

高微第二週作業

Rudin: p.22 # 6, 8; p.43 # 2, 4

Extra problems:

- 1. Prove that there exists a unique positive real number x such that $x^3 = 2$.
- 2. Prove Proposition 1.14, 1.15, 1.16, and 1.18.
- 3. Consider $A = \{ p \in Q \mid 0 as a subset in the ordered set <math>R$. Find $\sup A$, if exists.
- 4. Find $\bigcup_{n=1}^{\infty} \left[0, \frac{1}{n}\right)$ and $\bigcap_{n=1}^{\infty} \left[0, \frac{1}{n}\right)$.
- 5. Let A and B be finite sets, prove that $A \cup B$ is finite.
- 6. Let A and B be finite sets, prove that $A \times B$ is also a finite set.

