

## 高微第十週作業

1. Let  $E \subseteq \mathbb{R}^n$  be an open convex set and suppose that  $f: E \to \mathbb{R}$  is differentiable. Prove that for all  $\mathbf{a}, \mathbf{b} \in E$ , there exists such that  $0 < \theta < 1$  such that

$$f(\mathbf{b}) - f(\mathbf{a}) = \nabla f((1-\theta)\mathbf{a} + \theta \mathbf{b}) \cdot (\mathbf{b} - \mathbf{a})$$
.

- 2. Let  $E \subseteq R^2$  be an open convex set and  $f: E \to R$ . Suppose that  $\frac{\partial f}{\partial x}(x, y) = 0$  for all  $(x, y) \in E$ , prove that  $f(x_1, y) = f(x_2, y)$  for all  $(x_1, y), (x_2, y) \in E$ .
- 3. Let

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{, if } (x,y) \neq (0,0) \\ 0 & \text{, if } (x,y) = (0,0) \end{cases}$$

Prove that the  $2^{\text{nd}}$ -order partial derivatives of f exist for all  $(x, y) \in \mathbb{R}^2$ , but  $\partial_y \partial_x f(0, 0) \neq \partial_x \partial_y f(0, 0)$ .

4. Let  $E \subseteq \mathbb{R}^n$  be an open set and suppose  $f: E \to \mathbb{R}$  has continuous  $2^{nd}$  -order derivatives. Suppose that  $\{\mathbf{x} \mid |\mathbf{x} - \mathbf{a}| < r\} \subseteq E$ , prove that

$$\varphi''(t) = (f''(\mathbf{x} + t\mathbf{h})\mathbf{h}) \cdot \mathbf{h}$$

**Definition** Let  $A \in L(\mathbb{R}^n)$  is said to be positive definite provided that

$$A\mathbf{u} \cdot \mathbf{u} > 0$$
 for all  $\mathbf{0} \neq \mathbf{u} \in \mathbb{R}^n$ 

and is said to be negative definite provided that

$$A\mathbf{u} \cdot \mathbf{u} < 0$$
 for all  $\mathbf{0} \neq \mathbf{u} \in \mathbb{R}^n$ .

- 5. Let  $A \in L(R^2)$  and  $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ .
  - (a) Prove that A is positive definite if and only if a > 0 and  $ac b^2 > 0$ .
  - (b) Prove that if  $ac-b^2 < 0$  then there exist  $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^2$  such that  $A\mathbf{u}_1 \cdot \mathbf{u}_1 > 0$  and  $A\mathbf{u}_2 \cdot \mathbf{u}_2 < 0$ .