
National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

1/7

UEE1303(1070) S12: Object-Oriented Programming

Advanced Topics of Class

What you will learn from Lab 6

In this laboratory, you will learn the advance topics of object-oriented programming using class.

TASK 6-1 STATIC MEMBER

� static member can be taken as a global member for this class and all objects own the same

copy (or value) of the member.

// lab6-1.cpp

#include <iostream>

class Point2D

{

private:

 int x;

 int y;

 static const double limit = 10.0;

 static double value; // indicates that all object’s value are the same

public:

 Point2D();

 void assignPoint2D(int x, int y);

 void displayPoint2D();

 static void setValue(double v);

 // only static member function can access static member

};

Point2D::Point2D()

{

 x = 0;

 y = 0;

}

void Point2D::assignPoint2D(int n1, int n2)

{

 x = n1;

 y = n2;

}

void Point2D::displayPoint2D()

{

 std::cout << "(" << x << "," << y << ") = ";

 std::cout << value << std::endl;

}

National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

2/7

void Point2D::setValue(double v)

{

 if (v < limit)

 value = v;

 else

 value = limit;

}

double Point2D::value = 0.0; // It needs to initialize static member

int main()

{

 Point2D ptArray[10];

 ptArray[0].setValue(1.1);

// modify the static member by static member fuction

 for (int i=0;i<10;i++)

 {

 ptArray[i].assignPoint2D(i,i+2);

 ptArray[i].displayPoint2D();

 }

 return 0;

}

� Remark the line double Point2D::value = 0.0; and compiler the program again. Try to

explain the error message.

� Remove static in static const double limit = 10.0; and compiler the program again.

Remove const in static const double limit = 10.0; and compiler the program again.

� Try to modify ptArray[0].setValue(1.1); as ptArray[0].setValue(30.1); and

execute the program again.

TASK 6-2 CONST AND MUTABLE MEMBERS

� const member functions are not supposed to modify objects of a class. However, if a data

member is declared to be mutable, then it can be changed by any member function even in a

const member function. Please identify which member function should be const to make the

program work successfully.

// lab6-2-1.cpp

/* class Point2D declares and defines in lab6-1*/

int main()

{

 const Point2D pt1;

 Point2D pt2;

National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

3/7

 pt1.displayPoint2D();

 pt2.displayPoint2D();

 return 0;

}

// lab6-2-2.cpp

/* class Point2D declares and defines in lab6-2-1*/

/* add mutable (int) member named color to class Point2D */

void Point2D::displayPoint2D() const

{

 x = 5; y = 4;

 color = 10;

 std::cout << "(" << x << "," << y << ") = ";

 std::cout << value << std::endl;

}

int main()

{

 const Point2D pt1;

 Point2D pt2;

 pt1.displayPoint2D();

 pt2.displayPoint2D();

 return 0;

}

� Please identify the difference between mutable data member and non-mutable data

member.

TASK 6-3 THIS POINTER

� this pointer is an implicit private member to store the address of the object for a class.

// original version in lab5-2.cpp

PointND::PointND()

{

 value = 0.0;

 coord = new int [num];

 for (int i=0;i<num;i++) coord[i] = 0;

}

// modify version in lab6-3-1.cpp

PointND::PointND()

{

National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

4/7

 this->value = 0.0;

 this->coord = new int [num];

 for (int i=0;i<num;i++) this->coord[i] = 0;

}

� this pointer includes the address of the object, so it can be used to compare the addresses

between different objects.

// lab6-3-2.cpp

#include <iostream>

/* class PointND declares and defines in lab 5-2 with copy constructor*/

/* add declaration of member function: copyPoint2D() to class PointND */

void PointND::copyPointND(const PointND &pt)

{

 if (this != &pt)

 {

 value = pt.value;

 coord = new int [num];

 for (int i=0;i<num;i++) coord[i] = pt.coord[i];

 }

}

int main()

{

 int *vec = new int [num];

 for (int i=0;i<num;i++) vec[i] = i;

 PointND pt1;

 pt1.assignValue(4.3);

 pt1.assignCoord(vec,num);

 pt1.displayPointND();

 PointND pt2;

 pt2.copyPointND(pt1);

 pt2.displayPointND();

 PointND pt3;

 pt3.copyPointND(pt3);

 pt3.displayPointND();

 delete []vec;

 return 0;

}

National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

5/7

TASK6-4 NESTED CLASS

� A class can be defined in another class, so called nested class. Nested class can be taken as a

(public, private, or protected) member in the enclosing class. The name of nested class

can be resolved in enclosing class scope, but it cannot be access in other class scope or other

namespace.

// lab6-4.cpp

#include <iostream>

#include <assert.h>

class Vec

{

public:

 Vec(){len =0;}

 Vec(int n);

 ~Vec();

 void setValue(int idx, int v);

 void printVec() const;

private:

 class Items // nested class Items for Vec

 { // all members in Items are private

 friend class Vec; // make Vec can access member in Items

 Items(){value = 0;}

 Items(int v){value = v;}

 int value;

 };

 int len;

 Items *vec;

};

Vec::Vec(int n)

{

 len = n;

 vec = new Items [len];

}

Vec::~Vec()

{

 if (len > 0)

 delete []vec;

}

void Vec::setValue(int idx, int v)

{

 assert(idx < len);

 vec[idx].value = v;

National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

6/7

}

void Vec::printVec() const

{

 for (int i=0;i<len;i++)

 std::cout << vec[i].value << " ";

 std::cout << std::endl;

}

int main()

{

 Vec vector(5);

 vector.printVec();

 for (int i=0;i<5;i++)

 vector.setValue(i,i);

 vector.printVec();

 Items n;

 return 0;

}

� There is a compiler error in this example because the nested class cannot be used in global

scope. Try to modify the program and make Items be accessed in global scope.

TASK 6-5 EXERCISE
1. * QUADRANGLE

� Define a class for a quadrangle given four vertices (define a point called vertices), which

is represented by an object of a nested class for two-dimensional points. Using member

initializer lists, define two constructors for it, one with four points as arguments for the

four vertices and another with two points (lower-left corner and upper-right corner) to

represent a rectangle. A data member decides if the quadrangle is rectangle or not and a

static data member defines the origin as (0,0). Also define a destructor to destroy the

object. The member functions move() and draw() moves a quadrangle to a new location,

and print out the coordinates of the quadrangle and the distance from the origin (use the

lower-left corner to calculate it), respectively. If the quadrangle is also a rectangle, print

out the area of it. Write a program include several quadrangle object to test all of your

member functions work properly.

� The main function is defined as follows,

// Ex6-1.cpp

int main()

{

National Chiao Tung University Laboratory Manual 06
Department of Electrical and Computer Engineering April 9, 2012
Computer Intelligence on Automation(C.I.A.) Lab Prof. Hung-Pin(Charles) Wen

7/7

quadrangle q1(quadrangle::vertex(0,0),

 quadrangle::vertex(3,2),

 quadrangle::vertex(10,7),

 quadrangle::vertex(8,10));

 quadrangle q2(quadrangle::vertex(3,6), quadrangle::vertex(10,9));

 cout << "q1 information" << endl;

 q1.draw();

 cout << endl;

 cout << "q2 information" << endl;

 q2.draw();

 cout << endl;

 cout << "q1 move to (5,5) " << endl;

 q1.move(quadrangle::vertex(5,5));

 cout << "q1 information" << endl;

 q1.draw();

 cout << endl;

 quadrangle::origin = quadrangle::vertex(-5,3);

 cout << "q2 move to (-1,2) " << endl;

 q2.move(quadrangle::vertex(-1,2));

 cout << "q2 information" << endl;

 q2.draw();

 cout << endl;

 return 0;

} // end main

� The sample output is

q1 information

v1: (0,0) v2: (3,2) v3: (10,7) v4: (8,10)

q2 information

v1: (3,6) v2: (10,6) v3: (10,9) v4: (3,9) area: 21

q1 move to (5,5)

Distance: 7.07107

q1 information

v1: (5,5) v2: (8,7) v3: (15,12) v4: (13,15)

q2 move to (-1,2)

Distance: 4.12311

q2 information

v1: (-1,2) v2: (6,2) v3: (6,5) v4: (-1,5) area: 21

