Preface and Introduction

Po-Ning Chen

Institute of Communications Engineering

National Chiao-Tung University

Hsin Chu, Taiwan 30010

Introduction

- This book will cover some advanced topics in information theory by primarily focusing on systems with arbitrary statistical memory.
- The mathematical background on which these topics are based can be found in Appendices A and B in [2].
 - [2] F. Alajaji and P.-N. Chen. An Introduction to Single-User Information Theory, Springer, July 2018.

Notations

- For a discrete random variable X, we use P_X to denote its distribution.
- The probability of the elementary event [X = x] is denoted by

either
$$\Pr[X = x]$$
 or $P_X(x)$.

• Similarly, the probability of a set characterized by an inequality, such as f(x) < a, is expressed by

either
$$P_X \{ x \in \mathcal{X} : f(x) < a \}$$
 or $\Pr[f(X) < a]$.

- In the second expression, f(X) is a new random variable defined through X and a function $f(\cdot)$.
- Obviously, the above expressions can be applied to any legitimate function $f(\cdot)$ defined over \mathcal{X} , including any probability function $P_{\hat{X}}(\cdot)$ (or $\log P_{\hat{X}}(x)$) of a random variable \hat{X} .
- Therefore, the next two expressions denote the probability of $f(x) = P_{\hat{X}}(x) < a$ evaluated under distribution P_X :

$$P_X \{ x \in \mathcal{X} : f(x) < a \} = P_X \{ x \in \mathcal{X} : P_{\hat{X}}(x) < a \}$$

and

$$\Pr\left[f(X) < a\right] = \Pr\left[P_{\hat{X}}(X) < a\right].$$

Notations

• As a result, if we write

$$P_{X,Y}\left\{ (x,y) \in \mathcal{X} \times \mathcal{Y} : \log \frac{P_{\hat{X},\hat{Y}}(x,y)}{P_{\hat{X}}(x)P_{\hat{Y}}(y)} < a \right\}$$
$$= \Pr\left[\log \frac{P_{\hat{X},\hat{Y}}(X,Y)}{P_{\hat{X}}(X)P_{\hat{Y}}(Y)} < a\right],$$

we mean that we have defined a new function

$$f(x,y) := \log \frac{P_{\hat{X},\hat{Y}}(x,y)}{P_{\hat{X}}(x)P_{\hat{Y}}(y)}$$

in terms of the joint distribution $P_{\hat{X},\hat{Y}}$ and its two marginal distributions, and that we are interested in the probability of f(X,Y) < a where X and Y have joint distribution $P_{X,Y}$.