

高微第六週作業

<u>Rudin</u> : p.43 # 20, 21; p.44 # 22; p.78 # 1, 2. Optional : p.44 # 23, 24, 26, 30.

Extra problems :

1. Let $\mathbf{x}_n \in \mathbb{R}^k$, $\forall n \in \mathbb{N}$ and let $S = {\mathbf{x}_n | n \in \mathbb{N}}$. Suppose that

 $d(\mathbf{x}_n, \mathbf{x}) = |\mathbf{x} - \mathbf{x}_n| < \frac{1}{n}$, where $\mathbf{x} \in \mathbb{R}^k$, show that \mathbf{x} is the only limit point of S. Is this true in general metric space ?

- 2. Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Show that $y \in \overline{E}$.
- 3. Let $E \subseteq \mathbb{R}^k$. Show that if *E* is bounded, then \overline{E} is also bounded. Is this true in general metric space ?
- 4. Let X be a metric space and $\{x_n\}$ be a sequence in X.
 - (a) Show that $\{x_n\}$ converges if and only if $\{x_{2n}\}$ and $\{x_{2n-1}\}$ both converge to the same limit.
 - (b) Show that $\{x_n\}$ converges if and only if the subsequences $\{x_{2n}\}$, $\{x_{2n-1}\}$, and $\{x_{3n}\}$ all converge.
- 5. Prove Theorem 3.3 (a), (b) and (c).

