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1.1: Overview I: i

• Information theory: A mathematical framework for the theory of communi-

cation by establishing the fundamental limits on the performance of various

communication systems.

• Claude Elwood Shannon (30 April 1916 – 24 February 2001)



1.1: Overview I: ii

• It is possible to send information-bearing signals at a fixed positive rate R

through a noisy communication channel with an arbitrarily small probability

of error as long as the transmission rate R is below a certain fixed quantity

C that depends on the channel statistical characteristics; he “baptized” this

quantity with the name of channel capacity.



1.1: Overview I: iii

• He further proclaimed that random sources can be compressed distortion-free

at a minimal rate given by the source’s intrinsic amount of information, which

he called source entropy.

...



1.1: Overview I: iv

• Shannon went on proving that

...



1.1: Overview I: v

• Information theorists gradually expanded their interests beyond communica-

tion theory, and investigated fundamental questions in several other related

fields. Among them we cite:

– statistical physics (thermodynamics, quantum information theory);

– computing and information sciences (distributed processing, compression,

algorithmic complexity, resolvability);

– probability theory (large deviations, limit theorems, Markov decision pro-

cesses);

– statistics (hypothesis testing, multi-user detection, Fisher information, es-

timation);

– stochastic control (control under communication constraints, stochastic op-

timization);

– economics (game theory, team decision theory, gambling theory, investment

theory);

– mathematical biology (biological information theory, bioinformatics);

– information hiding, data security and privacy;

– data networks (network epidemics, self-similarity, traffic regulation theory);

– machine learning (deep neural networks, data analytics).
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Instructor information :
Po-Ning Chen

Engineering Building 4, Room 831

Phone : 03-5731670

email: poning@faculty.nctu.edu.tw

Textbook : US$1=NT$30

Fady Alajaji and Po-Ning Chen, An Introduction to Single-User Information

Theory, Springer Singapore, July 6, 2018.

(NT$1900×0.9/333 pages≈NT$5.14/page)

Additionally, a set of copyrighted class notes for advanced topics will be pro-

vided. You can obtain the latest version of the lecture notes from

http://shannon.cm.nctu.edu.tw/it18.htm
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Lecture Schedule :

• The first lecture will be given on February 22.

• There will be no lecture on March 1, April 5 and June 7 because these

are holidays.

– Since we have lost three 3-hour lectures due to holidays, we shall shorten

our second 20-minute break by 10 minutes in order to compensate for

the lost of coverage.

• Midterm will be held on April 26. The coverage of midterm will be

decided later.

• The last lecture will be given on June 14, 2019.

• Final exam will be held on June 21, 2019.



Chapter 1

Introduction

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.



Introduction (Not in text) I: 1-1

• What is information?

– Uncertainty

∗ Information is a message that is previously uncertain to receivers.

• Representation of Information

– After obtaining the information, one may wish to store it or convey it; this

raises the question that:

how to represent information for ease of storing it

or for ease of conveying it?



Representation of information I: 1-2

• How to represent information for ease of storing it or conveying it?

An answer from an engineer:

– Reality:

∗ 26 English letters and their concatenations =⇒ Language

– Computer and Digital Communications:

∗ 0-1 symbols and their concatenations =⇒ Code.

After the information is symbolized, the “storing” or “conveying” operation of

these symbols becomes straightforward.



Dictionary and codebook I: 1-3

• Assumption made by both transmitter and receiver about symbolized informa-

tion

– All “possible symbols” of the conveyed information are a priori known.

– The receiver is only uncertain about which symbol is going to be received.

• Example. In a conversation using English,

– it is priori known that one of the vocabularies in an English dictionary is

going to be spoken.

– Just cannot tell which before its reception.

• Example. In coded digital communications,

– the codebook (or simply code)—the collection of all possible concatenations

of pre-defined symbols—is always a priori known (to the receiver).

– Only uncertain about which is going to be received.



Compactness of codes I: 1-4

• What is the “impact” upon

– “describe the same information in terms of different dictionaries”

or

– “describe the same information in terms of different codebooks”

• Answer: different degree of compactness!

– Some codebook may yield a more lengthy description than the other.

– E.g., with event probabilities {1/2, 1/4, 1/8, 1/8},

code 1




event one : 00

event two : 01

event three : 10

event four : 11

code 2




event one : 0

event two : 10

event three : 110

event four : 111

Average codeword length

= (1/2)× 2 bits + (1/4)× 2 bits

+ (1/8)× 2 bits + (1/8)× 2 bits

= 2 bits per event

Average codeword length

= (1/2)× 1 bits + (1/4)× 2 bits

+ (1/8)× 3 bits + (1/8)× 3 bits

= 7/4 bits per event (more compact)



How to find the most compact code? I: 1-5

• Straightforward Approach

– To exhaust the average codeword lengths of all possible code designs and

pick the one with the smallest average codeword length

– A tedious work if the number of events is large.

• Alternative Approach

– Derive the minimum average codeword length among all possible codes,

and construct a code that achieves this minimum

– Is it possible to derive such minimum without exhausting all possible

code designs? (“Yes.” answered by Shannon. We can do this without

performing a true code design, simply by means of measuring the infor-

mation we are going to transmit.)



How to measure information? I: 1-6

• Quantitative Definition of Information Content (Engineering view)

– The average codeword length (usually, in bits) of the most compact code

representing this information

• Under the above definition, engineers can directly determine the minimum

space required to store the information based on the information measure

quantity, namely, how many bits this information consists of.

• Question: This definition leads us to nowhere, since it may not be easy to find

the most compact code directly.

– It may be possible to exhaust all possible 4-event descriptive codes (two of

them are illustrated in Slide I: 1-4)

– but as the number of events grows, the work becomes tedious and time-

consuming.



How to measure information? I: 1-7

• Quantitative Definition of Information Content (Probabilistic view)

– Axioms:

∗ Monotonicity in event probability: If an event is less likely to

happen, it should carry more information when it occurs, because it is

more uncertain that the event would happen.

∗ Additivity: It is reasonable to have “additivity” for information mea-

sure, i.e., the degree-of-uncertainty of a joint event should equal the sum

of the degree-of-uncertainty of each individual (but disjoint) event.

∗ Continuity: A small change in event probability should only yield a

small variation in event uncertainty. For example, two events respec-

tively with probabilities 0.20001 and 0.19999 should reasonably possess

comparable information content.

• The only “measure” satisfying these axioms is:

self-information of an event = log2
1

event probability
bits.

(This claim will be proven in Theorem 2.1.)

• It is thus legitimate to adopt the entropy—the expected value of the self-

information—as a (averaged) measure of information.



Example of computation of entropy I: 1-8

E.g., with event probabilities {1/2, 1/4, 1/8, 1/8},

code 1




event one : 00

event two : 01

event three : 10

event four : 11

code 2




event one : 0

event two : 10

event three : 110

event four : 111

Average codeword length

= 2 bits per event

Average codeword length

= 7/4 bits per event (more compact)


self-informaiton of event one = log2
1

1/2
= 1 bit

self-informaiton of event two = log2
1

1/4
= 2 bits

self-informaiton of event three = log2
1

1/8
= 3 bits

self-informaiton of event four = log2
1

1/8
= 3 bits

Entropy =
1

2
× 1 bit +

1

4
× 2 bits +

1

8
× 3 bits +

1

8
× 3 bits =

7

4
bits per event



Lessen from the previous example I: 1-9

• The previous example hints that code 2 is the most compact code among all

possible code designs in the sense of having the smallest average codeword

length.

• If this statement is true, then the below two definitions on information content

are equivalent:

– (Engineering view) The average codeword length of the most compact code

representing the information

– (Probabilistic view) Entropy of the information

• In 1948, Shannon proved that the above two views are actually equivalent

(under some constraints). I.e., the minimum average code length for a source

descriptive code is indeed equal to the entropy of the source.

• One can then compute the entropy of a source, and assures that if the average

codeword length of a code equals the source entropy, the code is optimal.



Contribution of Shannon I: 1-10

• Shannon’s work laid the foundation for the field of information theory.

• His work indicates that the mathematical results of information theory can

serve as a guide for the development of information manipulation systems.



Measure of compactness for a code I: 1-11

A few notes on the compactness of a code:

• Themeasure of information is defined based on the definition of compactness.

– The average codeword length of the most compact code representing the

information

– Here, “the most compact code” = “the code with the smallest average

codeword length.”

– Shannon shows “the smallest average codeword length” = entropy.

• Yet, the definition ofmeasure of code compactnessmay be application-dependent.

Some examples are:

– the average codeword length (with respect to event probability) of a code

(if the average codeword length is crucial for the application).

– the maximum codeword length of a code (if the maximum codeword length

is crucial for the application).

– the average function values (cost or penalty) of codeword lengths of a code

(e.g., if a larger penalty should apply to a longer codeword).



Measure of compactness for a code I: 1-12

code 1




event one : 00

event two : 01

event three : 10

event four : 11

code 2




event one : 0

event two : 10

event three : 110

event four : 111

Average codeword length

= 2 bits per event

Average codeword length

= 7/4 bits per event

Maximal codeword length

= 2 bits

Maximal codeword length

= 3 bits

• Code 1 is more compact in the sense of shorter maximum codeword length.

• Code 2 is more compact in the sense of smaller average codeword length.



Measure of compactness for a code I: 1-13

Event probabilities: {1/2, 1/4, 1/8, 1/8}

code 1




event one : 00

event two : 01

event three : 10

event four : 11

code 2




event one : 0

event two : 10

event three : 110

event four : 111

E.g. Minimization of average function values of codeword length.

• For a fixed t > 0, to minimize

∑
z ∈ event space

Pr(z)2t·�(z),

(
or equivalently, L(t) :=

1

t
log2

∑
z ∈ event space

Pr(z)2t·�(z)
)

where �(z) represents the codeword length for event z.

• The average function values of codeword length equals:∑
z ∈ event space

Pr(z)2t·�(z) =
1

2
22t+

1

4
22t+

1

8
22t+

1

8
22t = 22t for code 1;

∑
z ∈ event space

Pr(z)2t·�(z) =
1

2
2t+

1

4
22t+

1

8
23t+

1

8
23t =

2t

4
(22t+2t+2) for code 2.



Measure of compactness for a code I: 1-14

• L(t) =
1

t
log2

∑
z ∈ event space

Pr(z)2t·�(z) = 2 for code 1;

L(t) =
1

t
log2

∑
z ∈ event space

Pr(z)2t·�(z) = 1 +
1

t
log2

(22t + 2t + 2)

4
for code 2.

– Observation 1: Code 1 is more compact when t > 1, and code 2 is more

compact when 0 < t < 1.

– Observation 2:

lim
t↓0

1

t
log2

∑
z ∈ event space

Pr(z)2t·�(z) =
∑

z ∈ event space

Pr(z)�(z)

= Average codeword length.

lim
t↑∞

1

t
log2

∑
z ∈ event space

Pr(z)2t·�(z) = max
z ∈ event space

�(z)

= Maximum codeword length.



Lessen from the previous extension I: 1-15

• Extension definition of measure of information content

– (Engineering view) The minimum cost, i.e., L(t), of the most compact code

representing the information

– (Probabilistic view) Rényi Entropy of the information

H

(
Z;

1

1 + t

)
:=

1 + t

t
log2

∑
z ∈ event space

[Pr(z)]1/(1+t) .

• In 1965, Cambell proved that the above two views are equivalent.

[CAM65] L. L. Cambell, “A coding theorem and Rényi’s entropy,” Infor-

mat. Contr., vol. 8, pp. 423–429, 1965.

lim
t↓0

H

(
Z;

1

1 + t

)
=

∑
z ∈ event space

Pr(z) log2
1

Pr(z)

lim
t↑∞

H

(
Z;

1

1 + t

)
= log2(number of events)



Data transmission over noisy channel I: 1-16

• In the case of data transmission over noisy channel, the concern is different

from that for data storage (or error-free transmission).

– The sender wishes to transmit to the receiver a sequence of pre-defined

information symbols under an acceptable information-symbol error rate.

– Code redundancies are therefore added to combat the noise.

For example, one may employ the three-times repetition code:

∗ 1 → 111

∗ 0 → 000

and apply the majority law at the receiver so that one-bit error can be

recovered.

• The three-times repetition code transmits one information bit per three

channel bits. Hence, the information transmission efficiency (or channel code

rate) is termed 1/3 zero-one information symbol per channel usage.



Concern on channel code design I: 1-17

• Fix a noisy channel. What is the maximum transmission efficiency attainable

for channel code designs, subject to an arbitrarily small error probability for

information symbols?

• Before we explore the query, it is better to clarify the relation between source

coder and channel coder. This will help deciphering the condition of arbitrarily

small information-transmission error probability.



Information transmission I: 1-18

• Source coder maps information symbols (representing events) to source code-

words (e.g., u = f(z)).

• Channel coder maps source codewords to channel codewords (e.g., x = g(u)).

• These two coders can be jointly treated as one mapping directly from informa-

tion symbols to channel codewords (e.g., x = g(f(z)) = h(z)).

• It is nature to foresee that a joint-design of source-channel code (i.e., to find

the best h(·) mapping) is advantageous, but hard.

Source �z �u �x
Modulator

�

Physical
Channel

�

Demodulator���Destination

Transmitter Part

Receiver Part

Source
Encoder

Channel
Encoder

Channel
Decoder

Source
Decoder



Separate design of source and channel coders I: 1-19

• Source encoder

– Find the most compact representation of the informative message.

• Channel encoder

– According to the noise pattern, add the redundancy so that the source code

bits can be reliably transmitted.

�. . . , Z3, Z2, Z1
Source Encoder �. . . , U3, U2, U1

Channel Encoder �. . . , X3, X2, X1



Source encoder design I: 1-20

�Zn, . . . , Z3, Z2, Z1
Source Encoder �Uk, . . . , U3, U2, U1

• For source encoder, the system designer wishes to minimize the number of U ’s

required to represent one Z’s, i.e,

Compression rate = number of U ’s per number of Z’s.

• Shannon tells us that (for i.i.d. Z’s)

Minimum compression rate = entropy of Z (or entropy rate of Z1, Z2, Z3, . . .)

=
∑
z∈Z

PZ(z) log|U|
1

PZ(z)
code symbol per source symbol

∗entropy rate = entropy per Z symbol.
∗For i.i.d. process, entropy of Z = entropy rate of Z1, Z2, Z3, . . ..



Source encoder design I: 1-21

�Zn, . . . , Z3, Z2, Z1

∈ {event one, event two,
event three, event four}

Source Encoder �Uk, . . . , U3, U2, U1

∈ {0, 1}

• Z = {event one, event two, event three, event four}.
• U = {0, 1}; hence, |U| = 2.

• Shannon tells us that (for i.i.d. Z’s)

Minimum compression rate = entropy of Z

=
∑
z∈Z

PZ(z) log2
1

PZ(z)
code bit per source symbol

Claim: If the source encoder is optimal, its output . . . , U3, U2, U1 is (asymptoti-

cally) uniformly distributed over U .



Source encoder design I: 1-22

E.g., . . . , Z3, Z2, Z1 ∈ {event one, event two, event three, event four} = {e1, e2, e3, e4}
with probabilities (1/2, 1/4, 1/8, 1/8). We already know that

code 2




event one : 0

event two : 10

event three : 110

event four : 111

has the minimum average codeword length equal to the source entropy. (No further

compression is possible; so code 2 completely compresses the event information.)

• Then

Pr{U1 = 0} = Pr{Z1 = e1} = 1/2,

So the first code bit is uniformly distributed.

•
Pr{U2 = 0} = Pr(Z1 = e1 ∧ Z2 = e1) + Pr(Z1 = e2)

= Pr(Z1 = e1) Pr(Z2 = e1) + Pr(Z1 = e2) =
1

2
× 1

2
+

1

4
=

1

2
.

So the second code bit is uniformly distributed.



Source encoder design I: 1-23

•
Pr{U3 = 0} = Pr{Z1 = e1 ∧ Z2 = e1 ∧ Z3 = e1} + Pr{Z1 = e1 ∧ Z2 = e2}

+Pr{Z1 = e2 ∧ Z2 = e1} + Pr{Z1 = e3}
=

1

8
+

1

8
+

1

8
+

1

8
=

1

2
.

So the third code bit is uniformly distributed.

• . . . . . . . . .

Consequently, each of U1, U2, U3, . . . is uniformly distributed over {0, 1}.
(It can be shown that U1, U2, U3, . . . is i.i.d. via Pr(Uk|U1, . . . , Uk−1) = Pr(Uk).)



Source encoder design I: 1-24

An alternative interpretation: If U ∈ {0, 1} is not uniformly distributed, then its entropy

H(U) = p log2
1

p
+ (1− p) log2

1

1− p
< 1 number of Ū ’s/number of U ’s,

where Pr{U = 0} = p, and Ū ∈ {0, 1}.

Hence, from Shannon, there exists another source encoder such that

m = kH(U) < k.

�Uk, . . . , U2, U1 Another
Source Encoder

�Ūm, . . . , Ū2, Ū1

Further compression to code 2 is obtained, a contradiction!



Source encoder design I: 1-25

�. . . , Z3, Z2, Z1
Source Encoder �. . . , U3, U2, U1

Summary: The output of an optimal source encoder in the sense of minimiz-

ing the average per-letter codeword length (i.e., the number of U divided by the

number of Z), which asymptotically achieves the per-letter source entropy (i.e., the

overall entropy of Z1, Z2, . . . divided by the number of Z), should be asymptotically

i.i.d. with uniform marginal distribution.

In case the average per-letter codeword length of the optimal source code equals

the per-letter source entropy, its output becomes exactly i.i.d. with equally probable

marginal.



Separate design of source and channel codes I: 1-26

�. . . , Z3, Z2, Z1
Source Encoder

Source compression rate
=number of U ’s/number of Z’s
=source codewords/source symbol

�. . . , U3, U2, U1
Channel Encoder

Channel code rate (transmission efficiency)
=number of U ’s/number of X’s
=number of information symbols per channel usage

�. . . , X3, X2, X1

• The one who designs the channel code may assume that the one who designs

the source code does a good (i.e., optimal) job in data compression.

• So he assumes that the channel inputs are uniformly distributed; hence, . . . , U3, U2, U1

are completely information symbols without redundancy.

• What a channel encoder concerns now becomes the number of information

symbols per channel usage, subject to an acceptable transmission error.

• Since {Uj}mj=1 is uniformly distributed, the error rate is computed by:

error =
1

|U|m
∑

(u1,u2,...,um)∈Um

Pr{error|(u1, u2, . . . , um) is transmited},

which is often referred to as average error criterion.



Reliable = Arbitrarily small error probability I: 1-27

• Now back to the question:

– Fix a noisy channel. What is the maximum transmission efficiency (i.e.,

channel code rate) attainable for channel code designs, subject to an arbi-

trarily small error probability for information symbols?

• What is arbitrarily small error probability?

– Manager: Fix a noisy channel. Can we find a channel code that satisfies a

criterion that the information transmission error < 0.1, and the channel

code rate = 1/3 (number of U ’s/number of X ’s)?

Engineer: Yes, I am capable to construct such a code.

– Manager: For the same noisy channel, can we find a channel code that

satisfies a criterion that the information transmission error < 0.01, and

the channel code rate = 1/3 (number of U ’s/number of X ’s)?

Engineer: Yes, I can achieve the new criterion by modifying the previous

code.

– Manager: How about information transmission error < 0.001 with the

same code rate?

Engineer: No problem at all. In fact, for 1/3 code rate, I can find a code

to fulfill arbitrary small error demand.



Reliable = Arbitrarily small error probability I: 1-28

• Shannon: 1/3 code rate is a reliable transmission code rate for this noisy

channel.

• Note that arbitrary small is not equivalent to exact zero. In other words, the

existence of codes for the demand of arbitrarily small error does not necessarily

indicate the existence of zero-error codes.

• Definition of Channel Capacity

– Channel capacity is the maximum reliable transmission code rate for a

noisy channel.

• Question

– Can one determine the maximum reliable transmission code rate without

exhausting all possible channel code designs?

– Shannon said, “Yes.”



Mutual information I: 1-29

• Observe that a good channel code basically increases the certainty of chan-

nel outputs to channel inputs, although both the channel inputs and channel

outputs are uncertain before the transmission begins (where channel inputs

are decided by the information transmitted, and channel outputs are the joint

results of the channel inputs and noise).

• So the design of a good channel code should consider more the statistically

“shared information” between the channel inputs and outputs so that once a

channel output is observed, the receiver is more certain about which channel

input is transmitted.



Example I: 1-30

�. . . , U3, U2, U1
Channel Encoder �. . . , �X3, �X2, �X1 Noisy Channel

Channel code rate (transmission efficiency)

=number of U ’s/number of �X ’s
=number of information symbols per channel usage

�. . . , �Y3, �Y2, �Y1

Channel Model

Channel Input : �X = (V1, V2) in {(a, a), (a, b), (b, a), (b, b)}.
Channel Output : Only V1 survives at the channel output due to channel noise.

I.e., if �Y = (Λ1,Λ2) represents the channel output, then Λ1 = V1 and

Λ2 = b.

Common Uncertainty Between Channel Input and Output

Input Uncertainty : The channel input has two uncertainties, V1 and V2, since

each of them could be one of a and b (prior to the transmission begins).

Output Uncertainty : The channel output only possess one uncertainty, Λ1,

because Λ2 is deterministically known to be b.

Shared Uncertainty – So the “common uncertainty” between channel input

and output (prior to the transmission begins) is Λ1 = V1.



Example I: 1-31

Channel Code

• Suppose that Jack and Mary wish to use this noisy channel to reliably

convey a 4-event information.

• Code design.

event 1 : �X1, �X2 = (a, d) (a, d),

event 2 : �X1, �X2 = (a, d) (b, d),

event 3 : �X1, �X2 = (b, d) (a, d),

event 4 : �X1, �X2 = (b, d) (b, d),

where “d”=“don’t-care”.

The resultant transmission rate is
log2(4 events)

2 channel usages
= 1 information bit per channel usage.

It is noted that the above transmission code only uses uncertainty V1. This

is simply because uncertainty V2 is useless from the information transmission

perspective.

Also note that the events are uniformly distributed since data compressor is

assumed to do an optimal job; so the source entropy is 4 ×
(
1
4
log2

1
(1/4)

)
= 2

bits.
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• From the above example, one may conclude that the design of a good trans-

mission code should relate to the “common uncertainty” (or more formally,

the mutual information) between channel inputs and channel outputs.

• It is then natural to wonder whether or not this “relation” can be expressed

mathematically.

• Indeed, it was established by Shannon that the bound on the reliable transmis-

sion rate (information bits per channel usage) is the maximum channel mutual

information (i.e., “common uncertainty” prior to the transmission begins) at-

tainable.

• With his ingenious work, once again, both engineering and probabilistic view-

points coincide.



Key notes I: 1-33

• Information measure

– Equivalence between engineering standpoint based on code design and

mathematical standpoint based on information statistics.

– Interpretation of a good data compression code is then obtained.

• Channel capacity

– Equivalence between:

∗ engineering standpoint based on code design = maximum reliable code

rate under uniformly distributed information input

∗ mathematical standpoint based on channel statistics = maximum mu-

tual information between channel input and output

– Interpretation of a good channel code or error correcting code is then ob-

tained.

• These equivalences form the basis of Information theory so that a computable

statistically defined expression, such as entropy and mutual information, can

be used to determine the optimality of a practical system.


