

高微第十三週作業

<u>Rudin</u> : p.115 # 9, 11, 13. (Optional) p.118 # 25, 27.

Extra problems

1. Let $n \in N$ and $p: R \to R$ be a polynomial of degree less than or equal to n. Suppose that at some point $a \in R$,

$$p(a) = p'(a) = \dots = p^{(n)}(a) = 0$$

Prove that $p(x) = 0, \forall x \in R$.

2. Suppose that the function $f:(-1,1) \to R$ has *n* derivatives (that is $f^{(n)}(x)$ exists $\forall x \in (-1,1)$). Assume that there is a positive number *M* such that

$$|f(x)| \le M |x|^n, \quad \forall x \in (-1,1).$$

Prove that $f(0) = f'(0) = ... = f^{(n-1)}(0) = 0$

3. Suppose that the function $f:(-1,1) \to R$ has *n* derivatives, and $f^{(n)}:(-1,1) \to R$ is bounded. Assume also that $f(0) = f'(0) = ... = f^{(n-1)}(0) = 0$. Prove that

$$\left|f(x)\right| \le M \left|x\right|^{n}, \quad \forall x \in (-1,1).$$

