

高微第六週作業

Read : Rudin p178 ~p184 (The Exponential Function and Logarithmic Functions & The Trignometric Functions)

Rudin: p.196 # 1, 2, 3.

Extra problems:

- 1. Let $\{a_{i\,j}\}$ be a double sequence of real numbers. Show that if both $\lim_{i,j\to\infty}a_{i\,j}$ and $\lim_{j\to\infty}\lim_{i\to\infty}a_{i\,j}$ exist, then $\lim_{i,j\to\infty}a_{i\,j}=\lim_{j\to\infty}\lim_{i\to\infty}a_{i\,j}$.
- 2. Let $a_{ij} = \frac{i \ j}{i^2 + j^2}$ for all $i, j \in N$. Prove that $\lim_{j \to \infty} \lim_{i \to \infty} a_{ij}$, $\lim_{i \to \infty} \lim_{j \to \infty} a_{ij}$ exist and $\lim_{j \to \infty} \lim_{i \to \infty} a_{ij} = \lim_{i \to \infty} \lim_{j \to \infty} a_{ij}$, but $\lim_{i,j \to \infty} a_{ij}$ does not exist.
- 3. (a) Prove that $\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
 - (b) Prove that $\ln 2 = \sum_{n=1}^{\infty} \frac{1}{n2^n}$. (Hint: $\ln 2 = -\ln(\frac{1}{2})$.)
 - (c) When approximating $\ln 2$ with the series in (a) and (b), how many terms do we need to add, respectively, so that the error is to within 10^{-3} .