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Rudin : p.138  # 1, 2, 8. 

 

Extra problems : 

1. Suppose that :f R R→  and :g R R→  are differentiable, and that  
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( ) ( ) 1,   f x g x x R+ = ∀ ∈ . 

 

2. Let n N∈  and : ( , )f a b R→ . Suppose that ( 1)nf +  exists and is continuous on 

( , )a b  and suppose that 
( )

0( ) 0
k

f x =  where 0 ( , )x a b∈ ,  1 k n∀ ≤ ≤ . Prove that 

(a) If 1n +  is even and 
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n

f x
+

> , then 0( )f x  is a local minimum. 

(b) If 1n +  is even and 
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< , then 0( )f x  is a local maximum. 

(c) If 1n +  is odd and 
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n

f x
+

≠ , then 0( )f x  is neither a local minimum 

nor a local maximum. 

 

3.  Let 
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(a) Is 1( )f α∈R  on [0, 2] ? 

(b) Is 2( )f α∈R  on [0, 2] ? 

 


