

高微第十四週作業

- 1. Use Lagrange multipliers method to show the followings :
 - (a) Let $x_1, ..., x_n$ be nonnegative. Show that

$$\left(x_1\cdots x_n\right)^{1/n}\leq \frac{x_1+\cdots+x_n}{n}.$$

Hint : Let $x_1 + \dots + x_n = c$, and find the maximum value of $(x_1 \cdots x_n)^{1/n}$.

(b) Let *A* be a $n \times n$ symmetric matrix. In linear algebra, we have known that there are real eigenvalues $\lambda_1, ..., \lambda_n$ with $\lambda_1 \leq \cdots \leq \lambda_n$. Show that

$$\min\left\{\left\langle Ax, x\right\rangle : \|x\| = 1\right\} = \lambda_1, \text{ and } \max\left\{\left\langle Ax, x\right\rangle : \|x\| = 1\right\} = \lambda_n.$$

(c) For numbers a,b,c, find the minimum of $\{ax+by+cz | x^2 + y^2 + z^2 \le 1\}$. Give a geometric interpretation of the answer by viewing ax+by+cz as the inner product of (x, y, z) and (a, b, c).

- 2. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = xy for all (x, y) in \mathbb{R}^2 .
 - (a) Show that for all the critical points (x, y) of f, $\exists \mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ at which $H\mathbf{u} \cdot \mathbf{u} > 0$ and $H\mathbf{v} \cdot \mathbf{v} < 0$, where $H = (D^2 f)(x, y)$.
 - (b) Use (a) to explain why the function $f: \mathbb{R}^2 \to \mathbb{R}$ has no local extreme points.
- 3. Consider the problem of finding the extreme value of f(x, y) = x on the curve $g(x, y) = y^2 + x^5 + x^3 = 0$.
 - (a) Try using Lagrange multipliers Method to solve the problem.
 - (b) Show that the maximum value is f(0,0) = 0 but $\nabla f(0,0) = \lambda \nabla g(0,0)$ is not satisfied for any value of λ .
 - (c) Explain why Lagrange multipliers Method fails to find the maximum value in this case.
 - (d) Does Lagrange multipliers Method succeed to answer the minimum value problem ?