ −σ+c

−σ

Pk(ω, τ )e
jωτdω ⇒ Pk(ω, τ ) =

∞∑
n=−∞

pk(τ−nT0)e
−jω(τ−nT0)

Proof: From (10.6), it can be induced that Pk(ω, τ ) are periodic with period T0

because ejkc(τ−nT0) = ejkcτ . Thus,

Pk(ω, τ − nT0) = Pk(ω, τ ),

which implies

pk(τ − nT0) =
1

c

∫ −σ+c

−σ

Pk(ω, τ − nT0)e
jω(τ−nT0)dω

=
1

c

∫ −σ+c

−σ

Pk(ω, τ )e
jω(τ−nT0)dω

=
1

c

∫ −σ+c

−σ

Pk(ω, τ )e
jωτe−jnωT0dω

Accordingly,

Pk(ω, τ )e
jωτ =

∞∑
n=−∞

pk(τ − nT0)e
jnωT0.
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Remarks

• For N = 1, we have c = 2σ, T0 = π/σ,

x(t+τ ) =

∞∑
n=−∞

y1(t+nT0)p1(τ−nT0) andH1(ω)P1(ω, τ ) = 1 for −σ < ω ≤ σ.

Taking H1(ω) = 1 (hence, y1(t) = x(t) and

p1(τ ) =
1

c

∫ −σ+c

−σ

Pk(ω, τ )e
jωτdω =

1

2σ

∫ σ

−σ

ejωτdω)

reduces Theorem 10-11 to Theorem 10-9 (cf. Slide 10-51).

Theorem 10-9 (Stochastic sampling theorem) If x(t) is BL, then

x(t + τ ) =
∞∑

n=−∞
x(t + nT )

sin[σ(τ − nT )]

σ(τ − nT )
(in the MS sense),

where T = π/σ.

• For N > 1, sampling is performed at every T0 = N(π/σ); however, N samples

are taken each time. Thus, no saving in “complexity” is obtained.
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Observations and motivation

• The relationship between the (discrete) Fourier transform of equidistance sam-

ples {x[nT ]} of a deterministic parent signal x(t) and the parent signal itself

is given by

X [ω]

(
=

∞∑
n=−∞

x(nT )e−jnTω

)
=

∞∑
n=−∞

X(ω + 2nσ),

where σ = π/T (cf. Slide 9-132).

• The difference X(ω)−X [ω] is called aliasing error.

• Question: How about the Fourier transform of random samples {tn} of x(t),

where {tn} is a Poisson point process (cf. Slide 9-47) with average density λ?

Lemma The normalized (discrete) Fourier transform of random samples {tn} of

(continuous) x(t), namely,

1

λ

∞∑
n=−∞

x(tn)e
−jωtn,

is an unbiased estimate of X(ω).
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Proof: Let z(t) =
∑∞

n=−∞ δ(t− tn). Then,

∞∑
n=−∞

x(tn)e
−jωtn =

∫ ∞

−∞
x(t)e−jωt

( ∞∑
n=−∞

δ(t− tn)

)
dt

=

∫ ∞

−∞
x(t)z(t)e−jωtdt.

Hence,

E

[ ∞∑
n=−∞

x(tn)e
−jωtn

]
=

∫ ∞

−∞
x(t)E[z(t)]e−jωtdt

=

∫ ∞

−∞
x(t)λe−jωtdt = λX(ω).

�

E[z(t)] =
∂E[x(t)]

∂t
=

∂(λt)

∂t
= λ, where x(t) is the Poison process defined in

Example 9-5 (cf. Slide 9-48 and Slide 9-98).
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Lemma Follow the previous lemma. The estimate variance of the unbiased esti-

mator, namely,

E


∣∣∣∣∣1λ

∞∑
n=−∞

x(tn)e
−jωtn −X(ω)

∣∣∣∣∣
2



approaches zero as λ → ∞, provided that the energy of x(t), i.e.,
∫∞
−∞ x2(t)dt, is

finite.

Proof:

E


∣∣∣∣∣

∞∑
n=−∞

x(tn)e
−jωtn

∣∣∣∣∣
2

 = E

[(∫ ∞

−∞
x(t)z(t)e−jωtdt

)(∫ ∞

−∞
x(s)z(s)ejωsds

)]

=

∫ ∞

−∞

∫ ∞

−∞
x(t)x(s)E[z(t)z(s)]e−jω(t−s)dtds

=

∫ ∞

−∞

∫ ∞

−∞
x(t)x(s)Rzz(t, s)e

−jω(t−s)dtds
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=

∫ ∞

−∞

∫ ∞

−∞
x(t)x(s)

∂2Rxx(t, s)

∂t∂s
e−jω(t−s)dtds

=

∫ ∞

−∞

∫ ∞

−∞
x(t)x(s)

∂2(λmin{t, s} + λ2ts)

∂t∂s
e−jω(t−s)dtds

=

∫ ∞

−∞

∫ ∞

−∞
x(t)x(s)

[
λδ(t− s) + λ2

]
e−jω(t−s)dtds

= λ

∫ ∞

−∞
x2(t)dt + λ2|X(ω)|2.

Hence,

E


∣∣∣∣∣1λ

∞∑
n=−∞

x(tn)e
−jωtn −X(ω)

∣∣∣∣∣
2

 =

1

λ2
E


∣∣∣∣∣

∞∑
n=−∞

x(tn)e
−jωtn

∣∣∣∣∣
2

− |X(ω)|2

=
1

λ

∫ ∞

−∞
x2(t)dt → 0 as λ → ∞.

�

The end of Section 10-5 Bandlimited Processes and Sampling Theory
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�⊕ �

�
h(τ ) ������

� ��

channel receiver

f(t)

v(t)

x(t) y(t)

sample
at t = t0

y(t0)

• A central problem in communications is the estimation of a sample yf(t0) at a

specific time of filter output of a deterministic signal f(t) in presence of noise.

• In absence of noise v(t),

y(t0) = yf(t0) �
∫ ∞

−∞
h(τ )f(t0 − τ )dτ.

• The noise however will change the errorfree system to:

y(t0) = yf (t0) + yv(t0),

where

yv(t0) �
∫ ∞

−∞
h(τ )v(t0 − τ )dτ.

Question: How to design the filter h(τ ) such that the output signal-to-noise

ratio γo =
|yf(t0)|2
E[y2

v(t0)]
is maximized, provided the PSD of WSS v(t) is Svv(ω)?
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Answer: The matched filter.

γo =
|yf (t0)|2
E[y2

v(t0)]
=

∣∣∣∣ 12π
∫ ∞

−∞
F (ω)H(ω)ejωt0dω

∣∣∣∣2
1

2π

∫ ∞

−∞
Svv(ω)|H(ω)|2dω

=

∣∣∣∣
∫ ∞

−∞
F (ω)S−1/2

vv (ω) · S1/2
vv (ω)H(ω)ejωt0dω

∣∣∣∣2
2π

∫ ∞

−∞
Svv(ω)|H(ω)|2dω

≤

∫ ∞

−∞

∣∣∣F (ω)S−1/2
vv (ω)

∣∣∣2 dω ·
∫ ∞

−∞

∣∣∣S1/2
vv (ω)H(ω)ejωt0

∣∣∣2 dω
2π

∫ ∞

−∞
Svv(ω)|H(ω)|2dω

(Schwartz inequality)

=
1

2π

∫ ∞

−∞
|F (ω)|2 S−1

vv (ω)dω,

with equality holding if, and only if, k
(
F (ω)S

−1/2
vv (ω)

)∗
= S

1/2
vv (ω)H(ω)ejωt0 for

some complex number k, or equivalently H(ω) = kF ∗(ω)S−1
vv (ω)e

−jωt0.
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Lemma (Schwartz inequality)∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣
2

≤
∫ b

a

|f(x)|2dx
∫ b

a

|g(x)|2dx

with equality holding if, and only if, f(x) = kg∗(x) for some complex number k.

Proof: Define I(a, θ) �
∫ b

a

∣∣f(x)− aejθg∗(x)
∣∣2 dx for real a ≥ 0 and real θ.

Then,

I(a, θ) =

∫ b

a

∣∣f(x)− aejθg∗(x)
∣∣2 dx

=

∫ b

a

(f(x)− aejθg∗(x))(f∗(x)− ae−jθg(x))dx

=

∫ b

a

|f(x)|2dx︸ ︷︷ ︸
C

−2aRe

{
e−jθ

∫ b

a

f(x)g(x)dx

}
︸ ︷︷ ︸

B

+a2
∫ b

a

|g(x)|2dx︸ ︷︷ ︸
A

= A

(
a− B

A

)2

+
AC −B2

A
,
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where

A �
∫ b

a

|g(x)|2dx, B � Re

{
e−jθ

∫ b

a

f(x)g(x)dx

}
, andC �

∫ b

a

|f(x)|2dx.

Since I(a, θ) ≥ 0 for any a ≥ 0 and any θ, taking θ = ∠
∫ b

a f(x)g(x)dx such

that

B = Re

{
e−jθ

∫ b

a

f(x)g(x)dx

}

= Re

{
e−jθ

∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣ ej∠ ∫ ba f(x)g(x)dx

}
=

∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣ ≥ 0

yields that I(B/A, θ) = (AC −B2)/A ≥ 0. I.e.,∫ b

a

|g(x)|2dx
∫ b

a

|f(x)|2dx ≥
∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣
2

.

It remains to show the sufficiency and necessity of the equality condition.

If f(x) = kg∗(x), equality subsequently holds. On the contrary, if equal-

ity holds, then I(B/A,∠
∫ b

a f(x)g(x)dx) = 0 implies the desired k =

(B/A)ej∠
∫ b
a f(x)g(x)dx. �
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Special case on matched filter principle

• When v(t) is white, Svv(ω) = N0/2.

• H(ω) = kF ∗(ω)S−1
vv (ω)e

−jωt0 =
2k

N0
F ∗(ω)e−jωt0 and k = N0/2 implies

h(τ ) = f(t0 − τ ).

The system so obtained is called the matched filter.
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Definition (Causal filter) A causal filter is one whose output depends only on

past and present inputs.

Based on this definition, a causal linear time-invariant filter should satisfy h(τ ) = 0

for τ < 0.

•
h(τ ) =

1

2π

∫ ∞

−∞
H(ω)ejωτdω

=
1

2π

∫ ∞

−∞

F ∗(ω)
Svv(ω)

ejω(τ−t0)dω

= f(−s) ∗ q(s)|s=τ−t0
,

where q(s) = 1
2π

∫∞
−∞ S−1

vv (ω)e
jωsdω.

• To convolve f(−s) (even satisfying f(−s) �= 0 only for −t0 ≤ s ≤ 0) with

q(s) may “enlarge” the “non-zero range” of f(s), and hence, may make h(τ )

unrealistically noncausal.

• In addition, the resultant h(τ ) may not be practically realizable.

• This motivates the development of a suboptimal but directly realizable alter-

native filter.
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Best filter under tapped delay line structure

• Given that H(ω) is of the shape:

H(ω) = a0 + a1e
−jωT + · · · + ame

−jmωT ,

find the best (real) {a0, a1, . . . , am} such that γo is maximized.

Solution:

• yf (t0) =
∑m

i=0 aif(t0 − iT ) and yv(t0) =
∑m

i=0 aiv(t− iT ).

• To maximize

γo = |yf(t0)|2/E[y2
v(t0)] = c2/E[y2

v(t0)]

is equivalent to the minimization of E[y2
v(t0)] subject to yf (t0) = c

(followed by the maximization with respect to c).

• Using the Lagrange multiplier technique, we minimize

V � E[y2
v(t0)]− 2λ(yf(t0)− c)

=
m∑
n=0

m∑
i=0

anaiRvv(nT − iT )− 2λ

(
m∑
n=0

anf(t0 − nT )− c

)
.

Derive

∂V

∂an
=

m∑
i=0

aiRvv(nT − iT ) +
m∑
i=0

aiRvv(iT − nT )− 2λf(t0 − nT ) = 0.
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Under Rvv(τ ) = Rvv(−τ ), this leads to:

R�a = λ�f,

where

R =




Rvv(0) Rvv(−T ) Rvv(−2T ) · · · Rvv(−mT )

Rvv(T ) Rvv(0) Rvv(−T ) · · · Rvv(−(m− 1)T )

Rvv(2T ) Rvv(T ) Rvv(0) · · · Rvv(−(m− 2)T )
... ... ... . . . ...

Rvv(mT ) Rvv((m− 1)T ) Rvv((m− 2)T ) · · · Rvv(0)


 ,

�a =



a0
a1
a2
...

am


 and �f =




f(t0)

f(t0 − T )

f(t0 − 2T )
...

f(t0 −mT )


 .

As a result, �aopt = λR−1 �f , where λ is chosen such that �aTopt
�f = c, namely,

�aTopt
�f =
(
λR−1 �f

)T
�f = c =⇒ λ =

c

�fT (R−1)T �f
.
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With the availability of the result that

�aopt = c
R

−1 �f

�fT (R−1)T �f

we finally obtain:

γo =
y2f (t0)

E[y2
v(t0)]

=
c2

�aToptR�aopt
=

c2

c2
�fT (R−1)TRR−1 �f

(�fT (R−1)T �f)
2

= �fT (R−1)T �f ,

which is nothing to do with the choice of constant c. �

Problem 10-26(b) in the textbook indicates that

√
γo =

√
yf(t0)

λ
.

Since yf(t0) = c and λ = c/�fT (R−1)T �f ,

√
γo =

√
yf (t0)

λ
=

√
c

λ
=

√
�fT (R−1)T �f .
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�⊕ �

�
h(τ ) ������

� ��

channel receiver

f(t)

v(t)

x(t) y(t)

sample
at t = t0

y(t0)

• A central problem in communications is the estimation of a sample f(t0) at a

specific time of filter input of a deterministic signal f(t) in presence of noise.

• In absence of noise v(t),

y(t0) = yf(t0) �
∫ ∞

−∞
h(τ )f(t0 − τ )dτ.

• The noise however will change the errorfree system to:

y(t0) = yf (t0) + yv(t0),

where

yv(t0) �
∫ ∞

−∞
h(τ )v(t0 − τ )dτ.

Question: How to design the filter h(τ ) such that e � E{[y(t0) − f(t0)]
2} is

minimized, provided v(t) is (possibly time-varying) zero-mean white (i.e., Rvv(t +

τ, t) = q(t)δ(τ ))?
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Answer:

•
e = E{[y(t0)− f(t0)]

2}
= E

{
[yf(t0) + yv(t0)− f(t0)]

2
}

= (yf(t0)− f(t0))
2 + E[y2

v(t0)] (yv(t) zero mean)

=

(∫ ∞

−∞
h(τ )f(t0 − τ )dτ − f(t0)

)2

+

∫ ∞

−∞

∫ ∞

−∞
h(u)h(v)E[v(t0 − u)v(t0 − v)]dudv

=

(∫ ∞

−∞
h(τ )f(t0 − τ )dτ − f(t0)

)2

+

∫ ∞

−∞

∫ ∞

−∞
h(u)h(v)q(t0 − v)δ(v − u)dudv

=

(∫ ∞

−∞
h(τ )f(t0 − τ )dτ − f(t0)

)2

+

∫ ∞

−∞
h2(v)q(t0 − v)dv

= b2 + σ2,

where

bias b =

∫ ∞

−∞
h(τ )f(t0−τ )dτ−f(t0) and variance σ2 =

∫ ∞

−∞
h2(v)q(t0−v)dv.
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Assumptions

• h(t) = 0 for |t| > T , h(−t) = h(t), and

∫ T

−T

h(t)dt = 1,

• q(t0 − v) = N0/2. ⇒ σ2 =
N0

2

∫ T

−T

h2(v)dv.

• f(t0 − τ ) = f(t0)− τf ′(t0) +
τ 2

2
f ′′(t0).

b =

∫ ∞

−∞
h(τ )

[
f(t0)− τf ′(t0) +

τ 2

2
f ′′(t0)

]
dτ − f(t0)

=
���������������������(
f(t0)

∫ T

−T

h(τ )dτ − f(t0)

)
− f ′(t0)

����������∫ T

−T

τh(τ )dτ +
f ′′(t0)
2

∫ T

−T

τ 2h(τ )dτ

=
f ′′(t0)
2

∫ T

−T

τ 2h(τ )dτ.
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By Lagrange multiplier technique, we minimize e subject to∫ T

−T

h(τ )dτ = 1 and

∫ T

−T

τ 2h(τ )dτ = c,

and obtain:

∂e

∂h(v)
=

∂

[
[f ′′(t0)]2

4
c2 +

N0

2

∫ T

−T

h2(τ )dτ − λ1

(∫ T

−T

h(τ )dτ − 1

)
− λ2

(∫ T

−T

τ 2h(τ )dτ − c

)]
∂h(v)

= N0h(v)− λ1 − λ2v
2 = 0.

This implies hopt(v) =
1
N0

(
λ1 + λ2v

2
)
for |v| ≤ T.

Some people may be dubious about (or have troubles to understand) how we can take partial

derivative onto e with respect to h(v). Here, I provide an alternative approach to determine

the optimal hopt(v).

e =
[f ′′(t0)]2

4
c2 +

N0

2

∫ T

−T

h2(τ )dτ − λ1

(∫ T

−T

h(τ )dτ − 1

)
− λ2

(∫ T

−T

τ 2h(τ )dτ − c

)
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=

∫ T

−T

(
N0

2
h2(τ )− (λ1 + λ2τ

2
)
h(τ )

)
dτ +

[f ′′(t0)]2

4
c2 + λ1 + λ2c

=

∫ T

−T

(
N0

2

[
h(τ )− (λ1 + λ2τ

2)

N0

]2
− (λ1 + λ2τ )

2

2N0

)
dτ +

[f ′′(t0)]2

4
c2 + λ1 + λ2c

Apparently, choosing h(τ ) other than (λ1+λ2τ
2)

N0
can only grow e. Thus, hopt(τ ) =

(λ1+λ2τ
2)

N0
.

Solving∫ T

−T

hopt(τ )dτ =
2T

N0
λ1+

2T 3

3N0
λ2 = 1 and

∫ T

−T

τ 2hopt(τ )dτ =
2T 3

3N0
λ1+

2T 5

5N0
λ2 = c

yields

λ1 = −15N0

8T 3

(
c− 3

5
T 2

)
and λ2 =

45N0

8T 5

(
c− 1

3
T 2

)
,

and

hopt(v) =
15

8T

[(
3
c

T 2
− 1
) v2

T 2
−
(

c

T 2
− 3

5

)]
.
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The textbook also requires that h(t) > 0 for |t| ≤ T .

By examining hopt(0) = 15
8T

(
3
5
− c

T 2

)
> 0 and hopt(T ) = 15

4T

(
c
T 2 − 1

5

)
> 0, this

requirement is equivalent to
3

5
>

c

T 2
>

1

5
.

By letting c̄ = c/T 2 and τ̄ = τ/T , we derive:

e =
[f ′′(t0)]2

4
c2 +

N0

2

∫ T

−T

h2(τ )dτ

=
[f ′′(t0)]2T 4

4
c̄2 +

N0T

2

∫ 1

−1

h2(T τ̄)dτ̄

=
[f ′′(t0)]2T 4

4
c̄2 +

225N0

128T

∫ 1

−1

[(3c̄− 1)τ̄ 2 − (c̄− 3/5)]2dτ̄

=
[f ′′(t0)]2T 4

4
c̄2 +

3N0

16T
(3− 10c̄ + 15c̄2)

=

(
[f ′′(t0)]2T 4

4
+

45N0

16T

)
c̄2 − 15N0

8T
c̄ +

9N0

16T
.
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Consequently,

c̄min =

15N0

8T

2

(
[f ′′(t0)]2T 4

4
+

45N0

16T

) =
15/4

[f ′′(t0)]2T 5/N0 + 45/4

and

emin =
9N0

16T
· [f ′′(t0)]2T 5/N0 + 5

[f ′′(t0)]2T 5/N0 + 45/4
.

Finally,

hopt(v) =
15

8T

[
(3c̄min − 1)

v2

T 2
−
(
c̄min − 3

5

)]
=

15

8T

[
− A

(A + 45/4)

v2

T 2
+

3(A + 5)

5(A + 45/4)

]
=

3A

8T (A + 45/4)

(
−5

v2

T 2
+ 3 +

15

A

)
,

where A = [f ′′(t0)]2T 5/N0. �
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This filter does not satisfy h(t) > 0 for |t| ≤ T since it may happen that −2 +

15/A < 0. An advantage of this design is

emin =
9N0

16T
· A + 5

A + 45/4
= O(1/T ) → 0 as T → ∞.

This is different from the design from textbook (satisfying h(t) > 0 for |t| ≤ T )

in which there exists 0 < Tmin < ∞ that minimizes e. Such behavior can also be

observed in the subsequent moving average estimator.
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Let h(τ ) = 1/(2T ) for |τ | ≤ T , and zero, otherwise.

Then,

e = b2 + σ2

=
[f ′′(t0]2

4

(∫ T

−T

τ 2h(τ )dτ

)2

+
N0

2

∫ T

−T

h2(τ )dτ

=
[f ′′(t0]2

4

(
1

2T

∫ T

−T

τ 2dτ

)2

+
N0

2

∫ T

−T

1

4T 2
dτ

=
[f ′′(t0]2T 4

36
+

N0

4T
,

and

∂e

∂T
=

[f ′′(t0)]2

9
T 3 − N0

4
T−2 = 0

implies that

Tmae
min =

(
9N0

4[f ′′(t0)]2

)1/5

and emae
min =

[f ′′(t0]2

36

9N0

4[f ′′(t0]2Tmae
min

+
N0

4Tmae
min

=
5N0

16Tmae
min

.
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Let h(τ ) =
3

4T

(
1− τ 2

T 2

)
for |τ | ≤ T , and zero, otherwise.

Then,

e = b2 + σ2

=
[f ′′(t0]2

4

(∫ T

−T

τ 2h(τ )dτ

)2

+
N0

2

∫ T

−T

h2(τ )dτ

=
[f ′′(t0]2T 4

100
+

3N0

10T
,

and

∂e

∂T
=

[f ′′(t0)]2

25
T 3 − 3N0

10
T−2 = 0

implies that

T pwe
min =

(
15N0

2[f ′′(t0)]2

)1/5

and epwemin =
[f ′′(t0]2

100

15N0

2[f ′′(t0]2T
pwe
min

+
3N0

10T pwe
min

=
3N0

8T pwe
min

.
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For |τ | ≤ 1, define

w(τ ) � T · h(Tτ ) =




15A

8(A+ 45/4)

(
3

5
+

3

A
− τ 2

)
, optimal

15

8

(
3

5
− τ 2

)
, near-optimal

1

2
, moving average

3

4
(1− τ 2), parabolic window

and

emin =




9N0

16T

A + 5

A + 45/4
, optimal

9N0

16T
, near-optimal

5 · 41/5[f ′′(t0)]2/5N
4/5
0

16 · 91/5 ≈ 0.266[f ′′(t0)]2/5N
4/5
0 , moving average

3 · 21/5[f ′′(t0)]2/5N
4/5
0

8 · 151/5 ≈ 0.251[f ′′(t0)]2/5N
4/5
0 , parabolic window

where A = [f ′′(t0)]2T 5/N0.
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hopt(v) =
15

8T���������A

(A + 45/4)

(
3

5
− v2

T 2
+

�
�
�
�3

A

)
,

where A = [f ′′(t0)]2T 5/N0.

Let h(τ ) =
15

8T

(
3

5
− τ 2

T 2

)
for |τ | ≤ T , and zero, otherwise.

Then,

e = b2 + σ2

=
[f ′′(t0]2

4

(∫ T

−T

τ 2h(τ )dτ

)2

+
N0

2

∫ T

−T

h2(τ )dτ

=
[f ′′(t0]2T 4

4

(∫ 1

−1

τ 2w(τ )dτ

)2

+
N0

2T

∫ 1

−1

w2(τ )dτ

= 0 +
9N0

16T
.

This is an unbiased estimator with asymptotic zero variance!

The end of Section 10-6 Deterministic Signals in Noise
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Lemma (Poisson sum formula) For any positive c,

∞∑
n=−∞

f(x + nc) =
1

c

∞∑
n=−∞

F (nu0)e
jnu0x

where F (u) =
∫∞
−∞ f(x)e−juxdx is the Fourier transform of f(x), and u0 = 2π/c.

On Slide 9-131∼9-132, we respectively obtain

Sxx[ω] =
∞∑

n=−∞
Rxx(n)e

jωn and Sxx[ω] =
∞∑

n=−∞
Sxx(ω + 2nπ).

Hence,
∞∑

n=−∞
Sxx (ω + 2nπ) =

1

2π

∞∑
n=−∞

2πRxx(n)e
jnω,

where Rxx(τ ) =
1

2π

∫ ∞

−∞
Sxx(ω)e

jωτdω.
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Let f(ω) = Sxx(ω) be real and symmetric,

which implies Rxx(τ ) is also real and symmetric.

Then,

F (u) =

∫ ∞

−∞
f(ω)e−juωdω =

∫ ∞

−∞
Sxx(ω)e

jω(−u)dω = 2πRxx(−u) = 2πRxx(u),

and (with c = 2π)

∞∑
n=−∞

f (x + n(2π)) =
1

2π

∞∑
n=−∞

F

(
2π

2π
n

)
ejn(2π/(2π))x.

Poisson sum formula is an extension of this result by replacing 2π by c, which leads

to: ∞∑
n=−∞

f(x + nc) =
1

c

∞∑
n=−∞

F

(
2π

c
n

)
ejn(2π/c)x.

Operational meaning:

The Inverse Fourier transform of samples causes aliasing.



Appendix 10A The Poisson Sum Formula 10-86

Fourier series: For a periodic function g with period T0,

g(x) =
∞∑

m=−∞
cme

jmω0x

where ω0 = 2π/T0 and cm = 1
T0

∫ T0/2

−T0/2
g(x)e−jmω0xdx.

Proof of Poisson Sum Formula: Fourier series said that for T0 = c, ω0 = u0,

and g(x) =
∑∞

n=−∞ δ(x + nc),

cm =
1

c

∫ c/2

−c/2

∞∑
n=−∞

δ(x + nc)e−jmu0xdx =
1

c

and

g(x) =

∞∑
n=−∞

(
1

c

)
ejnu0x.
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Hence,

∞∑
n=−∞

f(x + nc) = f(x) ∗
( ∞∑

n=−∞
δ(x + nc)

)
= f(x) ∗

(
1

c

∞∑
n=−∞

ejnu0x

)

=
1

c

∞∑
n=−∞

(
f(x) ∗ ejnu0x)

=
1

c

∞∑
n=−∞

(∫ ∞

−∞
f(α)ejnu0(x−α)dα

)

=
1

c

∞∑
n=−∞

(∫ ∞

−∞
f(α)e−jnu0αdα

)
ejnu0x

=
1

c

∞∑
n=−∞

F (nu0)e
jnu0x.

�


