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6.1.1 Motivation I: 6-1

Motivations

• Lossy data compression = to compress a source to a rate less than the source

entropy.
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6.1.2 Distortion measures I: 6-2

Definition 6.4 (Distortion measure) A distortion measure is a mapping

ρ : Z × Ẑ → �+,

where Z is the source alphabet, Ẑ is the reproduction alphabet for compressed

code, and �+ is the set of non-negative real numbers.

• The distortion measure ρ(z, ẑ) can be viewed as the cost of representing the

source symbol z ∈ Z by a reproduction symbol ẑ ∈ Ẑ .

E.g. A lossy data compression is similar to “grouping.”
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– Average distortion under uniform source distribution

1

4
ρ(1, 1) +

1

4
ρ(2, 1) +

1

4
ρ(3, 3) +

1

4
ρ(4, 3) =

1

2
.

– Resultant entropy

H(Z) = log 2(4) = 2 bits ⇒ H(Ẑ) = log2(2) = 1 bit.
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• The above example presumes |Ẑ| = |Z|.
• Sometimes, it is convenient to have |Ẑ| = |Z| + 1.

E.g. |Z = {1, 2, 3}| = 3 and |Ẑ = {1, 2, 3, E}| = 4

and the distortion measure is defined by

[ρ(i, j)]:=


 0 2 2 0.5

2 0 2 0.5

2 2 0 0.5


 .

– Suppose only two outcomes are allowed under uniform Z.

Then

(1) → 1 and (2, 3) → E

is an optimal choice (that minimizes the average distortion measure for a

given compression rate).

– Average distortion

1

3
ρ(1, 1) +

1

3
ρ(2, E) +

1

3
ρ(3, E) =

1

3
.

– Resultant entropy

H(Z) = log2(3) bits ⇒ H(Ẑ) = [log2(3)− 2/3] bits.



6.1.3 Frequently used distortion measures I: 6-5

Example 6.5 (Hamming distortion measure) Let source alphabet and re-

production alphabet be the same, i.e., Z = Ẑ . Then the Hamming distribution

measure is given by

ρ(z, ẑ):=

{
0, if z = ẑ;

1, if z �= ẑ.

This is also named the probability-of-error distortion measure because

E[ρ(Z, Ẑ)] = Pr(Z �= Ẑ).

Example 6.6 (Absolute error distortion measure) Assuming that Z =

Ẑ = R, the absolute error distortion measure is given by

ρ(z, ẑ) := |z − ẑ|.
Example 6.7 (Squared error distortion) Assuming that Z = Ẑ = R, the

squared error distortion measure is given by

ρ(z, ẑ) := (z − ẑ)2.

The squared error distortion measure is perhaps the most popular distortion mea-

sure used for continuous alphabets.



Comments on squared error distortion I: 6-6

• The squared error distortion measure has the advantages of simplicity and

having a closed-form solution for most cases of interest, such as when using

least squares prediction.

• Yet, this measure is not ideal for practical situations involving data operated

by human observers (such as image and speech data) as it is inadequate in

measuring perceptual quality.

• For example, two speech waveforms in which one is a marginally time-shifted

version of the other may have large square error distortion; however, they sound

quite similar to the human ear.



Distortion measure for sequences I: 6-7

Definition 6.8 (Additive distortion measure between vectors) The ad-

ditive distortion measure ρn between vectors zn and ẑn of size n (or n-sequences or

n-tuples) is defined by

ρn(z
n, ẑn) =

n∑
i=1

ρ(zi, ẑi).

Definition 6.9 (Maximum distortion measure)

ρn(z
n, ẑn) = max

1≤i≤n
ρ(zi, ẑi).

Question raised due to distortion measures for sequences

• Whether to reproduce source sequence zn by sequence ẑn of the same length is

a must or not.

• In other words, can we use z̃k to represent zn for k �= n?

Answer: The answer is certainly yes if a distortion measure for zn and z̃k is

defined.



Distortion measure for sequences I: 6-8

Problem: A problem for taking k �= n is that the distortion measure for sequences

can no longer be defined based on per-letter distortions, and hence a per-letter

formula for the best lossy data compression rate cannot be rendered.

Solution: To view the lossy data compression in two steps.

Step 1 : Find the data compression code

h : Zn → Ẑn

for which the pre-specified distortion constraint and rate constraint are

both satisfied.

Step 2 : Derive the (asymptotically) lossless data compression block code for

source h(Zn). The existence of such code with block length

k > H(h(Zn)) bits

is guaranteed by Shannon’s lossless source coding theorem.

• Therefore, a lossy data compression code from

Zn
(
→ Ẑn

)
→ {0, 1}k

is established.



Distortion measure for sequences I: 6-9

• Since the second step is already discussed in lossless data compression, we can

say that the theorem regarding the lossy data compression is basically a theorem

on the first step.



6.2 Fixed-length lossy data compression I: 6-10

Definition 6.10 (Fixed-length lossy data compression code subject

to average distortion constraint) An (n,M,D) fixed-length lossy data com-

pression code for source alphabet Zn and reproduction alphabet Ẑn consists of a

compression function

h : Zn → Ẑn

with the size of the codebook (i.e., the image h(Zn)) being |h(Zn)| = M , and the

average distortion satisfying

E

[
1

n
ρn(Z

n, h(Zn))

]
≤ D.

• Code rate for lossy data compression

1

n
log2M bits/sourceword

• Asymptotic code rate for lossy data compression

lim sup
n→∞

1

n
log2M bits/sourceword



Achievable Rate-Distortion Pair I: 6-11

Definition 6.11 (Achievable rate-distortion pair) For a given sequence of

distortion measures {ρn}n≥1, a rate distortion pair (R,D) is achievable if there

exists a sequence of fixed-length lossy data compression codes (n,Mn,D) with

ultimate code rate

lim sup
n→∞

1

n
log2Mn ≤ R.

Definition 6.12 (Rate-distortion region) The rate-distortion region R of a

source {Zn} is the closure of the set of all achievable rate-distortion pair (R,D).
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Lemma 6.13 (Time-sharing principle) Under an additive distortion mea-

sure ρn, the rate-distortion region R is a convex set; i.e., if (R1, D1) ∈ R and

(R2, D2) ∈ R, then (λR1 + (1− λ)R2, λD1 + (1− λ)D2) ∈ R for all 0 ≤ λ ≤ 1.

Proof:

• time-sharing argument:

– If we can use an (n,M1, D1) code C∼1 to achieve (R1, D1) and an (n,M2, D2)

code C∼2 to achieve (R2, D2), then for any rational number 0 < λ < 1, we

can use C∼1 for a fraction λ of the time and use C∼2 for a fraction 1 − λ

of the time to achieve (Rλ,Dλ), where Rλ = λR1 + (1 − λ)R2 and Dλ =

λD1 + (1− λ)D2;

– hence the result holds for any real number 0 < λ < 1 by the density of the

rational numbers in R and the continuity of Rλ and Dλ in λ.

• Let r and s be positive integers and let λ = r
r+s; then 0 < λ < 1.
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• Assume that the pairs (R1, D1) and (R2, D2) are achievable. Then there exist

a sequence of (n,M1, D1) codes C∼1 and a sequence of (n,M2, D2) codes C∼2

such that for n sufficiently large,

1

n
log2M1 ≤ R1

and
1

n
log2M2 ≤ R2.

• Construct a sequence of new codes C∼ of blocklength nλ = (r + s)n, codebook

size M = Mr
1 ×Ms

2 and compression function h : Z(r+s)n → Ẑ(r+s)n such that

h(z(r+s)n) = (h1(z
n
1 ), . . . , h1(z

n
r ), h2(z

n
r+1), . . . , h2(z

n
r+s))

where

z(r+s)n = (zn1 , . . . , z
n
r , z

n
r+1, . . . , z

n
r+s)

and h1 and h2 are the compression functions of C∼1 and C∼2, respectively.
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• The average (or expected) distortion under the additive distortion measure ρn
and the rate of code C∼ are given by

E

[
ρ(r+s)n(z

(r+s)n, h(z(r+s)n))

(r + s)n

]
=

1

r + s

(
E

[
ρn(z

n
1 , h1(z

n
1 ))

n

]
+ · · · + E

[
ρn(z

n
r , h1(z

n
r ))

n

]

+E

[
ρn(z

n
r+1, h2(z

n
r+1))

n

]
+ · · · + E

[
ρn(z

n
r+s, h2(z

n
r+s))

n

])
≤ 1

r + s
(rD1 + sD2)

= λD1 + (1− λ)D2 = Dλ

and

1

(r + s)n
log2M =

1

(r + s)n
log2(M

r
1 ×Ms

2 )

=
r

(r + s)

1

n
log2M1 +

s

(r + s)

1

n
log2M2

≤ λR1 + (1− λ)R2 = Rλ,

respectively, for n sufficiently large. Thus, (Rλ,Dλ) is achievable by C∼.
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Definition 6.14 (Rate-distortion function) The rate-distortion function, de-

noted by R(D), of source {Zn} is the smallest R̂ for a given distortion threshold D

such that (R̂,D) is an achievable rate-distortion pair; i.e.,

R(D):= inf{R̂ ≥ 0 : (R̂,D) ∈ R}.
Observation 6.15 (Monotonicity and convexity of R(D)) Note that,

under an additive distortion measure ρn, the rate-distortion function R(D) is non-

increasing and convex in D (the proof is left as an exercise).



6.3 Rate-distortion theorem I: 6-16

Definition 6.16 (Distortion typical set) The distortion δ-typical set with

respect to the memoryless (product) distribution PZ,Ẑ on Zn× Ẑn and a bounded

additive distortion measure ρn(·, ·) is defined by

Dn(δ) :=
{
(zn, ẑn) ∈ Zn × Ẑn :∣∣∣∣−1

n
log2 PZn(zn)−H(Z)

∣∣∣∣ < δ,∣∣∣∣−1

n
log2 PẐn(ẑ

n)−H(Ẑ)

∣∣∣∣ < δ,∣∣∣∣−1

n
log2 PZn,Ẑn(z

n, ẑn)−H(Z, Ẑ)

∣∣∣∣ < δ,

and

∣∣∣∣1nρn(zn, ẑn)− E[ρ(Z, Ẑ)]

∣∣∣∣ < δ

}
.
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Theorem 6.17 If (Z1, Ẑ1), (Z2, Ẑ2), . . ., (Zn, Ẑn), . . . are i.i.d., and ρn are bou-

nded additive distortion measure, then

−1

n
log2 PZn(Z1, Z2, . . . , Zn) → H(Z) in probability;

−1

n
log2 PẐn(Ẑ1, Ẑ2, . . . , Ẑn) → H(Ẑ) in probability;

−1

n
log2 PZn,Ẑn((Z1, Ẑ1), . . . , (Zn, Ẑn)) → H(Z, Ẑ) in probability;

and
1

n
ρn(Z

n, Ẑn) → E[ρ(Z, Ẑ)] in probability.

Proof: Functions of independent random variables are also independent random

variables. Thus by the weak law of large numbers, we have the desired result. �

• It needs to be pointed out that without the bounded property assumption, the

normalized sum of an i.i.d. sequence does not necessarily converge in probability

to a finite mean, hence the need for requiring that ρ be bounded.
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Theorem 6.18 (AEP for distortion measure) Given a DMS {(Zn, Ẑn)}
with generic joint distribution PZ,Ẑ and any δ > 0, the distortion δ-typical set

satisfies

1. PZn,Ẑn(Dc
n(δ)) < δ for n sufficiently large.

2. For all (zn, ẑn) in Dn(δ),

PẐn(ẑ
n) ≥ PẐn|Zn(ẑ

n|zn)2−n[I(Z;Ẑ)+3δ]. (6.3.1)

Proof: The first result follows directly from Theorem 6.17 and the definition of

the distortion typical set Dn(δ). The second result can be proved as follows:

PẐn|Zn(ẑ
n|zn) =

PZn,Ẑn(zn, ẑn)

PZn(zn)

= PẐn(ẑ
n)

PZn,Ẑn(zn, ẑn)

PZn(zn)PẐn(ẑn)

≤ PẐn(ẑ
n)

2−n[H(Z,Ẑ)−δ]

2−n[H(Z)+δ]2−n[H(Ẑ)+δ]

= PẐn(ẑ
n)2n[I(Z;Ẑ)+3δ],

where the inequality follows from the definition of Dn(δ).



AEP for distortion typical set I: 6-19

• Alternative form of (6.3.1):

PZn,Ẑn(zn, ẑn)

PZn(zn)PẐn(ẑn)
≤ 2−n[I(Z;Ẑ)+3δ] for all (zn, ẑn) ∈ Dn(δ).

Lemma 6.19 For 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and n > 0,

(1− xy)n ≤ 1− x + e−yn, (6.3.2)

with equality holds if, and only if, (x, y) = (1, 0).
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Theorem 6.20 (Shannon’s rate-distortion theorem for memoryless

sources) Consider a DMS {Zn}∞n=1 with alphabet Z , reproduction alphabet Ẑ
and a bounded additive distortion measure ρn(·, ·); i.e.,

ρn(z
n, ẑn) =

n∑
i=1

ρ(zi, ẑi) and ρmax := max
(z,ẑ)∈Z×Ẑ

ρ(z, ẑ) < ∞,

where ρ(·, ·) is a given single-letter distortion measure. Then the source’s rate-

distortion function satisfies the following expression

R(D) = min
P
Ẑ|Z : E[ρ(Z,Ẑ)]≤D

I(Z; Ẑ).

Proof: Define

R(I)(D) := min
P
Ẑ|Z : E[ρ(Z,Ẑ)]≤D

I(Z; Ẑ); (6.3.3)

this quantity is typically called Shannon’s information rate-distortion function.

We will then show that the (operational) rate-distortion function R(D) given in

Definition 6.14 equals R(I)(D).
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1. Achievability Part (i.e., R(D + ε) ≤ R(I)(D) + 4ε for arbitrarily small ε > 0):

We need to show that for any ε > 0, there exist 0 < γ < 4ε and a sequence of

lossy data compression codes {(n,Mn,D + ε)}∞n=1 with

lim sup
n→∞

1

n
log2Mn ≤ R(I)(D) + γ < R(I)(D) + 4ε.

Step 1: Optimizing conditional distribution. Let PZ̃|Z be the conditional

distribution that achieves R(I)(D), i.e.,

R(I)(D) = min
P
Ẑ|Z : E[ρ(Z,Ẑ)]≤D

I(Z; Ẑ) = I(Z; Z̃).

Then

E[ρ(Z, Z̃)] ≤ D.

Choose Mn to satisfy

R(I)(D) +
1

2
γ ≤ 1

n
log2Mn ≤ R(I)(D) + γ

for some γ in (0, 4ε), for which the choice should exist for all sufficiently large

n > N0 for some N0. Define

δ := min

{
γ

8︸︷︷︸
Required in Step 4

,
ε

1 + 2ρmax︸ ︷︷ ︸
Required in Step 5

}
.
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Step 2: Random coding. Independently select Mn words from Ẑn according

to

PZ̃n(z̃
n) =

n∏
i=1

PZ̃(z̃i),

and denote this random codebook by C∼n, where

PZ̃(z̃) =
∑
z∈Z

PZ(z)PZ̃|Z(z̃|z).
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Step 3: Encoding rule. Define a subset of Zn as

J ( C∼n) := {zn ∈ Zn : ∃ z̃n ∈ C∼n such that (zn, z̃n) ∈ Dn(δ)} ,
where Dn(δ) is defined under PZ̃|Z . Based on the codebook

C∼n = {c1, c2, . . . , cMn},
define the encoding rule as:

hn(z
n) =




cm, if (zn, cm) ∈ Dn(δ);

(when more than one satisfying the requirement,

just pick any.)

any word in C∼n, otherwise.

Note that when zn ∈ J ( C∼n), we have (z
n, hn(z

n)) ∈ Dn(δ) and

1

n
ρn(z

n, hn(z
n)) ≤ E[ρ(Z, Z̃)] + δ ≤ D + δ.
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Step 4: Calculation of the probability of the complement of J ( C∼n).

Let N1 be chosen such that for n > N1,

PZn,Z̃n(Dc
n(δ)) < δ.

Let

Ω := PZn(J c( C∼n)).

Then the expected probability of source n-tuples not belonging to J ( C∼n),

averaged over all randomly generated codebooks, is given by

E[Ω] =
∑
C∼n

PZ̃n( C∼n)


 ∑

zn �∈J ( C∼n)

PZn(zn)




=
∑
zn∈Zn

PZn(zn)


 ∑

C∼n : zn �∈J ( C∼n)

PZ̃n( C∼n)


 .
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For any zn given, to select a codebook C∼n satisfying zn �∈ J ( C∼n) is equivalent

to independently draw Mn n-tuples from Ẑn which are not jointly distortion

typical with zn. Hence,∑
C∼n : zn �∈J ( C∼n)

PZ̃n( C∼n) =
(
Pr
[
(zn, Z̃n) �∈ Dn(δ)

])Mn
.

For convenience, we let K(zn, z̃n) denote the indicator function of Dn(δ), i.e.,

K(zn, z̃n) =

{
1, if (zn, z̃n) ∈ Dn(δ);

0, otherwise.

Then

∑
C∼n : zn �∈J ( C∼n)

PZ̃n( C∼n) =


1−

∑
z̃n∈Ẑn

PZ̃n(z̃
n)K(zn, z̃n)


Mn

.
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Continuing the computation of E[Ω], we get

E[Ω] =
∑
zn∈Zn

PZn(zn)


1−

∑
z̃n∈Ẑn

PZ̃n(z̃
n)K(zn, z̃n)


Mn

≤
∑
zn∈Zn

PZn(zn)


1−

∑
z̃n∈Ẑn

PZ̃n|Zn(z̃
n|zn)2−n(I(Z;Z̃)+3δ)K(zn, z̃n)


Mn

(by (6.3.1))

=
∑
zn∈Zn

PZn(zn)


1− 2−n(I(Z;Z̃)+3δ)

∑
z̃n∈Ẑn

PZ̃n|Zn(z̃
n|zn)K(zn, z̃n)


Mn

≤
∑
zn∈Zn

PZn(zn)

(
1−

∑
z̃n∈Ẑn

PZ̃n|Zn(z̃
n|zn)K(zn, z̃n) + exp

{
−Mn · 2−n(I(Z;Z̃)+3δ)

})
(from (6.3.2))

≤
∑
zn∈Zn

PZn(zn)

(
1−

∑
z̃n∈Ẑn

PZ̃n|Zn(z̃
n|zn)K(zn, z̃n)

+ exp
{
−2n(R

(I)(D)+γ/2) · 2−n(I(Z;Z̃)+3δ)
})

(for R(I)(D) + γ/2 < (1/n) log2Mn)

≤ 1− PZn,Z̃n(Dn(δ)) + exp
{−2nδ

}
(for R(I)(D) = I(Z; Z̃) and δ ≤ γ/8)

= PZn,Z̃n(Dc
n(δ)) + exp

{−2nδ
}

≤ δ + δ = 2δ

for all n > N := max
{
N0, N1,

1
δ
log2 ln

(
1

min{δ,1}
)}

.

Since E[Ω] = E [PZn (J c( C∼n))] ≤ 2δ, there must exist a codebook C∼∗
n such

that PZn (J c( C∼∗
n)) is no greater than 2δ for n sufficiently large.
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Step 5: Calculation of distortion. The distortion of the optimal codebook

C∼∗
n (from the previous step) satisfies for n > N :

1

n
E[ρn(Z

n, hn(Z
n))] =

∑
zn∈J ( C∼∗

n)

PZn(zn)
1

n
ρn(z

n, hn(z
n))

+
∑

zn �∈J ( C∼∗
n)

PZn(zn)
1

n
ρn(z

n, hn(z
n))

≤
∑

zn∈J ( C∼∗
n)

PZn(zn)(D + δ) +
∑

zn �∈J ( C∼∗
n)

PZn(zn)ρmax

≤ (D + δ) + 2δ · ρmax

≤ D + δ(1 + 2ρmax)

≤ D + ε.

This concludes the proof of the achievability part.



Shannon’s lossy source coding theorem I: 6-28

2. Converse Part (i.e., R(D + ε) ≥ R(I)(D) for arbitrarily small ε > 0 and

any D ∈ {D ≥ 0 : R(I)(D) > 0}): We need to show that for any sequence of

{(n,Mn,Dn)}∞n=1 code with

lim sup
n→∞

1

n
log2Mn < R(I)(D),

there exists ε > 0 such that

Dn =
1

n
E[ρn(Z

n, hn(Z
n))] > D + ε

for n sufficiently large. The proof is as follows.

Step 1: Convexity of mutual information. By the convexity of mutual in-

formation I(Z; Ẑ) with respect to PẐ|Z for a fixed PZ , we have

I(Z; Ẑλ) ≤ λ · I(Z; Ẑ1) + (1− λ) · I(Z; Ẑ2),

where λ ∈ [0, 1], and

PẐλ|Z(ẑ|z) := λPẐ1|Z(ẑ|z) + (1− λ)PẐ2|Z(ẑ|z).
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Step 2: Convexity of R(I)(D). Let PẐ1|Z and PẐ2|Z be two distributions

achieving R(I)(D1) and R(I)(D2), respectively. Since

E[ρ(Z, Ẑλ)] =
∑
z∈Z

PZ(z)
∑
ẑ∈Ẑ

PẐλ|Z(ẑ|z)ρ(z, ẑ)

=
∑

z∈Z,ẑ∈Ẑ
PZ(z)

[
λPẐ1|Z(ẑ|z) + (1− λ)PẐ2|Z(ẑ|z)

]
ρ(z, ẑ)

= λD1 + (1− λ)D2,

we have

R(I)(λD1 + (1− λ)D2) ≤ I(Z; Ẑλ)

≤ λI(Z; Ẑ1) + (1− λ)I(Z; Ẑ2)

= λR(I)(D1) + (1− λ)R(I)(D2).

Therefore, R(I)(D) is a convex function.



Shannon’s lossy source coding theorem I: 6-30

Step 3: Strictly decreasing and continuity properties of R(I)(D).

By definition, R(I)(D) is non-increasing in D. Also,

R(I)(D) = 0 iff D ≥ Dmax := min
P
Ẑ

∑
z∈Z

∑
ẑ∈Ẑ

PZ(z)PẐ(ẑ)ρ(z, ẑ)

= min
P
Ẑ

∑
ẑ∈Ẑ

PẐ(ẑ)
∑
z∈Z

PZ(z)ρ(z, ẑ)

= min
ẑ∈Ẑ

∑
z∈Z

PZ(z)ρ(z, ẑ) (6.3.4)

which is finite by the boundedness of the distortion measure. Thus since

R(I)(D) is non-increasing and convex, it directly follows that it is strictly de-

creasing and continuous over {D ≥ 0 : R(I)(D) > 0}.
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Step 4: Main proof.

log2Mn ≥ H(hn(Z
n))

= H(hn(Z
n))−H(hn(Z

n)|Zn), since H(hn(Z
n)|Zn) = 0;

= I(Zn; hn(Z
n))

= H(Zn)−H(Zn|hn(Z
n))

=
n∑

i=1

H(Zi)−
n∑

i=1

H(Zi|hn(Z
n), Z1, . . . , Zi−1)

by the independence of Zn, and the chain rule for conditional entropy;

≥
n∑

i=1

H(Zi)−
n∑

i=1

H(Zi|Ẑi), where Ẑi is the i
th component of hn(Z

n);

=
n∑

i=1

I(Zi; Ẑi) ≥
n∑

i=1

R(I)(Di), where Di := E[ρ(Zi, Ẑi)];

= n

n∑
i=1

1

n
R(I)(Di) ≥ nR(I)

(
n∑

i=1

1

n
Di

)
, by convexity of R(I)(D);

= nR(I)

(
1

n
E[ρn(Z

n, hn(Z
n))]

)
,

where the last step follows since the distortion measure is additive.
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Finally,

lim sup
n→∞

1

n
log2Mn < R(I)(D)

implies the existence of N and γ > 0 such that

1

n
log2Mn < R(I)(D)− γ

for all n > N . Therefore, for n > N ,

R(I)

(
1

n
E[ρn(Z

n, hn(Z
n))]

) (
≤ 1

n
log2Mn

)
< R(I)(D)− γ,

which, together with the fact that R(I)(D) is strictly decreasing, implies that

1

n
E[ρn(Z

n, hn(Z
n))] > D + ε

for some ε = ε(γ) > 0 and for all n > N .

Hence, (R(I)(D), D + ε) is not achievable and the operational R(D) satisfies

R(D + ε) > R(I)(D) for arbitrarily small ε > 0.
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3. Summary:

• For D ∈ {D ≥ 0 : R(I)(D) > 0}, the achievability and converse parts jointly

imply that

R(I)(D) + 4ε ≥ R(D + ε) ≥ R(I)(D)

for arbitrarily small ε > 0.

• These inequalities together with the continuity of R(I)(D) yield that

R(D) = R(I)(D)

for D ∈ {D ≥ 0 : R(I)(D) > 0}.
• For D ∈ {D ≥ 0 : R(I)(D) = 0}, the achievability part gives us

R(I)(D) + 4ε = 4ε ≥ R(D + ε) ≥ 0

for arbitrarily small ε > 0. This immediately implies that

R(D) = 0 (= R(I)(D)).

�
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• The formula of the rate-distortion function obtained in the previous theorems

is also valid for the squared error distortion over the real numbers, even if it is

unbounded.

– For example, the boundedness assumption in the theorems can be replaced

with assuming that there exists a reproduction symbol ẑ0 ∈ Ẑ such that

E[ρ(Z, ẑ0)] < ∞.

– This assumption can accommodate the squared error distortion measure

and a source with finite second moment (including continuous-alphabet

sources such as Gaussian sources).

• Here, we put the boundedness assumption just to facilitate the exposition of

the current proof.
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• After introducing

– Shannon’s source coding theorem for block codes

– Shannon’s channel coding theorem for block codes

– Rate-distortion theorem

in the memoryless (and stationary ergodic) system setting, we briefly elucidate

the “key concepts or techniques” behind these lengthy proofs, in particular:

– The notion of a typical set

∗ The typical set construct – specifically,

· δ-typical set for source coding
· joint δ-typical set for channel coding
· distortion typical set for rate-distortion

uses a law of large numbers or AEP argument to claim the existence

of a set with very high probability; hence, the respective information

manipulation can just focus on the set with negligible performance loss.
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– The notion of random coding

∗ The random coding technique shows that the expectation of the desired

performance over all possible information manipulation schemes (ran-

domly drawn according to some properly chosen statistics) is already

acceptably good, and hence the existence of at least one good scheme

that fulfills the desired performance index is validated.

• As a result, in situations where the above two techniques apply, a similar

theorem can often be established.
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Theorem 6.21 (Shannon’s rate-distortion theorem for stationary er-

godic sources) Consider a stationary ergodic source {Zn}∞n=1 with alphabet Z ,

reproduction alphabet Ẑ and a bounded additive distortion measure ρn(·, ·); i.e.,

ρn(z
n, ẑn) =

n∑
i=1

ρ(zi, ẑi) and ρmax := max
(z,ẑ)∈Z×Ẑ

ρ(z, ẑ) < ∞,

where ρ(·, ·) is a given single-letter distortion measure. Then the source’s rate-

distortion function is given by

R(D) = R̄(I)(D),

where

R̄(I)(D) := lim
n→∞R(I)

n (D) (6.3.5)

is called the asymptotic information rate-distortion function. and

R(I)
n (D) := min

P
Ẑn|Zn :

1
nE[ρn(Zn,Ẑn)]≤D

1

n
I(Zn; Ẑn) (6.3.6)

is the n-th order information rate-distortion function.
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• Question: Can we extend the theorems to cases where the two arguments

fail?’

• It is obvious that only when new methods (other than the above two) are

developed can the question be answered in the affirmative.
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Theorem 6.23 Fix a binary DMS {Zn}∞n=1 with marginal distribution PZ(0) =

1− PZ(1) = p, where 0 < p < 1. Then the source’s rate-distortion function under

the Hamming additive distortion measure is given by:

R(D) =

{
hb(p)− hb(D) if 0 ≤ D < min{p, 1− p};

0 if D ≥ min{p, 1− p},
where hb(p) := − p · log(p)− (1− p) · log(1− p) is the binary entropy function.

Proof: Assume without loss of generality that p ≤ 1/2.

• We first prove the theorem under 0 ≤ D < min{p, 1− p} = p. Observe that

for any binary random variable Ẑ,

H(Z|Ẑ) = H(Z ⊕ Ẑ|Ẑ).
Also observe that

E[ρ(Z, Ẑ)] ≤ D implies Pr{Z ⊕ Ẑ = 1} ≤ D.



6.4 Calculation of the rate-distortion function I: 6-40

Then

I(Z; Ẑ) = H(Z)−H(Z|Ẑ)
= hb(p)−H(Z ⊕ Ẑ|Ẑ)
≥ hb(p)−H(Z ⊕ Ẑ) (conditioning never increase entropy)

≥ hb(p)− hb(D),

where the last inequality follows since hb(x) is increasing for x ≤ 1/2, and

Pr{Z ⊕ Ẑ = 1} ≤ D.

• Since the above derivation is true for any PẐ|Z , we have

R(D) ≥ hb(p)− hb(D).
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• It remains to show that the lower bound is achievable by some PẐ|Z , or equiv-
alently, H(Z|Ẑ) = hb(D) for some PẐ|Z .

By defining PZ|Ẑ(0|0) = PZ|Ẑ(1|1) = 1−D, we immediately obtainH(Z|Ẑ) =
hb(D). The desired PẐ|Z can be obtained by solving

1 = PẐ(0) + PẐ(1)

=
PZ(0)

PZ|Ẑ(0|0)
PẐ|Z(0|0) +

PZ(0)

PZ|Ẑ(0|1)
PẐ|Z(1|0)

=
p

1−D
PẐ|Z(0|0) +

p

D
(1− PẐ|Z(0|0))

and

1 = PẐ(0) + PẐ(1)

=
PZ(1)

PZ|Ẑ(1|0)
PẐ|Z(0|1) +

PZ(1)

PZ|Ẑ(1|1)
PẐ|Z(1|1)

=
1− p

D
(1− PẐ|Z(1|1)) +

1− p

1−D
PẐ|Z(1|1),

and yield

PẐ|Z(0|0) =
1−D

1− 2D

(
1− D

p

)
and PẐ|Z(1|1) =

1−D

1− 2D

(
1− D

1− p

)
.
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• Now in the case of p ≤ D < 1 − p, we can let PẐ|Z(1|0) = PẐ|Z(1|1) = 1 to

obtain I(Z; Ẑ) = 0 and

E[ρ(Z, Ẑ)] =
1∑

z=0

1∑
ẑ=0

PZ(z)PẐ|Z(ẑ|z)ρ(z, ẑ) = p ≤ D.

Similarly, in the case of D ≥ 1−p, we let PẐ|Z(0|0) = PẐ|Z(0|1) = 1 to obtain

I(Z; Ẑ) = 0 and

E[ρ(Z, Ẑ)] =
1∑

z=0

1∑
ẑ=0

PZ(z)PẐ|Z(ẑ|z)ρ(z, ẑ) = 1− p ≤ D.

�

• Remark: The Hamming additive distortion measure is defined as:

ρn(z
n, ẑn) =

n∑
i=1

zi ⊕ ẑi,

where “⊕” denotes modulo two addition. In such case, ρ(zn, ẑn) is exactly the

number of bit changes or bit errors after compression.
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Theorem 6.26 (Gaussian sources maximize the rate-distortion func-

tion) Under the additive squared error distortion measure, namely

ρn(z
n, ẑn) =

n∑
i=1

(zi − ẑi)
2,

the rate-distortion function for any continuous memoryless source {Zi} with a pdf

of support R, zero mean, variance σ2 and finite differential entropy satisfies

R(D) ≤



1

2
log2

σ2

D
, for 0 < D ≤ σ2

0, for D > σ2

with equality holding when the source is Gaussian.

Proof: By Theorem 6.20 (extended to the “unbounded” squared error distortion

measure),

R(D) = R(I)(D) = min
f
Ẑ|Z : E[(Z−Ẑ)2]≤D

I(Z; Ẑ).

So for any fẐ|Z satisfying the distortion constraint,

R(D) ≤ I(fZ, fẐ|Z).
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For 0 < D ≤ σ2:

• Choose a dummy Gaussian random variable W with zero mean and variance

aD, where a = 1−D/σ2, and is independent of Z. Let Ẑ = aZ +W . Then

E[(Z − Ẑ)2] = E[(1− a)2Z2] + E[W 2] = (1− a)2σ2 + aD = D

which satisfies the distortion constraint.

• Note that the variance of Ẑ is equal to E[a2Z2] + E[W 2] = σ2 −D.

• Consequently,

R(D) ≤ I(Z; Ẑ)

= h(Ẑ)− h(Ẑ|Z)
= h(Ẑ)− h(W + aZ|Z)
= h(Ẑ)− h(W |Z)
= h(Ẑ)− h(W ) (by the independence of W and Z)

= h(Ẑ)− 1

2
log2(2πe(aD))

≤ 1

2
log2(2πe(σ

2 −D))− 1

2
log2(2πe(aD)) =

1

2
log2

σ2

D
.
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For D > σ2:

• Let Ẑ satisfy Pr{Ẑ = 0} = 1 (and be independent of Z).

• Then E[(Z−Ẑ)2] = E[Z2]+E[Ẑ2]−2E[Z]E[Ẑ] = σ2 < D, and I(Z; Ẑ) = 0.

Hence, R(D) = 0 for D > σ2.

The achievability of this upper bound by a Gaussian source (with zero mean and

variance σ2) can be proved by showing that under the Gaussian source,

(1/2) log2(σ
2/D)

is a lower bound to R(D) for 0 < D ≤ σ2.
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Indeed, when the source Z is Gaussian and for any fẐ|Z such thatE[(Z−Ẑ)2] ≤ D,

we have

I(Z; Ẑ) = h(Z)− h(Z|Ẑ)
=

1

2
log2(2πeσ

2)− h(Z − Ẑ|Ẑ)

≥ 1

2
log2(2πeσ

2)− h(Z − Ẑ)

≥ 1

2
log2(2πeσ

2)− 1

2
log2

(
2πeVar[(Z − Ẑ)]

)
≥ 1

2
log2(2πeσ

2)− 1

2
log2

(
2πeE[(Z − Ẑ)2]

)
≥ 1

2
log2(2πeσ

2)− 1

2
log2 (2πeD)

=
1

2
log2

σ2

D
.
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Theorem 6.27 (Shannon lower bound on the rate-distortion func-

tion: squared error distortion) Consider a continuous memoryless source

{Zi} with a pdf of support R and finite differential entropy under the additive

squared error distortion measure. Then its rate-distortion function satisfies

R(D) ≥ h(Z)− 1

2
log2(2πeD).

Proof: The proof, which follows similar steps as in the achievability of the upper

bound in the proof of the previous theorem, is left as an exercise.
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• In Lemma 5.42, we show that for a discrete-time continuous-alphabet memo-

ryless additive-noise channel with input power constraint P and noise variance

σ2, its capacity satisfies

CG(P ) + D(Z‖ZG)︸ ︷︷ ︸
non-Gaussianness
=h(ZG)−h(Z)

≥ C(P ) ≥ CG(P )︸ ︷︷ ︸
1
2 log2

(
1+ P

σ2

) .

• Similarly, for a continuous memoryless source {Zi} with a pdf of support R and

finite differential entropy under the additive squared error distortion measure

its rate-distortion function satisfies

RG(D)−D(Z‖ZG)︸ ︷︷ ︸
Shannon lower bound

on the rate distortion func

≤ R(D) ≤ RG(D)︸ ︷︷ ︸
1
2 log2

σ2
D

.

Section 6.4.3 is based on a similar idea but targets for the absolute error distor-

tion; hence, we omit it in our lecture. Notably, a correction has been provided

for Theorem 6.29 (See errata for the textbook.)
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• This is also named lossy information-transmission theorem.

Definition 6.32 (Lossy source-channel block code) Given a discrete-time

source {Zi}∞i=1 with alphabet Z and reproduction alphabet Ẑ and a discrete-time

channel with input and output alphabets X and Y , respectively, an m-to-n lossy

source-channel block code with rate m
n
source symbol/channel symbol is a pair of

mappings (f (sc), g(sc)), where

f (sc) : Zm → X n and g(sc) : Yn → Ẑm.

Zm ∈ Zm �
Encoder
f (sc)

�
Xn

Channel �
Y n Decoder

g(sc)
� Ẑm ∈ Ẑm

Given an additive distortion measure ρm =
∑m

i=1 ρ(zi, ẑi), where ρ is a distor-

tion function on Z × Ẑ , we say that the m-to-n lossy source-channel block code

(f (sc), g(sc)) satisfies the average distortion fidelity criterion D, where D ≥ 0, if

1

m
E[ρm(Z

m, Ẑm)] ≤ D.
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Theorem 6.33 (Lossy joint source-channel coding theorem) Consider

a discrete-time stationary ergodic source {Zi}∞i=1 with finite alphabet Z , finite

reproduction alphabet Ẑ , bounded additive distortion measure ρm(·, ·) and rate-

distortion function R(D), and consider a discrete-time memoryless channel with

input alphabet X , output alphabet Y and capacity C. Assuming that both R(D)

and C are measured in the same units, the following hold:

• Forward part (achievability): For any D > 0, there exists a sequence of m-

to-nm lossy source-channel codes (f (sc), g(sc)) satisfying the average distortion

fidelity criterion D for sufficiently large m if(
lim sup
m→∞

m

nm

)
· R(D) < C.

• Converse part: On the other hand, for any sequence of m-to-nm lossy source-

channel codes (f (sc), g(sc)) satisfying the average distortion fidelity criterion D,

we have (
m

nm

)
· R(D) ≤ C.
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Observation 6.34 (Lossy joint source-channel coding theorem with

signaling rates)

• The above theorem admits another form when the source and channel are

described in terms of “signaling rates”.

• Let Ts and Tc represent the durations (in seconds) per source letter and per

channel input symbol, respectively.

• In this case, Tc
Ts

represents the source-channel transmission rate measured in

source symbols per channel use (or input symbol).

– Forward part: The source can be reproduced at the output of the channel

with distortion less than D (i.e., there exist lossy source-channel codes

asymptotically satisfying the average distortion fidelity criterion D) if(
Tc

Ts

)
· R(D) < C.

– Converse part: For any lossy source-channel codes satisfying the average

distortion fidelity criterion D, we have(
Tc

Ts

)
· R(D) ≤ C.
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• A bound on the end-to-end distortion of a communication system:

– If a source with rate-distortion function R(D) can be transmitted over a

channel with capacity C via a source-channel block code of rate Rsc > 0

(in source symbols/channel use) and reproduced at the destination with an

average distortion no larger than D, then we must have that

R(D) ≤ 1

Rsc
C. (6.6.1)

– Shannon limit:

DSL := min

{
D : R(D) ≤ 1

Rsc
C

}
.
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1
Rsc

C

R(D)

D

DSL
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Example 6.35 (Shannon limit for a binary uniform DMS over a

BSC)

• Let Z = Ẑ = {0, 1} and consider a binary uniformly distributed DMS {Zi}
(i.e., a Bernoulli(1/2) source) using the additive Hamming distortion measure.

• Note that in this case, E[ρ(Z, Ẑ)] = P (Z �= Ẑ) := Pb.

• We desire to transmit the source over a BSC with crossover probability ε < 1/2.

• We then have for 0 ≤ D ≤ 1
2
,

R(D) = 1− hb(D), and C = 1− hb(ε).

• Hence, for a given ε,

DSL := min

{
D : 1− hb(D) ≤ 1

Rsc
(1− hb(ε))

}
= h−1

b

(
1− 1− hb(ε)

Rsc

)
.

• Alternatively, for a given D,

εSL := max

{
ε : 1− hb(D) ≤ 1

Rsc
(1− hb(ε))

}
= h−1

b

(
1−Rsc

(
1− hb(D)

))
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• It is well-known that a BSC with crossover probability ε represents a binary-

input AWGN channel used with antipodal (BPSK) signaling and hard-decision

coherent demodulation.

• With average energy per signal P , noise power N0
2

and signal-to-noise ratio

(SNR) γ = P/N0, we have

ε = Q
(√

2γ
)

(6.6.5)

where

Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt

is the Gaussian Q-function.

• If the channel is used with a source-channel code of rate Rsc source (or infor-

mation) bits/channel use, then ε can be expressed in terms of a so-called SNR

per source (or information) bit

γb :=
Eb

N0
=

1

Rsc

P

N0
=

1

Rsc
γ,

where Eb is the average energy per source bit.
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• Thus,

ε = Q
(√

2Rscγb

)
(6.6.6)

• The minimal γb (in dB) for a given Pb = D < 1
2
and a source-channel code

rate Rsc < 1:

γb,SL =
1

2Rsc

(
Q−1(εSL)

)2

Rate Rsc Pb = 0 Pb = 10−5 Pb = 10−4 Pb = 10−3 Pb = 10−3

1/3 1.212 1.210 1.202 1.150 0.077

1/2 1.775 1.772 1.763 1.703 1.258

2/3 2.516 2.513 2.503 2.423 1.882

4/5 3.369 3.367 3.354 3.250 2.547

• For Rsc = 1,

εSL := h−1
b

(
1− Rsc

(
1− hb(D)

))
= D = Pb

and

γb,SL =
1

2

(
Q−1(Pb)

)2
.
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Example 6.37 (Shannon limit for a memoryless Gaussian source over

an AWGN channel)

• Let Z = Ẑ = R and consider a memoryless Gaussian source {Zi} of mean

zero and variance σ2 and the squared error distortion function.

• The objective is to transmit the source over an AWGN channel with input

power constraint P and noise variance σ2
N = N0

2 and recover it with distortion

fidelity no larger than D, for a given threshold D > 0.

• The source’s rate-distortion function is given by

R(D) =
1

2
log2

σ2

D
for 0 < D < σ2.

Furthermore, the capacity (or capacity-cost function) of the AWGN channel is

given as

C(P ) =
1

2
log2

(
1 +

P

σ2
N

)
.
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• The Shannon limit DSL for this system with rate Rsc is obtained via

DSL := min

{
D : R(D) ≤ 1

Rsc
C(P )

}
= min

{
D :

1

2
log2

σ2

D
≤ 1

2Rsc
log2

(
1 +

P

σ2
N

)}
=

σ2(
1 + P

σ2N

)1/Rsc
(6.6.10)

for 0 < DSL < σ2.
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Example 6.39 (Shannon limit for a binary uniform DMS over a

binary-input AWGN channel)

• Let Z = Ẑ = {0, 1} and consider a binary uniformly distributed DMS {Zi}
(i.e., a Bernoulli(1/2) source) using the additive Hamming distortion measure.

• The binary uniform source is sent via a source-channel code over a binary-input

AWGN channel used with antipodal (BPSK) signaling of power P and noise

variance σ2
N = N0/2.

• We then have for 0 ≤ D ≤ 1
2
,

R(D) = 1− hb(D).
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• However, the channel capacity C(P ) of the AWGN whose input takes on

two possible values +
√
P or −√

P , whose output is real-valued and whose

noise variance is σ2
N = N0

2 , is given by evaluating the mutual information be-

tween the channel input and output under the input distribution PX(+
√
P ) =

PX(−
√
P ) = 1/2:

C(P ) =
P

σ2
N

log2(e)−
1√
2π

∫ ∞

−∞
e−y2/2 log2

[
cosh

(
P

σ2
N

+ y

√
P

σ2
N

)]
dy

=
RscEb

N0/2
log2(e)−

1√
2π

∫ ∞

−∞
e−y2/2 log2

[
cosh

(
RscEb

N0/2
+ y

√
RscEb

N0/2

)]
dy

= 2Rscγb log2(e)−
1√
2π

∫ ∞

−∞
e−y2/2 log2[cosh(2Rscγb + y

√
2Rscγb)]dy,

where P = RscEb is the channel signal power, Eb is the average energy per

source bit, and γb = Eb/N0 is the SNR per source bit.

• Then, it requires

1− hb(Pb) ≤ 1

Rsc

[
2Rscγb log2(e)−

1√
2π

∫ ∞

−∞
e−y2/2 log2[cosh(2Rscγb + y

√
2Rscγb)]dy

]
.
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The Shannon limits for (2, 1) and (3, 1) codes under binary-input AWGN channel.

• The Shannon limits calculated above are pertinent due to the invention of

near-capacity achieving channel codes, such as Turbo or LDPC codes.

• For example, the rate-1/2 Turbo coding system proposed in 1993 can approach

a bit error rate of 10−5 at γb = 0.9 dB, which is only 0.714 dB away from the

Shannon limit of 0.186 dB.



6.6 Shannon limit of communication systems I: 6-62

Rate Rsc Pb = 0 Pb = 10−5 Pb = 10−4 Pb = 10−3 Pb = 10−3

1/3 −0.496 −0.496 −0.504 −0.559 −0.960

1/2 0.186 0.186 0.177 0.111 −0.357

2/3 1.060 1.057 1.047 0.963 0.382

4/5 2.040 2.038 2.023 1.909 1.152



6.6 Shannon limit of communication systems I: 6-63

Example 6.40 (Shannon limit for a binary uniform DMS over a

binary-input Rayleigh fading channel)

• Consider a BPSK modulated Rayleigh fading channel.

• Its input power is P = RscEb, its noise variance is σ
2
N = N0/2 and the fading

distribution is Rayleigh:

fA(a) = 2ae−a2, a > 0.

• Then,

CDSI(γb) = 1−
√

Rscγb
π

∫ +∞

0

∫ +∞

−∞
fA(a) e

−Rscγb(y+a)2 log2
(
1 + e4Rscγbya

)
dy da.

• We then generate the below table according to:

1− hb(Pb) ≤ 1

Rsc
CDSI(γb),

Rate Rsc Pb = 0 Pb = 10−5 Pb = 10−4 Pb = 10−3 Pb = 10−3

1/3 0.489 0.487 0.479 0.412 −0.066

1/2 1.830 1.829 1.817 1.729 1.107

2/3 3.667 3.664 3.647 3.516 2.627

4/5 5.936 5.932 5.904 5.690 4.331



Key Notes I: 6-64

• Why lossy data compression (e.g., to transmit a source with entropy larger

than capacity)

• Distortion measure

• Lossy data compression codes

• Rate-distortion function

• Distortion typical set

• AEP for distortion measure

• Rate distortion theorem



Key Notes I: 6-65

Terminology

• Shannon’s source coding theorem → Shannon’s first coding theorem;

• Shannon’s channel coding theorem → Shannon’s second coding theorem;

• Rate distortion theorem → Shannon’s third coding theorem.

• Information transmission Theorem → Joint source-channel coding theorem

– Shannon limit (BER versus SNRb)


