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Shannon’s entropy IT: 1-1

e Entropy of a discrete random variable X:
H(X):=— ) Px(x)log Px(x) = Ex [~ log Px(X)] nats
reX

is a measure of the average amount of uncertainty in X.

e Entropy rate for a sequence of random variables X1, Xo,..., X,,,...is
1 1
lim —H(X") = lim —FE[—log Px»(X")],
n—oo 1, n—oo 1

assuming the limit exists.

e Operation meaning: Shannon’s source coding theorems for stationary and er-
godic systems.

e Question: Does these measures have the same operational significance for sys-
tems with time-varying and non-stationary statistics. Answer: No.

e Solution: Require new entropy measure which can appropriately characterize
the operational limits of arbitrary stochastic systems.



Arbitrary systems with memory IT: 122

e [n general, there are two indices for random variables or observations: a time
index and a space index.

e When a sequence of random variables is denoted by
X1, X, o, Xy,

the subscript ¢ of X; can be treated as either a time index or a space index,
but not both.

e Hence, when a sequence of random variables is a function of both time and
space, the notation of X1, Xo, ..., X, ..., is by no means sufficient; and there-
fore, a new model for a general time-varying source, such as

where ¢ is the time index and n is the space or position index (or vice versa),
becomes significant.
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e When block-wise (fixed-length) compression of such source (with blocklength
n) is considered, the same question as to the compression of i.i.d. source arises:

what is the minimum compression rate (say in bits per
source sample) for which the probability of error probabi-
lity can be made arbitrarily small as the blocklength goes to
infinity?

e To answer the question, information theorists have to find a sequence of data
compression codes for each blocklength n and investigate if the decompression
error goes to zero as n approaches infinity.
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e However, unlike those simple source models such as discrete memorylessness,
the source being arbitrary may exhibit distinct statistics for each blocklength
n; e.g., for

n=1: X1(1)

n=2: X7, x5’

n=3: X", xP x{¥

n=4: x" xW¥ xW x¥ (1.0.2)

the statistics of X1<4) could be different from X1<1), X1<2) and X1<3) (i.e., the
source statistics are not necessarily consistent).

e Since the model in question (1.0.2) is general, and the system statistics can be
arbitrarily defined, it is therefore named an arbitrary system with memory.
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e The triangular array of random variables in (1.0.2) is denoted by a boldface
letter as
X={X"}7,,

where

for convenience, we also write

x={x" = (x{" x{", x|



Spectrum and Quantile IT: 1-6

Definition 1.1 (Inf/sup-spectrum) If {A4,}°°, is a sequence of random vari-
ables, then its inf-spectrum u(-) and its sup-spectrum u(-) are defined by

u(f):=liminf Pr{A, <6} and u(f):=limsupPr{A, <6},

n—00 n—00

respectively, where 6 € R.

e u(-) and wu(-) are respectively the liminf and the limsup of the cumulative
distribution function (CDF) of A,,.

Definition 1.2 (Quantile of inf/sup-spectrum) For any 0 < § < 1, For
any 0 < § < 1, the quantile Us of the sup-spectrum @(-) and the quantile Uy of
the inf-spectrum u(-) are defined by

Us:=sup{0: u(0) <6} and Us=sup{f:u(d) <},

respectively. It follows from the above definitions that Us and Uy are right-continuous
and non-decreasing in d. Note that the supremum of an empty set is defined to be
—00.

e If u(-) is strictly increasing, then the quantile is exactly its inverse: Us = @~ *(9).



Liminf in probability and limsup in probability IT: 1.7

o liminf in probability U of {A,}°° is the largest extended real number such
that for all £ > 0,
lim Pr[A, <U — ¢ =0.

n—oo

e limsup in probability U of {A,}°° is the smallest extended real number such
that for all &€ > 0,
lim Pr[A, > U +¢ = 0.

n—o0o

U=1mUs = Uy
510

and
U= 1(%%1 Us = sup{6 : u(0) < 1}.

e [t readily follows from the above definitions that

U<Us<U; <U fordel0,1).

001:U1:OO-



Liminf in probability and limsup in probability I 1.8

1 ___________________________________________________________________________________
5 _____________________________________________________
O | L]
U Uy Us Us Uy~ U

The asymptotic CDFs (spectrums) of { A, }°°, and their quantiles:
u(-) = sup-spectrum of {A,},  wu(:) = inf-spectrum of {A,},

Us = quantile of u(-), Us = quantile of u(-),
U=limsUs=Up, Up-=limepUe, U =limsy Us.



Properties of quantile

Lemma 1.4 Assume:

e Two random sequences: {A,}°2, and {B,}>;;
e u(-) = sup-spectrum of {A,,}>° ;; Us = quantile of u(-);

inf-spectrum of {A,}°°; Us = quantile of u(-);

nl?

Vs = quantile of u(-);

nl?

ul(-) =
e U(-) = sup-spectrum of { B, }>
(+) = inf-spectrum of {B,}°°; Vs = quantile of u(-);

e (u+ v)(+) = sup-spectrum of {A,, + B,}>°, i.e.,

(u+ v)(0):=limsup Pr{A, + B, < 0};

n—o0

(U + V)5 = quantile of (u + v)(+);

e (u+ v)(-) = inf-spectrum of {A,, + B,}>2, i.e.,

(u 4 v)(@):=liminf Pr{A, + B, < 0};

n—o0

+0)().

(U + V)5 = quantile of (u

II:

1-9



Properties of quantile

Then the following statements hold.

IT: 1-10

1. Us and Us are both non-decreasing and right-continuous functions of § for

6 € [0,1].
2. lims o Us = Up and limg g Us = U,.
3. Foro >0,v>0,and 0 +v < 1,
(U4 V)sry 2 Us + V5,

and

U+ V)5 >Us+ V..
4. Foro >0,v>0,and 0 +v < 1,
(U + V)5 < Ué—i—v + ‘7(1—7)7

and

(U+V)s < Ug+7 + ‘_/(1_,”.

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)
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In Definitions 1.1 and 1.2,

e A, = normalized entropy density, i.e.,

1 1
—hxn(Xn)Z: — ﬁ lOg Pxn(Xn),

n

1
d-inf-entropy rate Hs( X ) = quantile of the sup-spectrum of —hxn(X")
n

_ 1
d-sup-entropy rate Hs(X ) = quantile of the inf-spectrum of —hx»(X").
n

e A, = normalized information density, i.e.,

1. 1 1, P (XY
e (X YT) = iy (XY )= os 5o B

1
d-inf-information-rate I5(X ;Y ) = quantile of the sup-spectrum of —ixnyn(X"; Y™)
n

_ 1
d-sup-information-rate I5(X;Y ) = quantile of the inf-spectrum of —ixnyn(X"; Y™).
n
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e A, = normalized log-likelihood ratio, i.e.,

1 . 1. Pxa(XM)
—dxn(X"||X"):=—log ——=

A 1 A
d-inf-divergence rate Ds( X || X) = quantile of the sup-spectrum of —dxn»(X"|| X")
n

_ A 1 A
d-sup-divergence rate Ds( X || X) = quantile of the inf-spectrum of —dx»(X"|| X™).
n

e Notes:

— The inf-entropy-rate H(X) and the sup-entropy-rate H(X) are special
cases of the d-inf/sup-entropy rate measures:

H(X)=Hy(X), and H(X) = lim Hy(X).

— Concept: If the random variable (1/n)h(X") exhibits a limiting distribu-
tion, and suppose the limiting distribution of (1/n)hx»(X") is positive over
(—2,2); and zero, otherwise. Then H(X) =2 and H(X ) = —2.
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Entropy Measures

system arbitrary source X

1 1
norm. entropy density ﬁh xn(X")i=— - log Pxn(X")

- 1
entropy sup-spectrum | A(6):=limsup Pr {—th(X”) < 9}
n

n—00

1
entropy inf-spectrum | A(6):=lim inf Pr {—th(Xn) < 8}
n

n—oo

d-inf-entropy rate Hs(X):=sup{f : h() < 6}
J-sup-entropy rate Hs(X):=sup{f : h(0) < §}
sup-entropy rate H(X):=limgy Hs(X)
inf-entropy rate H(X):=Hy(X)

Generalized entropy measures where § € [0, 1].



(zeneralized information measures

Mutual Information Measures

system

arbitrary channel Py = Py x
with input X and output Y

norm. information density

1 . n n
— iy (X" YY)
n

1 1 PXn7yn(Xn, Yn)
= —1lo
n % Pya(X7) X Pya(Y7)

II: 1-14

information sup-spectrum

(0):=lim sup Pr

n—00

information inf-Spectrum

1
{—ixnwn(Xn; Yn) S 9}
n
1(6):=liminf Pr

1
n—oo mn

d-inf-information rate

I5(X; Y ):=sup{0 : i(0) <6}

d-Sup-Information Rate

Ii(X;Y):=sup{f : i(0) < 0}

sup-information rate

[(X;Y):=limgy I5(X;Y)

inf-information rate

I(X;Y):=1(X;Y)

Generalized mutual information measures where § € [0, 1].



(zeneralized information measures

Divergence Measures

system

arbitrary sources X and X

norm. log-likelihood ratio

1 . 1 Pxn(X™)
—dxn(X"| X"):=—log ————=
oax (X"]X™) n 0g P, (X7

divergence sup-spectrum

d(#):=limsup Pr

n—0o0

1 N
{Laxrin <o}
n

divergence inf-spectrum

1 A
d(0):=liminf Pr {—an(X”HX”) < 8}
n

n—oo

0-inf-divergence rate

Ds(X || X):=sup{f : d(f) < 5}

0-sup-divergence rate

Dy(X || X):=sup{0 : d(0) < &}

sup-divergence rate

D(XHX)Z:hm(m D(;(XHX)

inf-divergence rate

D(X||X):=Do(X | X)

Generalized divergence measures where 6 € [0, 1].

IT: 1-15



Properties of generalized information measures I1: 1-16

e An example of basic properties for Shannon’s entropy:

I(X;Y)=H(Y)—- HY|X).
— By taking 6 = 0 and letting v | 0 in

(U+V)5+72£]5—|—nyf0r520,’720, and 0 +v <1

and
(U+V)s SU(;H—F‘_/@_,Y) for 6 > 0,7>0, and d +v < 1,
we obtain
U+V) ZUO"F%BIYVZU—FY
and

(U+V)< %Uﬁ%%_” =U+V.

— Meaning: The liminf in probability of a sequence of random variables A,, +
B,, is upper bounded by the liminf in probability of A, plus the limsup

in probability of B,; and is lower bounded by the sum of the liminfs in
probability of A, and B,,.
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— This fact can be used to show that
I(X;Y)+H(Y|X) <H(Y) < I(X;Y)+ H(Y|X),
or equivalently,

HY)— H(Y|X) < [(X;Y) <H(Y) —H(Y|X).



Properties of generalized information measures IT: 118

Lemma 1.5 For a source X with finite alphabet X and arbitrary sources Y and
Z , the following properties hold.

1. H5(X) > 0 for § € [0,1]. (This property also applies to Hs(X), Is(X:;Y),
I5(X:Y), Ds(X || X), and Ds(X || X).)

2. _]5(X;Y) = _[5(Y;X) and jg(X;Y) = jg(Y;X) for 0 € [O, 1].
3. For0<o<1,0<y<land o+~ <1,

L;i(XY)<H; (Y)-H,(Y|X), (1.4.1)
I(X,Y) < Hy o (Y) — H(Y|X), (1.4
I(X:Y) < Hyo(Y) — H,(Y]X), (1.4.3)
I, (X;Y) > Hy(Y) — Hy ) (Y]X), (1.4.4)
and
I_(;H(X' Y)> Hs(Y) — f] _7>(Y]X). (1.4.5)

s
holds for (1.4.1) and (1.4.2), and the case
4) and (1.4.5).)

(Note that the case of (6,7) = (1,0)

of (9,7) = (0,1) holds for (1.4.3), (1.4.

4.0 <Hgs(X) < Hs(X) <log|X| for § € [0, 1), where each Xi(n) takes values in
Xfori=1,...,nandn=1,2,...



Properties of generalized information measures I1: 1-19

5. Ii(X,Y: Z) > I(X: Z) for 6 € [0, 1].

Property 1:
1

Pr {——logPXn(X") < O} = 0,
n

1 Pya(X") 1 Pya(z")
Pr<—log——= < — = Pxnqax" € X" . —1 < —
r{n 0g PXn(X") V} X {x - 0g PXn(CUn) 14
— > Pxn(z")
{anexn . Pyn(en)<Pg,(am)e—}
Z PXn (xn)e—m/

{x"EX” ; PXn(x”)<PXn(x”)e"V}

S e—nV . Z PXH(:L,TL)

{x”EX” : PXn(x”)<PXn(a:")e”V}
< e, (1.4.6)

IA

and, by following the same procedure as (1.4.6),

| Pyaye(X7, Y7 } )
Pri—1lo ’ < —vy < e "
{n ® Prn (X ) Pya (Y1) =




Properties of generalized information measures I1: 1-20

Property 2: An immediate consequence of the definition.

Property 3: Follow from the facts that

n n n

where 1 1
Ethjyn(Yn‘Xn)I: — ﬁ 10g Pyn|Xn(Yn‘Xn)

Property 4: Hj(-) is non-decreasing in §, Hs(X) < H(X), and H(X) <
log |X]. The last inequality can be proved as follows:

1
Pr {—hxn(Xn) <log|X| + V} |

n
1 Pyn(X7)
— 1—Pwia" € X" : Zlog—— 2 «
3 {x - n o 1] V}

Z 1_ e—ny’

where the last step can be obtained by using the same procedure as (1.4.6).
Therefore, h(log|X |+ v) = 1 for any v > 0, which indicates that H(X) <

log | X|.



Properties of generalized information measures I1: 1-21

Property 5:

EZXTL,Y”,Z”(X ,Y ,Z ):EZXR7ZTL(X ,Z )+EZX”,Y”,Z”(Y ,Z ’X )
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Lemma 1.6 (Data processing lemma) Fix § € [0,1]. Consider a channel
with finite input and output alphabets, X and ), respectively, and with distribution
Py (y™|a") = Pynxn(y"2") = [ 1i_y Py x,;(yil2i) for all n, 2™ € X™ and y" € Y.
Then

15( X1, X3) < I5( X5 X9).

Proof: By Property 5 of Lemma 1.5, we get
15(X1; X3) < T5(X 15 X0, X3) = 15(X1; X)),
where the equality holds because

llog Pxyn xp xp (2, 25, x3) :llog Pxn xp(z7, 75)
n = Pxp(e])Pxp xo(zy,28)  n 7 Pxp(ay)Pxp(xh)

O

Lemma 1.7 (Optimality of independent inputs) Fix € [0,1). Consider
a finite-alphabet channel with Pyn(y"[2") = Pynxn(y"|2") = [T:Ly Py x, (yil@:)
for all n. For any input X and its corresponding output Y,

Li(X:Y)< Li(X,Y)=1(X;Y),

where Y is the output due to X, which is an independent process with the same
first order statistics as X, i.e., Pgn(2") = [ [, Px,(z:)-
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System setting;:
o et ¥ =) ={0,1} and

1 1

where the arbitrary noise Z is independent of the channel input X.

e Assume that X is a Bernoulli uniform input, i.e., an i.i.d. random process with
uniform marginal distribution.

e Then the resultant channel output Y is also Bernoulli uniform no matter what
distribution Z has.
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Derivations:

- 1
i(0) = limsup Pr {— log
n

n—o0

Py xn (Y™ X") - 9}
Pyn (Y”) o

1 1
= limsup Pr{ log Pyn(Z") — —log Pyn(Y") < 0}
n—00 n n
1
= limsup Pr{ log Pyn(Z") < 6 — log(2 )}
n—00 n
1
= limsup Pr { —log Pzn(Z") > log(2) — 9}
n—00 n
1
= 1 — liminf Pr {——logPZn(Z") < log(2) — 0} :
n—oo mn
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Hence, for e € (0, 1),
I.(X:Y) = sup{0:i(f) <¢e}
1
= sup{ 1 — liminf Pr {——log Pyn(Z") < log(2) — 9} < 8}
n

n—oo

)
1
= sup {8 lim inf Pr {——logPZn(Z”) < log(2) — 8} >1— 5}
n
<p

n—0o0
1
= sup{ (log(2) - lim inf Pr {——log Pyn(Z") } >1— 8}
n—oo n
1
= log(2) +sup{ S : liminf Pr {——logPZn(Z") < B} > 1 — 5}
n—oo mn
1
= log(2) — inf {B - lim inf Pr {——logPZn(Z") < 5} >1— 8}
n—oo mn
1
= log(2) — sup {5 - lim inf Pr {——logPZn(Z”) < B} <1-— 8}
n—oo n
1
< log(2) — sup {5 - lim inf Pr {——logPZn(Z”) < 5} <1-— 5}
n—oo n
= log(2) — lim Hg(Z).

ot (1—¢)
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Also, for e € (0,1),

1 Pxnyn(X™, Y™
IL.(X)Y) > sup{@:limsupPr [—log Xy (X", V)

n—+00 1% Pra(X7) Pyn(Y7) < 9] < s} (1.5.3)

n—oo

1
= log(2) — sup {B :liminf Pr {——log Pyn(Z") < ﬁ} <1- 8}
n
= log(2) — Hy)(2),
where (1.5.3) follows from the fact described in Footnote 3. Therefore,

log(2) — Hi—(Z) < I.(X;Y) < log(2) — wl(iln;la) H,(Z) foree (0,1).

By taking € | 0, we obtain
I(X:Y) = 1(X;Y) =1og(2) — H(Z).

Based on this result, we can now compute I.(X;Y) for some specific examples.



Computation of general information measures

Example 1.8

7 = { all-zero sequence with probability J;

Bernoulli (with parameter p) with probability 1 — £.

Then
0, with probability f;

1
—hn(Z") —
n hy(p), with probability 1 — 3,

where hy(p):=— plogp — (1 — p)log(1 — p).

II: 1-27
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Therefore,
L —hy(p), f0<e<1—p;

-Ig(X;Y)_{L if1-8<e<l.



Computation of general information measures

Example 1.9 Z =non-stationary binary independent sequence with

Pr {Z§”> = 0} —1-Pr {Zf") = 1} = pi,

then by the fact that

IA

Var [_ log PZZ.(”) (7" )] E [(log PZZ.W (Zi<n))> 2]

sup [pilogpi)? + (1 — pi)(log(1 — pi))?]

O<p;<1
} — 0,

IA

< log(2),

we have (by Chebyshev’s inequality) that as n — oo,

Pr{‘——logPZn ——ZH( )

for any v > 0.

IT: 1-29



Computation of general information measures

clustering points

log(2) — H(Z)

The possible limiting spectrums of (1/n)ixnyn(X"; Y™).

log(2) —H(Z)

IT: 1-30
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Therefore, Hi1—.y(Z) is equal to

4

_ 1
H(Z) = hmsup—ZH(Z@(n))
n—oo 1~
Ao (Z) =4 - . il , fore e (0,1];
(1=¢) B = limsup — hy(p;
Hoopn; b(pi)
+00, for e = 0.

Consequently,

_ 1
1—H(Z)=1-—limsup — hy(p;), fore € (0,1),
XY — (Z) n%mpnz o(pi) 0,1)

00, for e = 1.



