

高微第十四週作業

<u>Rudin</u>: p.138 # 1, 2, 8.

Extra problems :

1. Suppose that
$$f: R \to R$$
 and $g: R \to R$ are differentiable, and that

$$\begin{cases} f'(x) = g(x) \text{ and } g'(x) = -f(x) \text{ for all } x \in R \\ f(0) = 0 \text{ and } g(0) = 1 \end{cases}$$

Prove that $[f(x)]^2 + [g(x)]^2 = 1, \forall x \in \mathbb{R}.$

- 2. Let $n \in N$ and $f:(a,b) \to R$. Suppose that $f^{(n+1)}$ exists and is continuous on (*a*,*b*) and suppose that $f^{(k)}(x_0) = 0$ where $x_0 \in (a,b), \forall 1 \le k \le n$. Prove that
 - (a) If n+1 is even and $f^{(n+1)}(x_0) > 0$, then $f(x_0)$ is a local minimum.
 - (b) If n+1 is even and $f^{(n+1)}(x_0) < 0$, then $f(x_0)$ is a local maximum.
 - (c) If n+1 is odd and $f^{(n+1)}(x_0) \neq 0$, then $f(x_0)$ is neither a local minimum nor a local maximum.

3. Let
$$f(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1, \\ 2, & \text{if } 1 < x \le 2. \end{cases}$$

 $\alpha_1(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1, \\ 2, & \text{if } 1 < x \le 2. \end{cases}$ and $\alpha_2(x) = \begin{cases} 1, & \text{if } 0 \le x < 1, \\ 2, & \text{if } 1 \le x \le 2. \end{cases}$

(a) Is $f \in \mathscr{R}(\alpha_1)$ on [0,2]? (b) Is $f \in \mathscr{R}(\alpha_2)$ on [0,2]?

