
Chapter 2

General Data Compression Theorems

Po-Ning Chen

Institute of Communications Engineering

National Chiao-Tung University

Hsin Chu, Taiwan 30010



Motivations II: 2-1

• We already know that the entropy rate

lim
n→∞

1

n
H(Xn)

is the minimum data compression rate for arbitrarily small data compression

error for block coding of the stationary ergodic source.

• We also mentioned that for a more complicated situation where the source

becomes non-stationary, the quantity limn→∞(1/n)H(Xn) may not exist, and

can no longer be used to characterize the source compression.

• This results in the need to establish a new entropy measure which appropriately

characterizes the operational limits of arbitrary stochastic systems, which was

done in the previous chapter.
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• Here, we have made an implicit assumption in the following derivation, which

is the source alphabet X is finite.

Definition 2.1 (cf. Definition 3.2 and its associated footnote in [2])

An (n,M) block code for data compression is a set

C∼n:={c1, c2, . . . , cM}

consisting of M sourcewords of block length n (and a binary-indexing codeword for

each sourceword ci).
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Definition 2.2 Fix ε ∈ [0, 1]. R is an ε-achievable data compression rate for

a source X if there exists a sequence of block data compression codes { C∼n =

(n,Mn)}∞n=1 with

lim sup
n→∞

1

n
logMn ≤ R,

and

lim sup
n→∞

Pe( C∼n) ≤ ε,

where Pe( C∼n):=Pr (Xn /∈ C∼n) is the probability of decoding error.

The infimum of all ε-achievable data compression rate for X is denoted by

Tε(X).

• Note that in conventional source coding theorem, one wants to find the mini-

mum rate with arbitrary small error. This rate is exactly limε↓0 Tε(X).

• As expected, for DMS, limε↓0 Tε(X) = H(X). Actually, for DMS, Tε(X) =

H(X) for any ε ∈ [0, 1).
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Lemma 2.3 Fix a positive integer n. There exists an (n,Mn) source block code

C∼n for PXn such that its error probability satisfies

Pe( C∼n) ≤ Pr

[
1

n
hXn(Xn) >

1

n
logMn

]
.

Proof: Observe that

1 ≥
∑

{xn∈X n : (1/n)hXn(xn)≤(1/n) logMn}
PXn(xn)

≥
∑

{xn∈X n : (1/n)hXn(xn)≤(1/n) logMn}

1

Mn

≥
∣∣∣∣
{
xn ∈ X n :

1

n
hXn(xn) ≤ 1

n
logMn

}∣∣∣∣ 1

Mn
.

Therefore, |{xn ∈ X n : (1/n)hXn(xn) ≤ (1/n) logMn}| ≤ Mn. We can then

choose a code

C∼n ⊃
{
xn ∈ X n :

1

n
hXn(xn) ≤ 1

n
logMn

}
with | C∼n| = Mn and

Pe( C∼n) = 1− PXn{ C∼n} ≤ Pr

[
1

n
hXn(Xn) >

1

n
logMn

]
.
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Lemma 2.4 Every (n,Mn) source block code C∼n for PXn satisfies

Pe( C∼n) ≥ Pr

[
1

n
hXn(Xn) >

1

n
logMn + γ

]
− exp{−nγ},

for every γ > 0.

Proof: It suffices to prove that

1− Pe( C∼n) = Pr {Xn ∈ C∼n} ≤ Pr

[
1

n
hXn(Xn) ≤ 1

n
logMn + γ

]
+ exp{−nγ}.

Clearly,

Pr {Xn ∈ C∼n} = Pr

{
Xn ∈ C∼n and

1

n
hXn(Xn) ≤ 1

n
logMn + γ

}

+Pr

{
Xn ∈ C∼n and

1

n
hXn(Xn) >

1

n
logMn + γ

}
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≤ Pr

{
1

n
hXn(Xn) ≤ 1

n
logMn + γ

}

+Pr

{
Xn ∈ C∼n and

1

n
hXn(Xn) >

1

n
logMn + γ

}

= Pr

{
1

n
hXn(Xn) ≤ 1

n
logMn + γ

}

+
∑

xn∈ C∼n

PXn(xn) · 1
{
1

n
hXn(xn) >

1

n
logMn + γ

}

= Pr

{
1

n
hXn(Xn) ≤ 1

n
logMn + γ

}

+
∑

xn∈ C∼n

PXn(xn) · 1
{
PXn(xn) <

1

Mn
exp{−nγ}

}

< Pr

{
1

n
hXn(Xn) ≤ 1

n
logMn + γ

}
+ | C∼n|

1

Mn
exp{−nγ}

= Pr

{
1

n
hXn(Xn) ≤ 1

n
logMn + γ

}
+ exp{−nγ}.
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We now apply Lemmas 2.3 and 2.4 to prove a general source coding theorems for

block codes.

Theorem 2.5 (general source coding theorem) For any source X ,

Tε(X) =




lim
δ↑(1−ε)

H̄δ(X), for ε ∈ [0, 1);

0, for ε = 1.

Proof: The case of ε = 1 follows directly from its definition; hence, the proof only

focus on the case of ε ∈ [0, 1).

1. . Forward part (achievability): Tε(X) ≤ limδ↑(1−ε) H̄δ(X)

We need to prove the existence of a sequence of block codes { C∼n = (n,Mn)}n≥1

such that for every γ > 0,

lim sup
n→∞

1

n
logMn ≤ lim

δ↑(1−ε)
H̄δ(X) + γ and lim sup

n→∞
Pe( C∼n) ≤ ε.

Lemma 2.3 ensures the existence (for any γ > 0) of a source block code C∼n =

(n,Mn = 
exp{n(limδ↑(1−ε) H̄δ(X) + γ)}�) with error probability

Pe( C∼n) ≤ Pr

{
1

n
hXn(Xn) >

1

n
logMn

}

≤ Pr

{
1

n
hXn(Xn) > lim

δ↑(1−ε)
H̄δ(X) + γ

}
.
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Therefore,

lim sup
n→∞

Pe( C∼n) ≤ lim sup
n→∞

Pr

{
1

n
hXn(Xn) > lim

δ↑(1−ε)
H̄δ(X) + γ

}

= 1− lim inf
n→∞

Pr

{
1

n
hXn(Xn) ≤ lim

δ↑(1−ε)
H̄δ(X) + γ

}
≤ 1− (1− ε) = ε,

where the last inequality follows from

lim
δ↑(1−ε)

H̄δ(X) = sup

{
θ : lim inf

n→∞
Pr

[
1

n
hXn(Xn) ≤ θ

]
< 1− ε

}
. (2.1.1)

2. Converse part: Tε(X) ≥ limδ↑(1−ε) H̄δ(X)

Assume without loss of generality that limδ↑(1−ε) H̄δ(X) > 0. We will prove

the converse by contradiction. Suppose that Tε(X) < limδ↑(1−ε) H̄δ(X). Then

(∃ γ > 0) Tε(X) < limδ↑(1−ε) H̄δ(X) − 4γ. By definition of Tε(X), there

exists a sequence of codes C∼n = (n,Mn) such that

lim sup
n→∞

1

n
logMn ≤

(
lim

δ↑(1−ε)
H̄δ(X)− 4γ

)
+ γ < lim

δ↑(1−ε)
H̄δ(X)− 2γ (2.1.2)

and

lim sup
n→∞

Pe( C∼n) ≤ ε. (2.1.3)
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(2.1.2) implies that

1

n
logMn ≤ lim

δ↑(1−ε)
H̄δ(X)− 2γ

for all sufficiently large n. Hence, for those n satisfying the above inequality

and also by Lemma 2.4,

Pe( C∼n) ≥ Pr

[
1

n
hXn(Xn) >

1

n
logMn + γ

]
− e−nγ

≥ Pr

[
1

n
hXn(Xn) >

(
lim

δ↑(1−ε)
H̄δ(X)− 2γ

)
+ γ

]
− e−nγ.

Therefore,

lim sup
n→∞

Pe( C∼n) ≥ 1− lim inf
n→∞

Pr

[
1

n
hXn(Xn) ≤ lim

δ↑(1−ε)
H̄δ(X)− γ

]
> 1− (1− ε) = ε,

where the last inequality follows from (2.1.1). Thus, a contradiction to (2.1.3)

is obtained.
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A few remarks are made based on the previous theorem.

• Note that as ε = 0,

T0(X) = lim
δ↑(1−ε)

H̄δ(X) = H̄(X).

Hence, the minimum (asymptotic) lossless fixed-length source coding rate of

any finite-alphabet source is H̄(X).

• Consider the special case where

−1

n
logPXn(Xn) converges in probability to a constant H (entropy rate),

which holds for all information stable sources. In this case, both the inf- and

sup-spectrums of X degenerate to a unit step function:

u(θ) =

{
1, if θ > H;

0, if θ < H.

Thus, H̄ε(X) = H for all ε ∈ [0, 1). Hence, general source coding theorem

reduces to the conventional source coding theorem.
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– A source

X =
{
Xn =

(
X

(n)
1 , . . . , X (n)

n

)}∞

n=1

is said to be information stable if

H(Xn) = E [− logPXn(xn)] > 0 for all n,

and

lim
n→∞

Pr

(∣∣∣∣− logPXn(xn)

H(Xn)
− 1

∣∣∣∣ > ε

)
= 0,

for every ε > 0.

– By the definition, any stationary-ergodic source with finite n-fold entropy

is information stable; hence, it can be viewed as a generalized source model

for stationary-ergodic sources.
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• If

−1

n
logPXn(Xn) converges in probability to a random variable Z

whose cdf is FZ(·), then the minimum achievable data compression rate subject

to decoding error being no greater than ε is

Tε(X) = lim
δ↑(1−ε)

H̄δ(X) = sup {R : FZ(R) < 1− ε} .

Example 2.6 Consider a binary source X with each Xn is Bernoulli(Θ) dis-

tributed, where Θ is a random variable defined over (0, 1). By ergodic decom-

position theorem (which states that any stationary source can be viewed as a

mixture of stationary-ergodic sources) that

−1

n
logPXn(Xn) converges in probability to hb(Θ),

where hb(x):=− x log2(x)− (1− x) log2(1− x). Consequently,

Tε(X) = sup{R : Pr{hb(Θ) ≤ R} < 1− ε}.
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• From the above example, or from Theorem 2.5, it shows that the strong con-

verse theorem (which states that codes with rate below entropy rate will ul-

timately have decompression error approaching one) does not hold in general.

However, one can always claim the weak converse statement for arbitrary

sources.

Theorem 2.7 (weak converse theorem) For any block code sequence of

ultimate rate R < H̄(X), the probability of block decoding failure Pe cannot

be made arbitrarily small. In other words, there exists ε > 0 such that Pe is

lower bounded by ε infinitely often in block length n.

�

H̄0(X) H̄(X)

Pe

n (i.o.)
−−−→1 Pe

n→∞
−−−→0Pe is lower

bounded (i.o. in n)
R

Behavior of the probability of block decoding error as block

length n goes to infinity for an arbitrary source X .
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Theorem 2.8 (generalized asymptotic equipartition property for ar-

bitrary sources) Fix ε ∈ [0, 1). Given an arbitrary source X , define

Tn[R]:=

{
xn ∈ X n : −1

n
logPXn(xn) ≤ R

}
.

Then for any δ > 0, the following statements hold.

1.

lim inf
n→∞

Pr
{
Tn[H̄ε(X)− δ]

}
≤ ε (2.1.4)

2.

lim inf
n→∞

Pr
{
Tn[H̄ε(X) + δ]

}
> ε (2.1.5)

3. The number of elements in

Fn(δ; ε):=Tn[H̄ε(X) + δ] \ Tn[H̄ε(X)− δ],

denoted by |Fn(δ; ε)|, satisfies

|Fn(δ; ε)| ≤ exp
{
n(H̄ε(X) + δ)

}
, (2.1.6)

where the operationA\B between two setsA and B is defined byA\B:=A∩Bc

with Bc denoting the complement set of B.
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4. There exists ρ = ρ(δ) > 0 and a subsequence {nj}∞j=1 such that

|Fn(δ; ε)| > ρ · exp
{
nj(H̄ε(X)− δ)

}
. (2.1.7)

Tn[H̄ε(X)− δ]Tn[H̄ε(X) + δ]

Fn(δ; ε)

Illustration of generalized AEP Theorem. Fn(δ; ε):=Tn[H̄ε(X)+δ]\
Tn[H̄ε(X)− δ] is the dashed region.
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• The set

Fn(δ; ε) := Tn[H̄ε(X) + δ] \ Tn[H̄ε(X)− δ]

=

{
xn ∈ X n :

∣∣∣∣−1

n
logPXn(xn)− H̄ε(X)

∣∣∣∣ < δ

}
⋃{

xn ∈ X n : −1

n
logPXn(xn) = H̄ε(X) + δ

}
is nothing but the weakly δ-typical set.

• qn:=Pr{Fn(δ; ε)} > 0 infinitely often in n.

•
|Fn(δ; ε)| ≈ enH̄ε(X),

and the probability of each sequence in Fn(δ; ε) can be estimated by qn ·
exp

{
−nH̄ε(X)

}
.

• In particular, if X is a stationary-ergodic source, then H̄ε(X) is independent

of ε ∈ [0, 1) and, H̄ε(X) =Hε(X) = H for all ε ∈ [0, 1), where H is the

source entropy rate

H = lim
n→∞

1

n
E [− logPXn(Xn)] .

In this case, the generalized AEP reduces to the conventional AEP.


