高微第四週作業

Rudin : p.45 # 25.

Extra problems :

1. Let
$$f_n(x) = \frac{x}{nx+1}, \forall x \in [0,1], \forall n$$
. Does $\{f_n\}$ converge uniformly on $[0,1]$?

2. Let
$$f_n(x) = \frac{x}{1+nx^2}, \forall x \in [-1,1], \forall n$$
.

(a) Find the limit function f of the sequence $\{f_n\}$ and the limit function g

of the sequence
$$\{f_n'\}$$
.

(b) Does
$$f'(x) = g(x), \forall x \in [-1,1]$$
?

(c) Does $\{f_n\}$ converge uniformly to f on [-1,1]?

(d) Does
$$\{f'_n\}$$
 converge uniformly to g on $[-1,1]$?

3. (a) Does
$$\sum_{n=1}^{\infty} x^n (1-x)$$
 converge uniformly on [0,1]?
(b) Does $\sum_{n=1}^{\infty} (-1)^n x^n (1-x)$ converge uniformly on [0,1]?

(c) Let $\{f_n\}$ be a sequence of functions on a metric space X. Suppose that

$$\sum_{n=1}^{\infty} f_n \quad \text{converges uniformly and} \quad \sum_{n=1}^{\infty} |f_n| \quad \text{converges pointwise on} \quad X \text{, does}$$
$$\sum_{n=1}^{\infty} |f_n| \quad \text{necessarily converge uniformly on} \quad X \quad ?$$