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Background II: 3-1

• In the previous chapter, it is shown that the sup-entropy rate is indeed the

minimum lossless data compression ratio achievable for block codes.

• Hence, to find an optimal block code becomes a well-defined mission since for

any source with well-formulated statistical model, the sup-entropy rate can

be computed and such quantity can be used as a criterion to evaluate the

optimality of the designed block code.

• In a recent work of Verdú and Han in 1993, they found that, other than the

minimum lossless data compression ratio, the sup-entropy rate actually has

another operational meaning, which is called resolvability.

• In this chapter, we will explore the new concept in details.



Motivation for resolvability II: 3-2

• In simulations of statistical communication systems, generation of random vari-

ables by a computer algorithm is very essential.

• The computer usually has an access to a basic random experiment (through

pre-defined Application Programing Interface), which generates equally likely

random values, such as rand( ) that generates a real number uniformly dis-

tributed over (0, 1).

• Conceptually, random variables with complex models are more difficult to

generate by computers than random variables with simple models.

• Question is how to quantify the “complexity” of generating a random vari-

ables by computers.

• Possible solution: One way to define such “complexity” measurement is:

Definition 3.1 The complexity of generating a random variable is defined as

the number of random bits that the most efficient algorithm requires in order

to generate the random variable by computers that has an access to equally

likely random experiments.



Example II: 3-3

Example 3.2 Consider the generation of the random variable with probability

masses PX(−1) = 1/4, PX(0) = 1/2, and PX(1) = 1/4. An algorithm is written

as:

Flip-a-fair-coin; \\ one random bit

If “Head”, then output 0;

else

{
Flip-a-fair-coin; \\ one random bit

If “Head”, then output −1;

else output 1;

}
• average-case: the above algorithm requires 1.5 coin flips;

• worst-case: 2 coin flips are necessary.

• Therefore, the complexity measure can take two fundamental forms: worst-

case or average-case over the range of outcomes of the random variables.



Example II: 3-4

• Note that we did not show in the above example that the algorithm is the most

efficient one in the sense of using minimum number of random bits; however,

it is indeed an optimal algorithm because it achieves the lower bound of the

minimum number of random bits. Later, we will show that the average number

of random bits required for generating the random variable is lower-bounded

by the entropy, which is exactly 1.5 bits in the above example.

• As for the worse-case bound, a new terminology, resolution, will be introduced.

As a result, the above algorithm also achieves the lower bound of the worst-case

complexity, which is the resolution of the random variable.



Notation and definition regarding resolvability II: 3-5

Definition 3.3 (M-type) For any positive integerM , a probability distribution

P is said to be M -type if

P (ω) ∈
{
0,

1

M
,
2

M
, . . . , 1

}
for all ω ∈ Ω.

Definition 3.4 (resolution of a random variable) The resolution R(X)

of a random variable X is the minimum logM such that PX is M -type. If PX is

not M -type for any integer M , then R(X) = ∞.

• If the base of the logarithmic operation is 2, the resolution is measured in bits;

however, if natural logarithm is taken, nats becomes the basic measurement

unit of resolution.



Operational meaning II: 3-6

• As revealed previously, a random source needs to be resolved (meaning, it can

be generated by a computer algorithm with access to equal-probable random

experiments).

• As anticipated, a random variable with finite resolution is resolvable by com-

puter algorithms.

• Yet, it is possible that the resolution of a random variable is infinity.

• A quick example is the random variable X with distribution PX(0) = 1/π and

PX(1) = 1− 1/π. (X does not belong to any M -type for finite M .)

• In such case, one can alternatively choose another computer-resolvable random

variable, which resembles the true source within some acceptable range, to

simulate the original one.

• One criterion that can be used as a measure of resemblance of two random

variables is the variational distance.

• As for the same example in the above paragraph, choose a random variable X̃

with distribution PX̃(0) = 1/3 and PX̃(1) = 2/3. Then ‖X − X̃‖ ≈ 0.03, and

X̃ is 3-type, which is computer-resolvable.



Operational meaning II: 3-7

• Designing a program that generates an M -type random variable for any M

such that log2(M) is a positive integer is straightforward.

• A program that generates the 3-type X̃ is as follows (in C language).

even = False;

while (1)

{Flip-a-fair-coin; \\ one random bit

if (Head)

{if (even==True) { output 0; break;}
else {output 1; break;}
}

else

{if (even==True) even=False;
else even=True;

}
}

Then, by denoting H = Head and T = Tail, the probability to output 1 equals

the probability to obtain H, TTH, TTTTH, . . ., which is 1
2
+ 1

23
+ 1

25
+ · · · = 2

3
.

The average complexity of this algorithm is 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + · · · = 2 bits

but its worse-case complexity is infinity.



ε-achievable resolution II: 3-8

Definition 3.5 (variational distance) The variational distance (or �1 dis-

tance) between two distributions P and Q defined on common measurable space

(Ω,F) is

‖P −Q‖:=
∑
ω∈Ω

|P (ω)−Q(ω)|.

(Note that an alternative way to formulate the variational distance is:

‖P −Q‖ = 2 · sup
E∈F

|P (E)−Q(E)| = 2
∑

x∈X : P (x)≥Q(x)

[P (x)−Q(x)].

These two definitions are actually equivalent.)

Definition 3.6 (ε-achievable resolution) Fix ε ≥ 0. R is an ε-achievable

resolution for input X if for all γ > 0, there exists X̃ satisfying

R(X̃) < R + γ and ‖X − X̃‖ < ε.

• ε-achievable resolution reveals the possibility that one can choose another

computer-resolvable random variable whose variational distance to the true

source is within an acceptable range ε.



ε-resolution rate II: 3-9

• Next we define the ε-achievable resolution rate for a sequence of random

variables, which is an extension of ε-achievable resolution defined for a single

random variable.

• Such extension is analogous to extending entropy for a single source to entropy

rate for a random source sequence.

Definition 3.7 (ε-achievable resolution rate) Fix ε ≥ 0 and input X . R

is an ε-achievable resolution rate for input X if for every γ > 0, there exists X̃

satisfying
1

n
R(X̃n) < R + γ and ‖Xn − X̃n‖ < ε

for all sufficiently large n.



ε-resolvability II: 3-10

Definition 3.8 (ε-resolvability for X) Fix ε > 0. The ε-resolvability for

input X , denoted by Sε(X), is the minimum ε-achievable resolution rate of the

same input, i.e.,

Sε(X) := min
{
R : (∀ γ > 0)(∃X̃ and N)(∀ n > N)

1

n
R(X̃n) < R + γ and ‖Xn − X̃n‖ < ε

}
.

• We define Sε(X) using the “minimum” instead of a more general “infimum”

operation because Sε(X) belongs to the range of the minimum operation.

• Similar convention will be applied throughout the rest of this chapter.

Definition 3.9 (resolvability for X) The resolvability for input X , denoted

by S(X), is

S(X):= lim
ε↓0

Sε(X).

• From the definition of ε-resolvability, it is obviously nonincreasing in ε. Hence,

the resolvability can also be defined using supremum operation as:

S(X):= sup
ε>0

Sε(X).



ε-mean-resolvability II: 3-11

• The resolvability is pertinent to the worse-case complexity measure for random

variables (cf. Example 3.2 and the discussion following it).

• With the entropy function, the information theorists also define the ε-mean-

resolvability and mean-resolvability for inputX , which characterize the average-

case complexity of random variables.

Definition 3.10 (ε-mean-achievable resolution rate) Fix ε ≥ 0. R is an

ε-mean-achievable resolution rate for input X if for all γ > 0, there exists X̃

satisfying
1

n
H(X̃n) < R + γ and ‖Xn − X̃n‖ < ε,

for all sufficiently large n.

Definition 3.11 (ε-mean-resolvability for X) Fix ε > 0. The ε-mean-

resolvability for input X , denoted by S̄ε(X), is the minimum ε-mean achievable

resolution rate for the same input, i.e.,

S̄ε(X) := min
{
R : (∀ γ > 0)(∃X̃ and N)(∀ n > N)

1

n
H(X̃n) < R + γ and ‖Xn − X̃n‖ < ε

}
.



ε-mean-resolvability II: 3-12

Definition 3.12 (mean-resolvability for X) Themean-resolvability for in-

put X , denoted by S̄(X), is

S̄(X):= lim
ε↓0

S̄ε(X) = sup
ε>0

S̄ε(X).

• The only difference between resolvability and mean-resolvability is that the

former employs resolution function, while the latter replaces it by entropy

function.

• Since entropy is the minimum average codeword length for uniquely decodable

codes, an explanation for mean-resolvability is that the new random variable

X̃n can be resolvable through realizing the optimal variable-length code for it.

• You can think of the probability mass of each outcome of X̃n is 2−� where � is

the codeword length of the optimal lossless variable-length code for X̃n. Such

probability mass can actually be generated by flipping fair coins � times, and

the average number of fair coin flipping for this outcome is indeed �× 2−�.

• As you may expect, the mean-resolvability is shown to be the average com-

plexity of a random variable.



Ope. meaning of resolvability & mean-resolvability II: 3-13

The operational meanings for the resolution and entropy (a new operational

meaning for entropy other than the one from source coding theorem) follow the

next theorem.

Theorem 3.13 For a single random variable X ,

1. the worse-case complexity is lower-bounded by its resolution R(X) [Han and

Verdú 1993];

2. the average-case complexity is lower-bounded by its entropy H(X), and is

upper-bounded by entropy H(X) plus 2 bits [Knuth and Yao 1976].

Next, we reveal the operational meanings for resolvability and mean-resolvability

in source coding. We begin with some lemmas that are useful in characterizing the

resolvability.

Lemma 3.14 (bound on variational distance) For every µ > 0,

‖P −Q‖ ≤ 2µ + 2 · PX

[
x ∈ X : log

P (x)

Q(x)
> µ

]
.



Ope. meaning of resolvability & mean-resolvability II: 3-14

Proof:

‖P −Q‖ = 2
∑

x∈X : P (x)≥Q(x)

[P (x)−Q(x)]

= 2
∑

x∈X : log[P (x)/Q(x)]≥0

[P (x)−Q(x)]

= 2

 ∑
x∈X : log[P (x)/Q(x)]>µ

[P (x)−Q(x)]

+
∑

x∈X : µ≥log[P (x)/Q(x)]≥0

[P (x)−Q(x)]





Ope. meaning of resolvability & mean-resolvability II: 3-15

≤ 2

 ∑
x∈X : log[P (x)/Q(x)]>µ

P (x)

+
∑

x∈X : µ≥log[P (x)/Q(x)]≥0

P (x)

(
1− Q(x)

P (x)

)
≤ 2

(
P

[
x ∈ X : log

P (x)

Q(x)
> µ

]

+
∑

x∈X : µ≥log[P (x)/Q(x)]≥0

P (x)

(
log

P (x)

Q(x)

)
(by fundamental inequality)

≤ 2

P

[
x ∈ X : log

P (x)

Q(x)
> µ

]
+

∑
x∈X : µ≥log[P (x)/Q(x)]≥0

P (x) · µ




Ope. meaning of resolvability & mean-resolvability II: 3-16

= 2

(
P

[
x ∈ X : log

P (x)

Q(x)
> µ

]
+µ · PX

[
x ∈ X : µ ≥ log

P (x)

Q(x)
≥ 0}

])
= 2

(
P

[
x ∈ X : log

P (x)

Q(x)
> µ

]
+ µ

)
.

Lemma 3.15

PX̃n

{
xn ∈ X n : − 1

n
logPX̃n(x

n) ≤ 1

n
R(X̃n)

}
= 1,

for every n.

Proof: By definition of R(X̃n),

PX̃n(x
n) ≥ exp{−R(X̃n)}

for all xn ∈ X n. Hence, for all xn ∈ X n,

−1

n
logPX̃n(x

n) ≤ 1

n
R(X̃n).

The lemma then holds.



Resolvability II: 3-17

Theorem 3.16 The resolvability for input X is equal to its sup-entropy rate, i.e.,

S(X) = H̄(X).

Proof:

1. S(X) ≥ H̄(X).

It suffices to show that S(X) < H̄(X) contradicts to Lemma 3.15.

Suppose S(X) < H̄(X). Then there exists δ > 0 such that

S(X) + δ < H̄(X).

Let

D0:=

{
xn ∈ X n : −1

n
logPXn(xn) ≥ S(X) + δ

}
.

By definition of H̄(X),1

lim sup
n→∞

PXn(D0) > 0.

1lim infn→∞ PX(Dc
0) ≤ h(S(X) + δ) < 1 because if h(S(X) + δ) ≥ 1, then H̄(X) ≤ S(X) + δ.



Resolvability II: 3-18

Therefore, there exists α > 0 such that

lim sup
n→∞

PXn(D0) > α,

which immediately implies

PXn(D0) > α

infinitely often in n.

Select 0 < ε < min{α2, 1} and observe that Sε(X) ≤ S(X), we can choose

X̃n to satisfy

1

n
R(X̃n) < S(X) +

δ

2
and ‖Xn − X̃n‖ < ε (3.3.1)

for sufficiently large n.



Resolvability II: 3-19

Define

D1 := {xn ∈ X n : PXn(xn) > 0

and
∣∣PXn(xn)− PX̃n(x

n)
∣∣ ≤ √

ε · PXn(xn)
}
.

Then

PXn(Dc
1) = PXn {xn ∈ X n : PXn(xn) = 0

or
∣∣PXn(xn)− PX̃n(x

n)
∣∣ > √

ε · PXn(xn)
}

≤ PXn {xn ∈ X n : PXn(xn) = 0}
+PXn

{
xn ∈ X n :

∣∣PXn(xn)− PX̃n(x
n)
∣∣ > √

ε · PXn(xn)
}

= PXn

{
xn ∈ X n :

∣∣PXn(xn)− PX̃n(x
n)
∣∣ > √

ε · PXn(xn)
}

=
∑{

xn∈X n : PXn(xn)<(1/
√
ε)|PXn(xn)−P

X̃n(x
n)|

}PXn(xn)

≤
∑

xn∈X n

1√
ε
|PXn(xn)− PX̃n(x

n)|

≤ ε√
ε
=
√
ε.



Resolvability II: 3-20

Consider that

PXn(D1 ∩ D0) ≥ PXn(D0)− PXn(Dc
1)

≥ α−√
ε > 0, (3.3.2)

which holds infinitely often in n; and every xn0 in D1 ∩ D0 satisfies

PX̃n(x
n
0) ≤ (1 +

√
ε)PXn(xn0) (since xn0 ∈ D1)

and

−1

n
logPX̃n(x

n
0) ≥ −1

n
logPXn(xn0) +

1

n
log

1

1 +
√
ε

≥ (S(X) + δ) +
1

n
log

1

1 +
√
ε

(since xn0 ∈ D0)

≥ S(X) +
δ

2
,

for n > (2/δ) log(1 +
√
ε).



Resolvability II: 3-21

Therefore, for those n that (3.3.2) holds,

PX̃n

{
xn ∈ X n : − 1

n
logPX̃n(x

n) >
1

n
R(X̃n)

}
≥ PX̃n

{
xn ∈ X n : − 1

n
logPX̃n(x

n) > S(X) +
δ

2

}
(From (3.3.1))

≥ PX̃n

{
xn ∈ X n : − 1

n
logPX̃n(x

n) ≥ S(X) + δ

}
︸ ︷︷ ︸

=D0

≥ PX̃n(D1 ∩ D0)

≥ (1−√
ε)PXn(D1 ∩ D0) (By definition of D1)

> 0,

which contradicts to the result of Lemma 3.15.



Resolvability II: 3-22

2. S(X) ≤ H̄(X).

It suffices to show the existence of X̃ for arbitrary γ > 0 such that

lim
n→∞‖Xn − X̃n‖ = 0

and X̃n is an M -type distribution with

M =
⌈
en(H̄(X)+γ

2 )
⌉
,

which ensures that for n > 2
γ log(2),

M < en(H̄(X)+γ
2 ) + 1 < 2en(H̄(X)+γ

2 ) < en(H̄(X)+γ).

Let X̃n = X̃n(Xn) be uniformly distributed over a set

G:={Uj ∈ X n : j = 1, . . . ,M}
where each Uj was drawn independently according to PXn. Define for µ > 0,

D:=

{
xn ∈ X n : − 1

n
logPXn(xn) > H̄(X) +

γ

2
+

µ

n

}
.



Resolvability II: 3-23

For each G chosen, we obtain from Lemma 3.14 that

‖Xn − X̃n‖ ≤ 2µ + 2 · PX̃n

(
xn ∈ X n : log

PX̃n(xn)

PXn(xn)
> µ

)
= 2µ + 2 · PX̃n

(
xn ∈ G : log

1/M

PXn(xn)
> µ

)
(since PX̃n(Gc) = 0)

= 2µ + 2 · PX̃n

(
xn ∈ G : − 1

n
logPXn(xn) >

1

n
log

⌈
en(H̄(X)+γ

2 )
⌉
+

µ

n

)
≤ 2µ + PX̃n

{
xn ∈ G : − 1

n
logPXn(xn) > H̄(X) +

γ

2
+

µ

n

}
= 2µ + PX̃n(G ∩ D)

= 2µ +
1

M
|G ∩ D| .

Since G is chosen randomly, we can take the expectation values (with respect

to the random G) of the above inequality to obtain:

EG
[‖Xn − X̃n‖] ≤ 2µ +

2

M
EG [|G ∩ D|] .
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Observe that each Uj is either in D or not in D.

From the i.i.d. assumption of {Uj}Mj=1, we can then evaluate EG[|G ∩ D|] by

EG [|G ∩ D|] =
M∑
j=0

j

(
M

j

)
P j
Xn[D]PM−j

Xn [Dc] = MPXn[D].

Hence,

lim sup
n→∞

EG
[‖Xn − X̃n‖] ≤ 2µ + 2 · lim sup

n→∞
PXn[D] = 2µ,

which implies

lim sup
n→∞

EG
[‖Xn − X̃n‖] = 0 (3.3.3)

since µ can be chosen arbitrarily small. (3.3.3) therefore guarantees the exis-

tence of the desired X̃ .



Mean-resolvability II: 3-25

The next two lemmas are useful in characterizing mean-resolvability.

Lemma 3.17 With 0 < a, b ≤ 1,

∣∣∣∣a log(1

a

)
− b log

(
1

b

)∣∣∣∣ ≤

|a− b| · log 1

|a− b|, |a− b| < 1
2;

(1− |a− b|) · log 1

(1− |a− b|),
1
2 ≤ |a− b| < 1.

Proof: Without loss of generality, assume a = t + τ and b = t with 0 < t ≤
t + τ < 1 and τ < 1.

Subject to f(t):=t log(1t ), we have that for 0 < t ≤ 1− τ ,

∂[f(t + τ )− f(t)]

∂t
= log

t

t + τ
≤ 0

Hence,

sup
0<t≤1−τ

[f(t + τ )− f(t)] = f(τ )− f(0) = f(τ )

and

sup
0<t≤1−τ

[f(t)− f(t + τ )] = f(1− τ )− f(0) = f(1− τ ).
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Thus

|f(a)− f(b)| = |f(t + τ )− f(t)|
≤ max{f(τ ), f(1− τ )}
= max{f(|a− b|), f(1− |a− b|)}

=


|a− b| · log 1

|a− b|, |a− b| < 1
2;

(1− |a− b|) · log 1

(1− |a− b|),
1
2 ≤ |a− b| < 1.

Lemma 3.18 (variational distance and entropy difference [Csiszár &

Körner’81, p. 33])

|H(Xn)−H(X̃n)| ≤ ‖Xn − X̃n‖ · log |X |n
‖Xn − X̃n‖

,

provided ‖Xn − X̃n‖ ≤ 1
2
.
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Proof:

|H(Xn)−H(X̃n)|

=

∣∣∣∣∣ ∑
xn∈X n

PXn(xn) log
1

PXn(xn)
−

∑
xn∈X n

PX̃n(x
n) log

1

PX̃n(xn)

∣∣∣∣∣
≤

∑
xn∈X n

∣∣∣∣PXn(xn) log
1

PXn(xn)
− PX̃n(x

n) log
1

PX̃n(xn)

∣∣∣∣
≤

∑
xn∈X n

|PXn(xn)− PX̃n(x
n)| · log 1

|PXn(xn)− PX̃n(xn)| (3.3.4)

≤
( ∑

xn∈X n

|PXn(xn)− PX̃n(x
n)|

)
log

(∑
xn∈X n 1

)
( ∑

xn∈X n

|PXn(xn)− PX̃n(x
n)|

)
(3.3.5)

= ‖Xn − X̃n‖ log |X |n
‖Xn − X̃n‖,

where (3.3.4) follows from ‖Xn − X̃n‖ ≤ 1
2
and Lemma 3.17, and (3.3.5) uses the

log-sum inequality.
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Theorem 3.19 For any X ,

S̄(X) = lim sup
n→∞

1

n
H(Xn).

Proof:

1. S̄(X) ≤ lim supn→∞(1/n)H(Xn).

It suffices to prove that S̄ε(X) ≤ lim supn→∞(1/n)H(Xn) for every ε > 0.

This is equivalent to show that for all γ > 0, there exists X̃ such that

1

n
H(X̃n) < lim sup

n→∞
1

n
H(Xn) + γ

and

‖Xn − X̃n‖ < ε

for sufficiently large n. This can be trivially achieved by letting X̃ = X , since

for sufficiently many n,

1

n
H(Xn) < lim sup

n→∞
1

n
H(Xn) + γ

and

‖Xn −Xn‖ = 0.



Mean-resolvability II: 3-29

2. S̄(X) ≥ lim supn→∞(1/n)H(Xn).

Observe that S̄(X) ≥ S̄ε(X) for any 0 < ε < e−1 ≈ 0.36788. Then for any

γ > 0 and all sufficiently large n, there exists X̃n such that

1

n
H(X̃n) < S̄(X) + γ (3.3.6)

and

‖Xn − X̃n‖ < ε.

From Lemma 3.18 that states

|H(Xn)−H(X̃n)| ≤ ‖Xn − X̃n‖ · log |X |n
‖Xn − X̃n‖

≤ ε log
|X |n
ε

,

where the last inequality holds because t log(1/t) is increasing for 0 < t < e−1,

we obtain

H(X̃n) ≥ H(Xn)− ε log |X |n + ε log ε.

which, together with (3.3.6), implies that

lim sup
n→∞

1

n
H(Xn)− ε log |X | < S̄(X) + γ.

Since ε and γ can be taken arbitrarily small, we have

S̄(X) ≥ lim sup
n→∞

1

n
H(Xn).
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• In the previous chapter, we have proved that the lossless data compression rate

for block codes is lower bounded by H̄(X).

• We also show that H̄(X) is also the resolvability for source X .

• We can therefore conclude that resolvability is equal to the minimum lossless

data compression rate for block codes.

• The key to Shannon’s source coding theorem is actually the existence of a set

An = {xn1 , xn2 , . . . , xnM} with M ≈ 2nH(X) and PXn(Ac
n) → 0.

• Thus, if we can find such typical set, Shannon’s source coding theorem for

block codes can actually be generalized to more general sources, such as non-

stationary sources.
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Definition 3.20 (minimum ε-source compression rate for

fixed-length codes) R is the ε-source compression rate for fixed-length codes

if there exists a sequence of sets {An}∞n=1 with An ⊂ X n such that

lim sup
n→∞

1

n
log |An| ≤ R and lim sup

n→∞
PXn[Ac

n] ≤ ε.

Tε(X) is the minimum of all such rates.

Definition 3.21 (minimum source compression rate for fixed-length

codes) T (X) represents the minimum source compression rate for fixed-length

codes, which is defined as:

T (X):= lim
ε→0

Tε(X).

Definition 3.22 (minimum source compression rate for

variable-length codes) R is an achievable source compression rate for variable-

length codes if there exists a sequence of error-free prefix codes { C∼n}∞n=1 such that

lim sup
n→∞

1

n
�n ≤ R

where �n is the average codeword length of C∼n. T̄ (X) is the minimum of all such

rates.
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• Recall that for a single source, the measure of its uncertainty is entropy. Al-

though the entropy can also be used to characterize the overall uncertainty

of a random sequence X , the source coding however concerns more on the

“average” entropy of it.

• So far, we have seen four expressions of “average” entropy:

lim sup
n→∞

1

n
H(Xn):= lim sup

n→∞
1

n

∑
xn∈X n

−PXn(xn) logPXn(xn);

lim inf
n→∞

1

n
H(Xn):= lim inf

n→∞
1

n

∑
xn∈X n

−PXn(xn) logPXn(xn);

H̄(X):= inf
β∈�

{
β : lim sup

n→∞
PXn

[
−1

n
logPXn(Xn) > β

]
= 0

}
;

H(X):= sup
α∈�

{
α : lim sup

n→∞
PXn

[
−1

n
logPXn(Xn) < α

]
= 0

}
.

• If

lim
n→∞

1

n
H(Xn) = lim sup

n→∞
1

n
H(Xn) = lim inf

n→∞
1

n
H(Xn),

then limn→∞(1/n)H(Xn) is named the entropy rate of the source.
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• H̄(X) andH(X) are called the sup-entropy rate and inf-entropy rate, which

were already introduced.

• Next we will prove that T (X) = S(X) = H̄(X) and T̄ (X) = S̄(X) =

lim supn→∞(1/n)H(Xn) for a source X .

• The operational characterization of lim infn→∞(1/n)H(Xn) andH(X) will be

introduced in Chapter 6.

Theorem 3.23 (equality of resolvability and minimum source coding

rate for fixed-length codes)

T (X) = S(X) = H̄(X).

Proof: Equality of S(X) and H̄(X) is already given in Theorem 3.16. Also,

T (X) = H̄(X) can be obtained from Theorem 3.5 by letting ε = 0. Here, we

provide an alternative proof for T (X) = S(X).

1. T (X) ≤ S(X).

If we can show that, for any ε fixed, Tε(X) ≤ S2ε(X), then the proof is

completed. This claim is proved as follows.
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• By definition of S2ε(X), we know that for any γ > 0, there exists X̃ and

N such that for n > N ,

1

n
R(X̃n) < S2ε(X) + γ and ‖Xn − X̃n‖ < 2ε.

• Let An:=
{
xn : PX̃n(xn) > 0

}
. Since (1/n)R(X̃n) < S2ε(X) + γ,

|An| ≤ exp{R(X̃n)} < exp{n(S2ε(X) + γ)}.
Therefore,

lim sup
n→∞

1

n
log |An| ≤ S2ε(X) + γ.

• Also,

2ε > ‖Xn − X̃n‖ = 2 sup
E⊂X n

|PXn(E)− PX̃n(E)|
≥ 2|PXn(Ac

n)− PX̃n(Ac
n)|

= 2PXn(Ac
n), (sincePX̃n(Ac

n) = 0).

Hence, lim supn→∞ PXn(Ac
n) ≤ ε.

• Since S2ε(X) + γ is just one of the rates that satisfy the condition of the

minimum ε-source compression rate, and Tε(X) is the smallest one of such

rates,

Tε(X) ≤ S2ε(X) + γ for any γ > 0.
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2. T (X) ≥ S(X).

Similarly, if we can show that, for any ε fixed, Tε(X) ≥ S3ε(X), then the

proof is completed. This claim can be proved as follows.

• Fix α > 0. By definition of Tε(X), we know that for any γ > 0, there

exists N and a sequence of sets {An}∞n=1 such that for n > N ,

1

n
log |An| < Tε(X) + γ and PXn(Ac

n) < ε + α.

• Choose Mn to satisfy

exp{n(Tε(X) + 2γ)} ≤ Mn ≤ exp{n(Tε(X) + 3γ)}. (3.4.1)

Also select one element xn0 from Ac
n. Define a new random variable X̃n as

follows:

PX̃n(x
n) =

 0, if xn �∈ {xn0} ∪ An;
k(xn)

Mn
, if xn ∈ {xn0} ∪ An,

where

k(xn):=


�MnPXn(xn)�, if xn ∈ An;

Mn −
∑

xn∈An

k(xn), if xn = xn0 .
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It can then be easily verified that X̃n satisfies the next four properties:

(a) X̃n is Mn-type;

(b) PX̃n(xn0) ≤ PXn(Ac
n) < ε + α, since xn0 ∈ Ac

n;

(c) for all xn ∈ An,∣∣PX̃n(x
n)− PXn(xn)

∣∣ = PXn(xn)− �MnPXn(xn)�
Mn

≤ 1

Mn
.

(d) PX̃n(An) + PX̃n(xn0) = 1.

• Consequently,

1

n
R(X̃n) ≤ Tε(X) + 3γ, (by (3.4.1))
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and

‖Xn − X̃n‖ =
∑

xn∈An

∣∣PX̃n(x
n)− PXn(xn)

∣∣ + ∣∣PX̃n(x
n
0)− PXn(xn0)

∣∣
+

∑
xn∈Ac

n\{xn0}

∣∣PX̃n(x
n)− PXn(xn)

∣∣
≤

∑
xn∈An

∣∣PX̃n(x
n)− PXn(xn)

∣∣ + PX̃n(x
n
0) + PXn(xn0)

+
∑

xn∈Ac
n\{xn0}

∣∣PX̃n(x
n)− PXn(xn)

∣∣
≤

∑
xn∈An

1

Mn
+ PX̃n(x

n
0) + PXn(xn0) +

∑
xn∈Ac

n\{xn0}
PXn(xn)

=
|An|
Mn

+ PX̃n(x
n
0) +

∑
xn∈Ac

n

PXn(xn)

≤ exp{n(Tε(X) + γ)}
exp{n(Tε(X) + 2γ)} + (ε + α) + PXn(Ac

n)

≤ e−nγ + (ε + α) + (ε + α)

≤ 3(ε + α), for n ≥ − log(ε + α)/γ.
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• Since Tε(X) is just one of the rates that satisfy the condition of 3(ε + α)-

resolvability, and S3(ε+α)(X) is the smallest one of such quantities,

S3(ε+α)(X) ≤ Tε(X).

The proof is completed by noting that α can be made arbitrarily small.

This theorem tells us that the minimum source compression rate for fixed-length

codes is the resolvability, which in turn is equal to the sup-entropy rate.
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Theorem 3.24 (equality of mean-resolvability and minimum source

coding rate for variable-length codes)

T̄ (X) = S̄(X) = lim sup
n→∞

1

n
H(Xn).

Proof: Equality of S̄(X) and lim supn→∞(1/n)H(Xn) is already given in Theorem

3.19.

1. S̄(X) ≤ T̄ (X).

Definition 3.22 states that there exists, for all γ > 0 and all sufficiently large n,

an error-free variable-length code whose average codeword length �n satisfies

1

n
�n < T̄ (X) + γ.

Moreover, the fundamental source coding lower bound for a uniquely decodable

code (cf. [Alajaji & Chen ’18, Thm. 3.22]) is

H(Xn) ≤ �n.

Thus, by letting X̃ = X , we obtain ‖Xn − X̃n‖ = 0 and

1

n
H(X̃n) =

1

n
H(Xn) ≤ 1

n
�n < T̄ (X) + γ.
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This concludes that T̄ (X) is an ε-achievable mean-resolution rate of X for

any ε > 0, i.e.,

S̄(X) = lim
ε→0

S̄ε(X) ≤ T̄ (X).

2. T̄ (X) ≤ S̄(X).

Observe that S̄ε(X) ≤ S̄(X) for 0 < ε < e−1 ≈ 0.36788. Hence, by taking

γ satisfying ε log |X | < γ < 2ε log |X | and for all sufficiently large n, there

exists X̃n such that
1

n
H(X̃n) < S̄(X) + γ

and

‖Xn − X̃n‖ < ε. (3.4.2)

On the other hand, Theorem 3.27 in [Alajaji & Chen’18] proves the existence

of an error-free prefix code for Xn with average codeword length �n satisfies

�n ≤ H(Xn) + log(2) (nats).
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From Lemma 3.18 that states

|H(Xn)−H(X̃n)| ≤ ‖Xn − X̃n‖ · log |X |n
‖Xn − X̃n‖ ≤ ε log

|X |n
ε

,

where the last inequality holds because t log(1/t) is increasing for 0 < t < e−1,

we obtain

1

n
�n ≤ 1

n
H(Xn) +

1

n
log(2)

≤ 1

n
H(X̃n) + ε log |X | − 1

n
ε log(ε) +

1

n
log(2)

≤ S̄(X) + γ + ε log |X | − 1

n
ε log(ε) +

1

n
log(2)

≤ S̄(X) + 2γ,

if n > (log(2) − ε log(ε))/(γ − ε log |X |). Since γ can be made arbitrarily

small, S̄(X) is an achievable source compression rate for variable-length codes;

and hence,

T̄ (X) ≤ S̄(X).
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Again, the above theorem tells us that the minimum source compression ratio for

variable-length code is the mean-resolvability, and the mean-resolvability is exactly

lim supn→∞(1/n)H(Xn).

• Note that lim supn→∞(1/n)H(Xn) ≤ H̄(X), which follows straightforwardly

by the fact that the mean of the random variable −(1/n) logPXn(Xn) is no

greater than its right margin of the support.

• Also note that for stationary-ergodic sources, all these quantities are equal, i.e.,

T (X) = S(X) = H̄(X) = T̄ (X) = S̄(X) = lim sup
n→∞

1

n
H(Xn).
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Example 3.25 Consider a binary random source X1, X2, . . . where {Xi}∞i=1 are

independent random variables with individual distribution

PXi
(0) = Zi and PXi

(1) = 1− Zi,

where {Zi}∞i=1 are pair-wise independent with common uniform marginal distribu-

tion over (0, 1).

You may imagine that the source is formed by selecting from infinitely many

binary number generators. The selecting process {Zi}∞i=1 is independent for each

time instance.
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source Xt
t ∈ I

source Xt2

source Xt1

...

...

...

�
�
�

Selector

�

Z

�. . . , X2, X1

...

Source Generator

Source generator: {Xt}0<t<1 is an independent random process

with PXt(0) = t and PXt(1) = 1 − t, and is also independent

of the selector Z, where Xt is outputted if Z = t. Source

generator of each time instance is independent temporally.
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• It can be shown that such source is not stationary.

• Nevertheless, by means of similar argument as AEP theorem, we can show

that:

−logPX(X1) + logPX(X2) + · · · + logPX(Xn)

n
→ hb(Z) in probability,

where hb(a):=− a log2(a)− (1− a) log2(1− a) is the binary entropy function.

• To compute the ultimate average entropy rate in terms of the random variable

hb(Z), it requires that

−logPX(X1) + logPX(X2) + · · · + logPX(Xn)

n
→ hb(Z) in mean,

which is a stronger result than convergence in probability.
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• With the fundamental properties for convergence, convergence-in-probability

implies convergence-in-mean provided the sequence of random variables is

uniformly integrable, which is true for −(1/n)
∑n

i=1 logPX(Xi) since

sup
n>0

E

[∣∣∣∣∣1n
n∑

i=1

logPX(Xi)

∣∣∣∣∣
]

≤ sup
n>0

1

n

n∑
i=1

E [|logPX(Xi)|]

= sup
n>0

E [|logPX(X)|] , because of i.i.d. of {Xi}ni=1

= E [|logPX(X)|]
= E

[
E

(
|logPX(X)|

∣∣∣∣Z)]
=

∫ 1

0

E

(
|logPX(X)|

∣∣∣∣Z = z

)
dz

=

∫ 1

0

(
z| log(z)| + (1− z)| log(1− z)|)dz

≤
∫ 1

0

log(2)dz = log(2).
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• We therefore have:∣∣∣∣1nH(Xn)− E[hb(Z)]

∣∣∣∣ =

∣∣∣∣E [
−1

n
logPXn(Xn)

]
− E[hb(Z)]

∣∣∣∣
≤ E

[∣∣∣∣−1

n
logPXn(Xn)− hb(Z)

∣∣∣∣] → 0 as n → ∞.

• Consequently,

lim sup
n→∞

1

n
H(Xn) = E[hb(Z)]

=

∫ 1

0

[z log(z) + (1− z) log(1− z)]dz

=

∫ 1

0

2z log(z)dz

=

(
z2 log(z) +

1

2
z2
)∣∣∣∣1

0

=
1

2
nats or

1

2 log(2)
≈ 0.72135 bits.

• However, it can be shown that the ultimate CDF of −(1/n) logPXn(Xn) is

Pr[hb(Z) ≤ t] for t ∈ [0, log(2)]. The sup-entropy rate of X is log(2) nats or 1

bit (which is the right-margin of the ultimate CDF of −(1/n) logPXn(Xn)).
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• Hence, for this unstationary source, the minimum average codeword length for

fixed-length codes and variable-length codes are different, which are 0.72135

bits and 1 bit, respectively.

0

1

0 log(2) nats

The ultimate CDF of −(1/n) logPXn(Xn): Pr{hb(Z) ≤ t}.


