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Shannon’s entropy II: 1-1

• Entropy of a discrete random variable X :

H(X):=−
∑
x∈X

PX(x) logPX(x) = EX [− logPX(X)] nats

is a measure of the average amount of uncertainty in X .

• Entropy rate for a sequence of random variables X1, X2, . . . , Xn, . . . is

lim
n→∞

1

n
H(Xn) = lim

n→∞
1

n
E [− logPXn(Xn)] ,

assuming the limit exists.

• Operation meaning: Shannon’s source coding theorems for stationary and er-

godic systems.

• Question: Does these measures have the same operational significance for sys-

tems with time-varying and non-stationary statistics. Answer: No.

• Solution: Require new entropy measure which can appropriately characterize

the operational limits of arbitrary stochastic systems.



Arbitrary systems with memory II: 1-2

• In general, there are two indices for random variables or observations: a time

index and a space index.

• When a sequence of random variables is denoted by

X1, X2, . . . , Xn, . . . ,

the subscript i of Xi can be treated as either a time index or a space index,

but not both.

• Hence, when a sequence of random variables is a function of both time and

space, the notation of X1, X2, . . . , Xn, . . ., is by no means sufficient; and there-

fore, a new model for a general time-varying source, such as

X
(n)
1 , X

(n)
2 , . . . , X

(n)
t , . . . ,

where t is the time index and n is the space or position index (or vice versa),

becomes significant.



Arbitrary systems with memory II: 1-3

• When block-wise (fixed-length) compression of such source (with blocklength

n) is considered, the same question as to the compression of i.i.d. source arises:

what is the minimum compression rate (say in bits per

source sample) for which the probability of error probabi-

lity can be made arbitrarily small as the blocklength goes to

infinity?

• To answer the question, information theorists have to find a sequence of data

compression codes for each blocklength n and investigate if the decompression

error goes to zero as n approaches infinity.



Arbitrary systems with memory II: 1-4

• However, unlike those simple source models such as discrete memorylessness,

the source being arbitrary may exhibit distinct statistics for each blocklength

n; e.g., for

n = 1 : X
(1)
1

n = 2 : X
(2)
1 , X

(2)
2

n = 3 : X
(3)
1 , X

(3)
2 , X

(3)
3

n = 4 : X
(4)
1 , X

(4)
2 , X

(4)
3 , X

(4)
4 (1.0.2)

the statistics of X
(4)
1 could be different from X

(1)
1 , X

(2)
1 and X

(3)
1 (i.e., the

source statistics are not necessarily consistent).

• Since the model in question (1.0.2) is general, and the system statistics can be

arbitrarily defined, it is therefore named an arbitrary system with memory.



Arbitrary systems with memory II: 1-5

• The triangular array of random variables in (1.0.2) is denoted by a boldface

letter as

X := {Xn}∞n=1 ,

where

Xn:=
(
X

(n)
1 , X

(n)
2 , . . . , X (n)

n

)
;

for convenience, we also write

X :=
{
Xn =

(
X

(n)
1 , X

(n)
2 , . . . , X (n)

n

)}∞

n=1
.



Spectrum and Quantile II: 1-6

Definition 1.1 (Inf/sup-spectrum) If {An}∞n=1 is a sequence of random vari-

ables, then its inf-spectrum u(·) and its sup-spectrum ū(·) are defined by

u(θ):= lim inf
n→∞ Pr{An ≤ θ} and ū(θ):= lim sup

n→∞
Pr{An ≤ θ},

respectively, where θ ∈ R.

• u(·) and ū(·) are respectively the liminf and the limsup of the cumulative

distribution function (CDF) of An.

Definition 1.2 (Quantile of inf/sup-spectrum) For any 0 ≤ δ ≤ 1, For

any 0 ≤ δ ≤ 1, the quantile Uδ of the sup-spectrum ū(·) and the quantile Ūδ of

the inf-spectrum u(·) are defined by

Uδ:= sup{θ : ū(θ) ≤ δ} and Ūδ:= sup{θ : u(θ) ≤ δ},
respectively. It follows from the above definitions thatUδ and Ūδ are right-continuous

and non-decreasing in δ. Note that the supremum of an empty set is defined to be

−∞.

• If ū(·) is strictly increasing, then the quantile is exactly its inverse: Uδ = ū−1(δ).



Liminf in probability and limsup in probability II: 1-7

• liminf in probability U of {An}∞n=1 is the largest extended real number such

that for all ξ > 0,

lim
n→∞Pr[An ≤ U − ξ] = 0.

• limsup in probability Ū of {An}∞n=1 is the smallest extended real number such

that for all ξ > 0,

lim
n→∞Pr[An ≥ Ū + ξ] = 0.

•
U = lim

δ↓0
Uδ = U0

and

Ū = lim
δ↑1

Ūδ = sup{θ : u(θ) < 1}.

• It readily follows from the above definitions that

U ≤ Uδ ≤ Ūδ ≤ Ū for δ ∈ [0, 1).

• Ū1 = U1 = ∞.



Liminf in probability and limsup in probability II: 1-8

�

�

ū(·) u(·)

U Ū

δ

0

1

U1−Ū0 ŪδUδ

The asymptotic CDFs (spectrums) of {An}∞n=1 and their quantiles:

ū(·) = sup-spectrum of {An}, u(·) = inf-spectrum of {An},
Uδ = quantile of ū(·), Ūδ = quantile of u(·),
U = limδ↓0Uδ = U0, U1− = limξ↑1Uξ, Ū = limδ↑1 Ūδ.



Properties of quantile II: 1-9

Lemma 1.4 Assume:

• Two random sequences: {An}∞n=1 and {Bn}∞n=1;

• ū(·) = sup-spectrum of {An}∞n=1; Uδ = quantile of ū(·);
• u(·) = inf-spectrum of {An}∞n=1; Ūδ = quantile of u(·);
• v̄(·) = sup-spectrum of {Bn}∞n=1; Vδ = quantile of ū(·);
• v(·) = inf-spectrum of {Bn}∞n=1; V̄δ = quantile of u(·);
• (u + v)(·) = sup-spectrum of {An + Bn}∞n=1, i.e.,

(u + v)(θ):= lim sup
n→∞

Pr{An + Bn ≤ θ};

(U + V )δ = quantile of (u + v)(·);
• (u + v)(·) = inf-spectrum of {An +Bn}∞n=1, i.e.,

(u + v)(θ):= lim inf
n→∞

Pr{An +Bn ≤ θ};

(U + V )δ = quantile of (u + v)(·).



Properties of quantile II: 1-10

Then the following statements hold.

1. Uδ and Ūδ are both non-decreasing and right-continuous functions of δ for

δ ∈ [0, 1].

2. limδ↓0Uδ = U0 and limδ↓0 Ūδ = Ū0.

3. For δ ≥ 0, γ ≥ 0, and δ + γ ≤ 1,

(U + V )δ+γ ≥ Uδ + Vγ, (1.2.1)

and

(U + V )δ+γ ≥ Uδ + V̄γ. (1.2.2)

4. For δ ≥ 0, γ ≥ 0, and δ + γ ≤ 1,

(U + V )δ ≤ Uδ+γ + V̄(1−γ), (1.2.3)

and

(U + V )δ ≤ Ūδ+γ + V̄(1−γ). (1.2.4)



Generalized information measures II: 1-11

In Definitions 1.1 and 1.2,

• An = normalized entropy density, i.e.,

1

n
hXn(Xn):=− 1

n
logPXn(Xn),

δ-inf-entropy rateHδ(X) = quantile of the sup-spectrum of
1

n
hXn(Xn)

δ-sup-entropy rate H̄δ(X) = quantile of the inf-spectrum of
1

n
hXn(Xn).

• An = normalized information density, i.e.,

1

n
iXnWn(Xn;Y n) =

1

n
iXn,Y n(Xn;Y n):=

1

n
log

PXn,Y n(Xn, Y n)

PXn(Xn)PY n(Y n)
,

δ-inf-information-rate Iδ(X ;Y ) = quantile of the sup-spectrum of
1

n
iXnWn(Xn;Y n)

δ-sup-information-rate Īδ(X ;Y ) = quantile of the inf-spectrum of
1

n
iXnWn(Xn;Y n).



Generalized information measures II: 1-12

• An = normalized log-likelihood ratio, i.e.,

1

n
dXn(Xn‖X̂n):=

1

n
log

PXn(Xn)

PX̂n(Xn)

δ-inf-divergence rate Dδ(X‖X̂) = quantile of the sup-spectrum of
1

n
dXn(Xn‖X̂n)

δ-sup-divergence rate D̄δ(X‖X̂) = quantile of the inf-spectrum of
1

n
dXn(Xn‖X̂n).

• Notes:

– The inf-entropy-rateH(X) and the sup-entropy-rate H̄(X) are special

cases of the δ-inf/sup-entropy rate measures:

H(X) =H0(X), and H̄(X) = lim
δ↑1

H̄δ(X).

– Concept: If the random variable (1/n)h(Xn) exhibits a limiting distribu-

tion, and suppose the limiting distribution of (1/n)hXn(Xn) is positive over

(−2, 2); and zero, otherwise. Then H̄(X) = 2 andH(X) = −2.



Generalized information measures II: 1-13

Entropy Measures

system arbitrary source X

norm. entropy density
1

n
hXn(Xn):=− 1

n
logPXn(Xn)

entropy sup-spectrum h̄(θ):= lim sup
n→∞

Pr

{
1

n
hXn(Xn) ≤ θ

}

entropy inf-spectrum h(θ):= lim inf
n→∞ Pr

{
1

n
hXn(Xn) ≤ θ

}
δ-inf-entropy rate Hδ(X):= sup{θ : h̄(θ) ≤ δ}
δ-sup-entropy rate H̄δ(X):= sup{θ : h(θ) ≤ δ}
sup-entropy rate H̄(X):= limδ↑1 H̄δ(X)

inf-entropy rate H(X):=H0(X)

Generalized entropy measures where δ ∈ [0, 1].



Generalized information measures II: 1-14

Mutual Information Measures

system arbitrary channel PW = PY |X
with input X and output Y

norm. information density
1

n
iXnWn(Xn;Y n)

:=
1

n
log

PXn,Y n(Xn, Y n)

PXn(Xn)× PY n(Y n)

information sup-spectrum ī(θ):= lim sup
n→∞

Pr

{
1

n
iXnWn(Xn;Y n) ≤ θ

}

information inf-Spectrum i(θ):= lim inf
n→∞ Pr

{
1

n
iXnWn(Xn;Y n) ≤ θ

}
δ-inf-information rate Iδ(X ;Y ):= sup{θ : ī(θ) ≤ δ}
δ-Sup-Information Rate Īδ(X ;Y ):= sup{θ : i(θ) ≤ δ}
sup-information rate Ī(X ;Y ):= limδ↑1 Īδ(X ;Y )

inf-information rate I(X ;Y ):= I0(X ;Y )

Generalized mutual information measures where δ ∈ [0, 1].



Generalized information measures II: 1-15

Divergence Measures

system arbitrary sources X and X̂

norm. log-likelihood ratio
1

n
dXn(Xn‖X̂n):=

1

n
log

PXn(Xn)

PX̂n(Xn)

divergence sup-spectrum d̄(θ):= lim sup
n→∞

Pr

{
1

n
dXn(Xn‖X̂n) ≤ θ

}

divergence inf-spectrum d(θ):= lim inf
n→∞ Pr

{
1

n
dXn(Xn‖X̂n) ≤ θ

}
δ-inf-divergence rate Dδ(X‖X̂):= sup{θ : d̄(θ) ≤ δ}
δ-sup-divergence rate D̄δ(X‖X̂):= sup{θ : d(θ) ≤ δ}
sup-divergence rate D̄(X‖X̂):= limδ↑1 D̄δ(X‖X̂)

inf-divergence rate D(X‖X̂):=D0(X‖X̂)

Generalized divergence measures where δ ∈ [0, 1].



Properties of generalized information measures II: 1-16

• An example of basic properties for Shannon’s entropy:

I(X ;Y ) = H(Y )−H(Y |X).

– By taking δ = 0 and letting γ ↓ 0 in

(U + V )δ+γ ≥ Uδ + Vγ for δ ≥ 0, γ ≥ 0, and δ + γ ≤ 1

and

(U + V )δ ≤ Uδ+γ + V̄(1−γ) for δ ≥ 0, γ ≥ 0, and δ + γ ≤ 1,

we obtain

(U + V ) ≥ U0 + lim
γ↓0

Vγ ≥ U + V

and

(U + V ) ≤ lim
γ↓0

Uγ + lim
γ↓0

V̄(1−γ) = U + V̄ .

– Meaning: The liminf in probability of a sequence of random variables An+

Bn is upper bounded by the liminf in probability of An plus the limsup

in probability of Bn; and is lower bounded by the sum of the liminfs in

probability of An and Bn.



Properties of generalized information measures II: 1-17

– This fact can be used to show that

I(X ;Y ) +H(Y |X) ≤H(Y ) ≤ I(X ;Y ) + H̄(Y |X),

or equivalently,

H(Y )− H̄(Y |X) ≤ I(X ;Y ) ≤H(Y )−H(Y |X).



Properties of generalized information measures II: 1-18

Lemma 1.5 For a source X with finite alphabet X and arbitrary sources Y and

Z, the following properties hold.

1. H̄δ(X) ≥ 0 for δ ∈ [0, 1]. (This property also applies toHδ(X), Īδ(X ;Y ),

Iδ(X ;Y ), D̄δ(X‖X̂), and Dδ(X‖X̂).)

2. Iδ(X ;Y ) = Iδ(Y ;X) and Īδ(X ;Y ) = Īδ(Y ;X) for δ ∈ [0, 1].

3. For 0 ≤ δ < 1, 0 ≤ γ < 1 and δ + γ ≤ 1,

Iδ(X ;Y ) ≤Hδ+γ(Y )−Hγ(Y |X), (1.4.1)

Iδ(X;Y ) ≤ H̄δ+γ(Y )− H̄γ(Y |X), (1.4.2)

Īδ(X ;Y ) ≤ H̄δ+γ(Y )−Hγ(Y |X), (1.4.3)

Iδ+γ(X ;Y ) ≥Hδ(Y )− H̄(1−γ)(Y |X), (1.4.4)

and

Īδ+γ(X ;Y ) ≥ H̄δ(Y )− H̄(1−γ)(Y |X). (1.4.5)

(Note that the case of (δ, γ) = (1, 0) holds for (1.4.1) and (1.4.2), and the case

of (δ, γ) = (0, 1) holds for (1.4.3), (1.4.4) and (1.4.5).)

4. 0 ≤Hδ(X) ≤ H̄δ(X) ≤ log |X | for δ ∈ [0, 1), where each X
(n)
i takes values in

X for i = 1, . . . , n and n = 1, 2, . . ..



Properties of generalized information measures II: 1-19

5. Iδ(X,Y ;Z) ≥ Iδ(X ;Z) for δ ∈ [0, 1].

Property 1:

Pr

{
−1

n
logPXn(Xn) < 0

}
= 0,

Pr

{
1

n
log

PXn(Xn)

PX̂n(Xn)
< −ν

}
= PXn

{
xn ∈ X n :

1

n
log

PXn(xn)

PX̂n(xn)
< −ν

}
=

∑
{
xn∈X n : PXn(xn)<P

X̂n(xn)e−nν}

PXn(xn)

≤
∑

{
xn∈X n : PXn(xn)<P

X̂n(xn)enν
}PX̂n(x

n)e−nν

≤ e−nν ·
∑

{
xn∈X n : PXn(xn)<P

X̂n(xn)enν
}PX̂n(x

n)

≤ e−νn, (1.4.6)

and, by following the same procedure as (1.4.6),

Pr

{
1

n
log

PXn,Y n(Xn, Y n)

PXn(Xn)PY n(Y n)
< −ν

}
≤ e−νn.



Properties of generalized information measures II: 1-20

Property 2: An immediate consequence of the definition.

Property 3: Follow from the facts that

1

n
hY n(Y n) =

1

n
iXn,Y n(Xn;Y n) +

1

n
hXn,Y n(Y n|Xn),

where
1

n
hXn,Y n(Y n|Xn):=− 1

n
logPY n|Xn(Y n|Xn).

Property 4: H̄δ(·) is non-decreasing in δ, H̄δ(X) ≤ H̄(X), and H̄(X) ≤
log |X |. The last inequality can be proved as follows:

Pr

{
1

n
hXn(Xn) ≤ log |X | + ν

}
|

= 1− PXn

{
xn ∈ X n :

1

n
log

PXn(Xn)

1/|X |n < −ν

}
≥ 1− e−nν,

where the last step can be obtained by using the same procedure as (1.4.6).

Therefore, h(log |X | + ν) = 1 for any ν > 0, which indicates that H̄(X) ≤
log |X |.



Properties of generalized information measures II: 1-21

Property 5:

1

n
iXn,Y n,Zn(Xn, Y n;Zn) =

1

n
iXn,Zn(Xn;Zn) +

1

n
iXn,Y n,Zn(Y n;Zn|Xn).



Properties of generalized information measures II: 1-22

Lemma 1.6 (Data processing lemma) Fix δ ∈ [0, 1]. Consider a channel

with finite input and output alphabets, X and Y , respectively, and with distribution

PWn(yn|xn) = PY n|Xn(yn|xn) = ∏n
i=1 PYi|Xi

(yi|xi) for all n, xn ∈ X n and yn ∈ Yn.

Then

Iδ(X1;X3) ≤ Iδ(X1;X2).

Proof: By Property 5 of Lemma 1.5, we get

Iδ(X1;X3) ≤ Iδ(X1;X2,X3) = Iδ(X1;X2),

where the equality holds because

1

n
log

PXn
1 ,X

n
2 ,X

n
3
(xn1 , x

n
2 , x

n
3)

PXn
1
(xn1)PXn

2 ,X
n
3
(xn2 , x

n
3)

=
1

n
log

PXn
1 ,X

n
2
(xn1 , x

n
2)

PXn
1
(xn1)PXn

2
(xn2)

.

Lemma 1.7 (Optimality of independent inputs) Fix δ ∈ [0, 1). Consider

a finite-alphabet channel with PWn(yn|xn) = PY n|Xn(yn|xn) = ∏n
i=1 PYi|Xi

(yi|xi)
for all n. For any input X and its corresponding output Y ,

Iδ(X ;Y ) ≤ Iδ(X̄; Ȳ ) = I(X̄ ; Ȳ ),

where Ȳ is the output due to X̄ , which is an independent process with the same

first order statistics as X , i.e., PX
n(xn) =

∏n
i=1 PXi

(xi).



Computation of general information measures II: 1-23

System setting:

• Let X = Y = {0, 1} and

Y
(n)
i = X

(n)
i ⊕ Z

(n)
i

where the arbitrary noise Z is independent of the channel input X .

• Assume that X is a Bernoulli uniform input, i.e., an i.i.d. random process with

uniform marginal distribution.

• Then the resultant channel output Y is also Bernoulli uniform no matter what

distribution Z has.



Computation of general information measures II: 1-24

Derivations:

ī(θ) := lim sup
n→∞

Pr

{
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
≤ θ

}

= lim sup
n→∞

Pr

{
1

n
logPZn(Zn)− 1

n
logPY n(Y n) ≤ θ

}

= lim sup
n→∞

Pr

{
1

n
logPZn(Zn) ≤ θ − log(2)

}

= lim sup
n→∞

Pr

{
−1

n
logPZn(Zn) ≥ log(2)− θ

}

= 1− lim inf
n→∞ Pr

{
−1

n
logPZn(Zn) < log(2)− θ

}
.



Computation of general information measures II: 1-25

Hence, for ε ∈ (0, 1),

Iε(X ;Y ) = sup {θ : ī(θ) ≤ ε}
= sup

{
θ : 1− lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) < log(2)− θ

}
≤ ε

}

= sup

{
θ : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) < log(2)− θ

}
≥ 1− ε

}

= sup

{
(log(2)− β) : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) < β

}
≥ 1− ε

}

= log(2) + sup

{
−β : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) < β

}
≥ 1− ε

}

= log(2)− inf

{
β : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) < β

}
≥ 1− ε

}

= log(2)− sup

{
β : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) < β

}
< 1− ε

}

≤ log(2)− sup

{
β : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) ≤ β

}
< 1− ε

}
= log(2)− lim

δ↑(1−ε)
H̄δ(Z).



Computation of general information measures II: 1-26

Also, for ε ∈ (0, 1),

Iε(X ;Y ) ≥ sup

{
θ : lim sup

n→∞
Pr

[
1

n
log

PXn,Y n(Xn, Y n)

PXn(Xn)PY n(Y n)
< θ

]
< ε

}
(1.5.3)

= log(2)− sup

{
β : lim inf

n→∞ Pr

{
−1

n
logPZn(Zn) ≤ β

}
≤ 1− ε

}
= log(2)− H̄(1−ε)(Z),

where (1.5.3) follows from the fact described in Footnote 3. Therefore,

log(2)− H̄(1−ε)(Z) ≤ Iε(X ;Y ) ≤ log(2)− lim
γ↑(1−ε)

H̄γ(Z) for ε ∈ (0, 1).

By taking ε ↓ 0, we obtain

I(X ;Y ) = I0(X;Y ) = log(2)− H̄(Z).

Based on this result, we can now compute Iε(X ;Y ) for some specific examples.



Computation of general information measures II: 1-27

Example 1.8

Z =

{
all-zero sequence with probability β;

Bernoulli (with parameter p) with probability 1− β.

Then
1

n
hZn(Zn) →

{
0, with probability β;

hb(p), with probability 1− β,

where hb(p):=− p log p− (1− p) log(1− p).

�

0 hb(p)

�

�

�

�

�

0

βh(θ)

1



Computation of general information measures II: 1-28

�

1− hb(p) 1

�

�

�

�

�

0

1− βī(θ)

1

Therefore,

Iε(X ;Y ) =

{
1− hb(p), if 0 < ε < 1− β;

1, if 1− β ≤ ε < 1.



Computation of general information measures II: 1-29

Example 1.9 Z =non-stationary binary independent sequence with

Pr
{
Z

(n)
i = 0

}
= 1− Pr

{
Z

(n)
i = 1

}
= pi,

then by the fact that

Var
[
− logP

Z
(n)
i

(Z
(n)
i )

]
≤ E

[(
logP

Z
(n)
i

(Z
(n)
i )

)2
]

≤ sup
0<pi<1

[
pi(log pi)

2 + (1− pi)(log(1− pi))
2
]

< log(2),

we have (by Chebyshev’s inequality) that as n → ∞,

Pr

{∣∣∣∣∣−1

n
logPZn(Zn)− 1

n

n∑
i=1

H
(
Z

(n)
i

)∣∣∣∣∣ > γ

}
→ 0,

for any γ > 0.
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�

· · ·

H(Z) H̄(Z)

clustering points

The limiting spectrum of (1/n)hZn(Zn).

�

· · ·

log(2)− H̄(Z) log(2)−H(Z)

The possible limiting spectrums of (1/n)iXn,Y n(Xn;Y n).
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Therefore, H̄(1−ε)(Z) is equal to

H̄(1−ε)(Z) =




H̄(Z) = lim sup
n→∞

1

n

n∑
i=1

H
(
Z

(n)
i

)

= lim sup
n→∞

1

n

n∑
i=1

hb(pi)

, for ε ∈ (0, 1];

+∞, for ε = 0.

Consequently,

Iε(X ;Y ) =



1− H̄(Z) = 1− lim sup

n→∞
1

n

n∑
i=1

hb(pi), for ε ∈ [0, 1),

∞, for ε = 1.


