

高微第十週作業

<u>Rudin</u>: p.98 # 1, 2, 3, 4.

Extra problems

1. Let X and Y be metric spaces; suppose $E \subset X$, $f : E \to Y$, and p is a limit point of

E.

(a). Prove that If f has a limit at p, then this limit is unique.

(b). Prove that if $\lim_{x \to p} f(x)$ exists, then $\forall \varepsilon > 0, \exists \delta > 0$ such that

 $d_{Y}(f(p_1), f(p_2)) < \mathcal{E},$

whenever $p_1, p_2 \in E$ and $0 < d_x(p_1, p) < \delta, 0 < d_x(p_2, p) < \delta$.

- 2. Use 1 (b) to prove that $\lim_{x\to 0} \frac{x}{|x|}$ does not exist.
- 3. Prove theorem 4.4 by the definition of limit.

