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0.1.1 Motivation

Motivations

I: 6-1

e [ossy data compression = to compress a source to a rate less than the source

entropy.
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Example for the application of lossy data compression



6.1.2 Distortion measures I 6.2

Definition 6.4 (Distortion measure) A distortion measure is a mapping
P ZxXZ R

where Z is the source alphabet, Z is the reproduction alphabet for compressed
code, and BT is the set of non-negative real numbers.

e The distortion measure p(z, Z) can be viewed as the cost of representing the
source symbol z € Z by a reproduction symbol z € Z.
E.g. A lossy data compression is similar to “grouping.”
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— Average distortion under uniform source distribution

1 1 1 1 1

“o(1. 1) + =p(2.1) + = Zp(4.3) = —.
40(, )+4p(, )+4p(3,3)+4p( ,3) 5

— Resultant entropy

A

H(Z)=log2(4) =2bits = H(Z)=1logy(2) =1 bit.
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e The above example presumes | Z| = | Z|.

e Sometimes, it is convenient to have | Z| = | Z| + 1.
E.g. |Z2={1,2,3}|=3and |Z2={1,2,3,E}| =4
and the distortion measure is defined by

022 0.5
(i, )=12 02 05
2 20 0.5

— Suppose only two outcomes are allowed under uniform Z.
Then
(1) 1 and (2,3) = E

is an optimal choice (that minimizes the average distortion measure for a
given compression rate).

— Average distortion

1 1 1 1
—p(1, 1)+ =p(2, E)+ =p(3, E) = -.

— Resultant entropy

A

H(Z) =logy(3) bits = H(Z) = [logy(3) — 2/3] bits.
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Example 6.5 (Hamming distortion measure) Let source alphabet and re-
production alphabet be the same, i.e., Z = Z. Then the Hamming distribution

measure is given by
0, if z = 2;

This is also named the probability-of-error distortion measure because
Elp(Z, 7)) = Pr(Z # 7).

Example 6.6 (Absolute error distortion measure) Assuming that Z =
Z = R, the absolute error distortion measure is given by

Example 6.7 (Squared error distortion) Assuming that Z = Z =R, the
squared error distortion measure is given by

The squared error distortion measure is perhaps the most popular distortion mea-
sure used for continuous alphabets.



Comments on squared error distortion I 6-6

e The squared error distortion measure has the advantages of simplicity and
having a closed-form solution for most cases of interest, such as when using
least squares prediction.

e Yet, this measure is not ideal for practical situations involving data operated
by human observers (such as image and speech data) as it is inadequate in
measuring perceptual quality.

e For example, two speech waveforms in which one is a marginally time-shifted
version of the other may have large square error distortion; however, they sound
quite similar to the human ear.



Distortion measure for sequences I 6.7

Definition 6.8 (Additive distortion measure between vectors) The ad-
ditive distortion measure p, between vectors 2" and 2" of size n (or n-sequences or
n-tuples) is defined by

n
pn(znv én) - Z ,O(ZZ', éi)
1=1

Definition 6.9 (Maximum distortion measure)

pul2", 2") = max p(z;, 2).

Question raised due to distortion measures for sequences

e Whether to reproduce source sequence 2" by sequence z" of the same length is
a must or not.

e In other words, can we use Z¥ to represent 2" for k # n?

Answer: The answer is certainly yes if a distortion measure for 2" and z* is

defined.



Distortion measure for sequences I 6.8

Problem: A problem for taking k& # n is that the distortion measure for sequences
can no longer be defined based on per-letter distortions, and hence a per-letter
formula for the best lossy data compression rate cannot be rendered.

Solution: To view the lossy data compression in two steps.

Step 1 : Find the data compression code
h:2Z"— Z"

for which the pre-specified distortion constraint and rate constraint are
both satisfied.

Step 2 : Derive the (asymptotically) lossless data compression block code for
source h(Z"). The existence of such code with block length

k > H(R(Z")) bits

is guaranteed by Shannon’s lossless source coding theorem.

e Therefore, a lossy data compression code from
Zz" (% Z”) — {0, 1}"

is established.
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e Since the second step is already discussed in lossless data compression, we can
say that the theorem regarding the lossy data compression is basically a theorem

on the first step.
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Definition 6.10 (Fixed-length lossy data compression code subject
to average distortion constraint) An (n, M, D) fixed-length lossy data com-
pression code for source alphabet Z" and reproduction alphabet Z" consists of a
compression function

AL
with the size of the codebook (i.e., the image h(Z")) being |h(Z2")| = M, and the
average distortion satisfying

1
B |12 n(2)| < D,
n
e Code rate for lossy data compression
1
—logy, M bits/sourceword
n

e Asymptotic code rate for lossy data compression

1
lim sup — logy M bits/sourceword
n—o0



Achievable Rate-Distortion Pair I 611

Definition 6.11 (Achievable rate-distortion pair) For a given sequence of
distortion measures {p, },>1, a rate distortion pair (R, D) is achievable if there
exists a sequence of fixed-length lossy data compression codes (n, M, D) with
ultimate code rate 1
lim sup —log, M,, < R.
n—o0

Definition 6.12 (Rate-distortion region) The rate-distortion region R of a
source { Z,} is the closure of the set of all achievable rate-distortion pair (R, D).
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Lemma 6.13 (Time-sharing principle) Under an additive distortion mea-

sure p,, the rate-distortion region R is a convex set; i.e., if (R, D;) € R and
(Ry, Do) € R, then (AR1+ (1 = AN)Ro, AD1+ (1 = A)D3) € Rforall 0 < A < 1.

Proof:

e time-sharing argument:

— If we can use an (n, My, D1) code & to achieve (Ry, D1) and an (n, Ms, D)
code &, to achieve (Ry, Dy), then for any rational number 0 < A < 1, we

can use ~&; for a fraction A of the time and use &, for a fraction 1 — A
of the time to achieve (Ry, D)), where Ry = ARy + (1 — A)Ry and D) =
ADy + (1 = X\)Dy;

— hence the result holds for any real number 0 < A < 1 by the density of the
rational numbers in R and the continuity of Ry and D) in A.

e Let r and s be positive integers and let A = ——; then 0 < A < 1.
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e Assume that the pairs (Ry, D1) and (R, Ds) are achievable. Then there exist
a sequence of (n, My, Dy) codes &) and a sequence of (n, My, Dy) codes &,
such that for n sufficiently large,

1
—logy My < Ry
n

and
1

— 1Og2 M2 S RQ.
n

e Construct a sequence of new codes € of blocklength n) = (r + s)n, codebook
size M = MY x M and compression function h: ZU+)" — ZU+)" such that

W) = (ha(2)), - () B2, Bal2r)

where

r+s)n __ n n o _n n
) _(Zla'"7erzr+17"'7zr+s)

and hq and hsy are the compression functions of &&; and ~&, respectively.

Z(
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e The average (or expected) distortion under the additive distortion measure p,
and the rate of code € are given by

B p(r+s)n(z(r+s)nah(Z(TJrS)n)) _ 1 E pu(21, hi(27)) NI - ol i (2)))
(r+s)n r+s n n
o [,o< h2<zﬁ+l>>] o [p< h2<zﬁ+s>>] )
n n
1
< D D
o r—+s (T 1+ S 2)
= A\D{ + (1 — )\)DQ =D,
and
! log, M ! logy(M{ x M5)
0 = 0
(r+ s)n 52 (r+ s)n 20 2
r 1 s 1
— —log, M — log, M.
(r+s)n 052 1+(r+s)n 062 A2

< AR; + (1 — )\)RQ = R,

respectively, for n sufficiently large. Thus, (R), D)) is achievable by €. -
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Definition 6.14 (Rate-distortion function) The rate-distortion function, de-
noted by R(D), of source {Z,,} is the smallest R for a given distortion threshold D

A

such that (R, D) is an achievable rate-distortion pair; i.e.,
R(D):=inf{R > 0: (R,D) € R}.

Observation 6.15 (Monotonicity and convexity of R(D)) Note that,
under an additive distortion measure p,,, the rate-distortion function R(D) is non-
increasing and convex in D (the proof is left as an exercise).



0.3 Rate-distortion theorem I 6-16

Definition 6.16 (Distortion typical set) The distortion é-typical set with
respect to the memoryless (product) distribution P, , on Z" x Z" and a bounded
additive distortion measure p,(-, ) is defined by

D, (6) = {(z”, M) € Znx 2N

1
——logy Pyn(2") — H(Z)| < 0,
n

1 .
——log, Ppu(2") — H(Z)| <6
n

1 .

——logy P, 5n(2",2") — H(Z,Z)| <,
n :

and | 2pu(=n 27 — Elp(Z, Z)]\ < 6} .
mn
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Theorem 6.17 If (Z,, 21), (Z2, Z5), .... (Zyn, Z,), ... are iid., and p, are bou-
nded additive distortion measure, then

1
——logy Pyn(Z1, Zs, ..., Zy) — H(Z) in probability;
n

1 L . .
——logy, Py (21, Za, ..., Zy) — H(Z) in probability;
n

1

— 108y Pyu 5n((Z1, 21), ..., (Z, Z,)) — H(Z,Z) in probability;
n )

and

1 . .
—pn(Z", Z") — Elp(Z, Z)] in probability.
n

Proof: Functions of independent random variables are also independent random
variables. Thus by the weak law of large numbers, we have the desired result. O

e [t needs to be pointed out that without the bounded property assumption, the
normalized sum of an i.i.d. sequence does not necessarily converge in probability
to a finite mean, hence the need for requiring that p be bounded.
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Theorem 6.18 (AEP for distortion measure) Given a DMS {(Z,, Z,)}
with generic joint distribution P, , and any 0 > 0, the distortion o-typical set
satisfies

L. Py 71(Dy(0)) < 4 for n sufficiently large.
2. For all (2", 2") in D,(0),

P, oy nl(Z:2)+30] (6.3.1)

(2") 2 PZn|Zn(2n

Proof: The first result follows directly from Theorem 6.17 and the definition of
the distortion typical set D, (d). The second result can be proved as follows:
Py g2, 2")
P zn (Zn)
Py gn(2",2")

Pyn(27) Pyn(2")
0—nlH (Z,2)~d]

Z”(z )Q_n[H(Z)M]Q—n[H(Z)M]
(2n)2n[I(Z;Z)+3(5] 7

PZH|Zn(2n

2" =

= Pl

IA
e

where the inequality follows from the definition of D,,(9). .
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e Alternative form of (6.3.1):

P gl 27)

< 9 ll(Z2)438] g g 2" 2" € D,(9).
Pyn(2")Py,(2") — ( ) ()

Lemma 6.19 For 0 <2 <1, 0<y <1, andn > 0,
(1—ay)" <l—x+e?" (6.3.2)

with equality holds if, and only if, (x,y) = (1,0).
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Theorem 6.20 (Shannon’s rate-distortion theorem for memoryless
sources) Consider a DMS {Z,}2%, with alphabet Z, reproduction alphabet Z
and a bounded additive distortion measure p,(-,); i.e.,

n
pn(2", 2") = Zp(zi, Z) and  ppa = max  p(z,2) < oo,
1 (2,2)€EZXZ

where p(-,-) is a given single-letter distortion measure. Then the source’s rate-
distortion function satisfies the following expression

R(D) = min  I(Z: Z).
Py ¢ Elp(2,2))<D
Proof: Define
RD(D) = min  I(Z;7Z); (6.3.3)
Py Elp(2,2) <D

this quantity is typically called Shannon’s information rate-distortion function.
We will then show that the (operational) rate-distortion function R(D) given in
Definition 6.14 equals RY)(D).
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1. Achievability Part (i.c., R(D 4 ¢) < RY) (D) + 4¢ for arbitrarily small € > 0):
We need to show that for any € > 0, there exist 0 < v < 4e and a sequence of
lossy data compression codes {(n, M,,, D + &)}>°, with
1
limsup — logy M,, < RY(D) +~ < RY(D) + 4e.

n—oo

Step 1: Optimizing conditional distribution. Let PZ\ » be the conditional
distribution that achieves RY)(D), i.c.,

RY(D) = min 1(Z:2)=1(Z: 2).
Py 7+ Elp(2.2))<D

Then
Elp(Z,Z)] < D.

Choose M, to satisty
1 1
RY(D) + -7 < —logy M, < RY(D) +~
n

for some «y in (0, 4¢), for which the choice should exist for all sufficiently large
n > Ny for some Ny. Define

. Y £
5 = 11n1n g , ﬁ .
\ / + pmax

Required in Step 4 Required in Step 5
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Step 2: Random coding. Independently select M,, words from Zn according

= ][ P:(z)
i=1
and denote this random codebook by G, where

ZPZ Z]Z )

z€Z

to
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Step 3: Encoding rule. Define a subset of Z" as
J(€,) ={"€ 2" 32" € €, such that (2", 2") € D,(9)},
where Dy, (9) 1s defined under Py ;. Based on the codebook

ﬁgn — {Cla C, ..., cMn}7

define the encoding rule as:

4

Cn, if (2", ¢n) € Dy(9);

By () = 4 (when more than one satisfying the requirement,
! just pick any.)

any word in ~€,, otherwise.

\

Note that when 2" € J(-€,), we have (2", h,(2")) € D,(d) and

%pn(z", ha(2") < E[p(Z, 2)] +6 < D +4.
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Step 4: Calculation of the probability of the complement of J(-C,).
Let Ny be chosen such that for n > Ny,

Py 7n(Dy(0)) < 6.

Let
()= Py (T(4€,)).

Then the expected probability of source m-tuples not belonging to J(~G,),
averaged over all randomly generated codebooks, is given by

g0 = Y rue) | S Pat
~,

NET ()

= > Pl > Pul€)

meZn Gyt LT ()
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For any 2" given, to select a codebook G, satisfying z" & J(~G,) is equivalent
to independently draw M, n-tuples from Z" which are not jointly distortion
typical with z". Hence,

S Pu(€) = (Pr[" 2 g Do)
Gy: LT (G)

For convenience, we let K (2", 2") denote the indicator function of D, (§), i.e.,

K(, 5 = { 1, if (2", 2") € D,(0);

0, otherwise.

Then
My,

Y PulG)=(1- ) Pu(z"K(z" 2"

b 2" ET () FneZn
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Continuing the computation of E[Q)], we get

E[Q] =

IA

IN

IA

IA

IA

> Pu(z" (1213” W”)) n

zrezn ZnezZn

M,
ST P [ 1= 30 Pppu(]2)2 nUED0 e (7 27 (by (6.3.1))
ZneZn anZn
M,
Z PZn I(Z:Z)+36) Z P- n|Zn( n|Z ) (Zn 271)
zrezn FneZn
> Pz (1 > Py (F2K(z ,5")+exp{—Mn-2_”<I(Z;Z)+35)}> (from (6.3.2))
zrezn FneZn
5 P (1= X Pron K 2)
zrezn FneZn

+ exp {—2”(R(I)< +/2). 2_”<I(Z5Z)+35)}) (for RY (D) +~/2 < (1/n)logy, M,,)

1 — Py 7.(Dn(0)) + exp {—Qna} (for RY(D) = I1(Z;Z) and § < ~/8)
Py 70(D5(8)) + exp {2}
0+0=20

for all n > N := max {NO, Ny, % log, In <m> }

Since E[Q] = E [Pz (J(€,))] < 20, there must exist a codebook € such
that Pzn (J¢(~€))) is no greater than 29 for n sufficiently large.
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Step 5: Calculation of distortion. The distortion of the optimal codebook
€, (from the previous step) satisfies for n > N

1 n n n 1 n n
“Elpu(Z"h(ZY)] = Y o) pale ha(2")
eJ ()
1
+ Y Pu(2)=pu(2", ha(2"))
NET (6,
< Z PZ” D + 5 _|' Z PZ" )pmax
e J(~, 2T (6,)
< (D+ 5) + 20+ Pimas
< D+ 614 2pmaz)
< D+e.

This concludes the proof of the achievability part.
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2. Conwverse Part (ic., R(D + &) > RY(D) for arbitrarily small ¢ > 0 and
any D € {D > 0: RY(D) > 0}): We need to show that for any sequence of
{(n, M, D,)}>%, code with

1
lim sup — log, M,, < RY(D),

n—o0

there exists € > 0 such that
1

D, =~
n

Elpn(Z", hn(Z"))] > D + £

for n sufficiently large. The proof is as follows.

Step 1: Convexity of mutual information. By the convexity of mutual in-
formation I(Z; Z) with respect to Py, for a fixed Pz, we have

IZ:2)<XN-I(Z: 2))+ (1= \) - 1(Z; Z,),
where A € [0, 1], and

PZAyz(ZA’ z) = )‘lejz(é z)+ (1 - )‘)Pzg\z(é
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Step 2: Convexity of R (D). Let Py 7 and Py, be two distributions
achieving RY)(D;) and RY(D,), respectively. Since

Elp(Z,2))] = ) Palz Z s 212)p(z, 2)
=3 Pl [APZl,Z@ 2)+ (L= NPy (2l)| plz: 2

= AD; + (1 = \)Dy,
we have
< I(Z;7Z))
< N(Z; Zy) + (1 = NI(Z; Zy)
ARUD(Dy) + (1 — M)RY(Dy).

RYAD; + (1 = \)Dy)

Therefore, RY)(D) is a convex function.
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Step 3: Strictly decreasing and continuity properties of R(I)(D).
By definition, R)(D) is non-increasing in D. Also,

RO(DY=0 iff D> Dy = mmz > Pr(2)Py(2)p(z, 2)
2€2 zez
— mlnz P sz(z)p(z 2
seZ €2
= min Py( 6.3.4
zEZ Z Z ( )

which is finite by the boundedness of the distortion measure. Thus since
RY(D) is non-increasing and convex, it directly follows that it is strictly de-

creasing and continuous over {D > 0: RY(D) > 0}.
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Step 4: Main proof.

logy M, >

H(ha(Z"))
H(h,(Z")) = H(ha(Z2")|2"),  since H(h,(Z2")|Z") = 0;

= I(Z" ha(2"))

1V

H(Z") = H(Z"|hn(Z"))

Y H(Z) =Y H(Z|h(Z"), 24, ..., Ziy)
i=1 i=1

by the independence of Z", and the chain rule for conditional entropy:
Z H(Z;) — Z H(Z:|Z;), where Z; is the i component of h,(Z");
i=1 i=1

> I(ZiZi) =Y RUY(Dy), where D; = Elp(Z;, Z;);
1=1 1=1

n

— 1 1
nz ﬁR(I)(Dz) > nRY) (Z 5D2> , by convexity of RD(D);
i=1

1=1

R (1E[pn<z", hn<zn>>]) ,

n

where the last step follows since the distortion measure is additive.
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Finally,
1
lim sup — log, M,, < RV(D)

n—0o0

implies the existence of N and ~ > 0 such that
1
—log, M,, < RY(D) — »
n

for all n > N. Therefore, for n > N,

1 1

RO (LEpuz () (<o) < ROD) -
n n

which, together with the fact that RU)(D) is strictly decreasing, implies that

%E[pn(Z”, h(Z7))] > D + ¢

for some € = ¢(y) > 0 and for all n > N.
Hence, (RY(D), D + ¢€) is not achievable and the operational R(D) satisfies

R(D +¢) > RY(D) for arbitrarily small & > 0.
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3. Summary:

e For D € {D > 0: RY(D) > 0}, the achievability and converse parts jointly
imply that
RY(D) +4e > R(D +¢) > RY(D)

for arbitrarily small £ > 0.

e These inequalities together with the continuity of RY)(D) yield that

for D € {D >0: RY(D) > 0}.
e For D € {D > 0: RY(D) = 0}, the achievability part gives us
RY(D)+4e =4 > R(D +¢) > 0
for arbitrarily small € > 0. This immediately implies that

R(D)=0 (= RY(D)).
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e The formula of the rate-distortion function obtained in the previous theorems
is also valid for the squared error distortion over the real numbers, even if it is
unbounded.

— For example, the boundedness assumption in the theorems can be replaced
with assuming that there exists a reproduction symbol 2, € Z such that
Elp(Z, )] < 0.

— This assumption can accommodate the squared error distortion measure
and a source with finite second moment (including continuous-alphabet
sources such as Gaussian sources).

e Here, we put the boundedness assumption just to facilitate the exposition of
the current proof.
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e After introducing

— Shannon’s source coding theorem for block codes
— Shannon’s channel coding theorem for block codes

— Rate-distortion theorem

in the memoryless (and stationary ergodic) system setting, we briefly elucidate
the “key concepts or techniques” behind these lengthy proofs, in particular:

— The notion of a typical set
x The typical set construct — specifically,

- 0-typical set for source coding
- joint d-typical set for channel coding
- distortion typical set for rate-distortion

uses a law of large numbers or AEP argument to claim the existence
of a set with very high probability; hence, the respective information
manipulation can just focus on the set with negligible performance loss.



Notes I: 6-36

— The notion of random coding

x The random coding technique shows that the expectation of the desired
performance over all possible information manipulation schemes (ran-
domly drawn according to some properly chosen statistics) is already
acceptably good, and hence the existence of at least one good scheme
that fulfills the desired performance index is validated.

e As a result, in situations where the above two techniques apply, a similar
theorem can often be established.
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Theorem 6.21 (Shannon’s rate-distortion theorem for stationary er-
godic sources) Consider a stationary ergodic source {Z,,}°2; with alphabet Z,
reproduction alphabet Z and a bounded additive distortion measure p,(-,-); i.e.,

n
pn(2", 2") = Zp(zi, Z) and  ppa = max  p(z,2) < oo,
1 (2,2)€EZXZ
where p(-,-) is a given single-letter distortion measure. Then the source’s rate-
distortion function is given by

where

RY(D) = lim RY(D) (6.3.5)

n—o0

is called the asymptotic information rate-distortion function. and

1 ~
RD(D) = min —1(Z"Z") (6.3.6)
PZn|Zn3 %E[pn(Zn,Z”)]SD n

is the n-th order information rate-distortion function.
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e Question: Can we extend the theorems to cases where the two arguments
fail?’

e It is obvious that only when new methods (other than the above two) are
developed can the question be answered in the affirmative.
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Theorem 6.23 Fix a binary DMS {Z,,}>°; with marginal distribution Pz(0) =
1 — Pz(1) = p, where 0 < p < 1. Then the source’s rate-distortion function under
the Hamming additive distortion measure is given by:

R(D) = hy(p) — hyp(D) if 0 < D < min{p,1 — p};
- 0 if D> min{p,1 — p},
where hy(p) .= — p-log(p) — (1 — p) - log(1 — p) is the binary entropy function.

Proof: Assume without loss of generality that p < 1/2.

e We first prove the theorem under 0 < D < min{p,1 — p} = p. Observe that
for any binary random variable Z,

H(Z|Z)=H(Z & Z|Z).
Also observe that

E[p(Z,Z)] < D implies Pr{Z & Z =1} < D.
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Then
1(Z:2) = H(Z)—H(Z|Z)
= hn(p) — H(Z ® Z|Z)
> hy(p) — H(Z @ Z) (conditioning never increase entropy)
Z hb(p) - hb(D)7

where the last inequality follows since hy(x) is increasing for x < 1/2; and
Pr{Z®Z =1} <D.

e Since the above derivation is true for any PZ; z, We have

R(D) = hy(p) — hn(D).
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e [t remains to show that the lower bound is achievable by some PZ; 7, OI equiv-
alently, H(Z|Z) = hy(D) for some Pz

By defining Py, (0]0) = Py 5(1]1) = 1= D, we immediately obtain H(Z|Z) =
hi(D). The desired Py, can be obtained by solving
L = P(0) + P5(1)

P00 P7(0)
= P00 212(0[0) + Py 01T) P 7(1]0)

7|2
_ P . Yo _p.
= EPZ\Z(O‘O) + D(l Py ,(0]0))
and
I = Py(0) + P,(1)
Pz( ) PZ(l)
= 5o L2200 + 5——= P ,(1[1)
Py 5(1]0) Pz P, ,(1]1) 7
1 — I—p
= T(l = P (1) + 15 P22(11D),
and yield
1—D D 1—D D
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e Now in the case of p < D < 1 — p, we can let PZ‘Z(1]O) = PZ’Z(lll) =1 to
obtain I(Z; Z) = 0 and

1 1

Elp(Z, 7)) = 3" % Py2) Py (212

2=0 2=0

Similarly, in the case of D > 1 —p, we let Py /(0[0) = Py ,(0[1) = 1 to obtain
1(Z;Z) =0 and

1 1
=2 D Paa)Py,zle

z=0 2=0

2)p(z,2) =1—p < D.

e Remark: The Hamming additive distortion measure is defined as:

n

pn(2", 2") = Z 2 D zi,

1=1

where “@” denotes modulo two addition. In such case, p(2", 2") is exactly the
number of bit changes or bit errors after compression.



6.4.2 Rate distortion func / the squared error dist 1.

Theorem 6.26 (Gaussian sources maximize the rate-distortion func-
tion) Under the additive squared error distortion measure, namely

pn(znv Zm) - Z(ZZ - éi)zv
i=1

the rate-distortion function for any continuous memoryless source {Z;} with a pdf
of support R, zero mean, variance o and finite differential entropy satisfies

1 o’

—logy, —, f D < o?

R(D) < ZngD’ or0< D<o

0, for D > o?

with equality holding when the source is Gaussian.

Proof: By Theorem 6.20 (extended to the “unbounded” squared error distortion
measure),

R(D) = RY(D) = min  1(Z: Z).
fy17° Bl(Z-2)2)<D

So for any fZ|  satisfying the distortion constraint,

R(D) < [(f27fZ|Z)'



6.4.2 Rate distortion func / the squared error dist 1

For 0 < D < o2

e Choose a dummy Gaussian random variable W with zero mean and variance
aD, where a = 1 — D/0?, and is independent of Z. Let Z = aZ + W. Then

E((Z — Z)") = E[(1 - a)*Z%] + E[W?

(1 —a)’0c*+aD =D
which satisfies the distortion constraint.
e Note that the variance of Z is equal to E[a*Z?% + E[W? = o2 — D.

e Consequently,

R(D) < 1(Z;2)
= hZ)—hZ|2Z)
= WZ)—hW +aZ|2Z)
= WZ)—hW|2Z)
= h(Z)—hW) (by the independence of W and Z)
_ WZ) - %logQ(QWe(aD))
< %logz(%re(az — D)) — =log,(2me(aD)) = = log, Og.



6.4.2 Rate distortion func / the squared error dist 1.4

For D > o

e Let Z satisfy Pr{Z = 0} = 1 (and be independent of Z).

e Then E[(Z—2)?| = E[Z)+E[Z?|—2E[Z|E[Z] = 0> < D, and I(Z; Z) = 0.
Hence, R(D) =0 for D > o*.

The achievability of this upper bound by a Gaussian source (with zero mean and
variance %) can be proved by showing that under the Gaussian source,

(1/2)logy(0*/ D)

is a lower bound to R(D) for 0 < D < o,



6.4.2 Rate distortion func / the squared error dist 1

Indeed, when the source Z is Gaussian and for any f, ; such that £ (Z—2)Y] < D,

we have

1(Z;2)

AV AVARRN AV

1V

hZ)—hZ|Z)
%1og2(27re(72) Wz - 212)

1 .
510g2(27602) —h(Z - 7Z)

1 .1 A
5 log,(2mec*) — 5 log, (27'('6 Var[(Z — Z)])

1 1 .
510g2(27r602) — §log2 (27Te E|(Z — Z)Q])

1 1
5 logy(2mec?) — 5 log, (2meD)

5 10g2 5



6.4.2 Rate distortion func / the squared error dist — 1¢ur

Theorem 6.27 (Shannon lower bound on the rate-distortion func-
tion: squared error distortion) Consider a continuous memoryless source
{Z;} with a pdf of support R and finite differential entropy under the additive
squared error distortion measure. Then its rate-distortion function satisfies

R(D) > h(Z) — %logQ(QWeD).

Proof: The proof, which follows similar steps as in the achievability of the upper
bound in the proof of the previous theorem, is left as an exercise. -



6.4.2 Rate distortion func / the squared error dist 1

e In Lemma 5.42, we show that for a discrete-time continuous-alphabet memo-
ryless additive-noise channel with input power constraint P and noise variance
o2, its capacity satisfies

Co(P)+ D(Z||Zc) > C(P)> Cu(P)
non—Gaussianness

—h(Zc)—h(2) %10g2(1+0%>

e Similarly, for a continuous memoryless source { Zi} with a pdf of support R and
finite differential entropy under the additive squared error distortion measure
its rate-distortion function satisfies

Ro(D)— D(Z||Zg) < R(D) < Rg(D).
Ra(D) — D(Z]|Zg) < R(D) < Ra(D)

TV
Shannon lower bound 1 o2
on the rate distortion func 3 logy D

Section 6.4.3 is based on a similar idea but targets for the absolute error distor-
tion; hence, we omit it in our lecture. Notably, a correction has been provided
for Theorem 6.29 (See errata for the textbook.)
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e This is also named lossy information-transmaission theorem.

Definition 6.32 (Lossy source-channel block code) Given a discrete-time
source { Z;}°, with alphabet Z and reproduction alphabet Z and a discrete-time
channel with input and output alphabets X and ), respectively, an m-to-n lossy
source-channel block code with rate ™ source symbol/channel symbol is a pair of
mappings (9, ¢©*9), where

fedizm s am and gl Y 2,

Encoder xn yn Decoder . .
F(s0) Channel 450 —————— gm ¢ Zm

" e ZM——m—m

Given an additive distortion measure p,, = > " p(2;, 2;), where p is a distor-
tion function on Z X Z, we say that the m-to-n lossy source-channel block code
(f9), g9 satisfies the average distortion fidelity criterion D, where D > 0, if

1 R
~Elp,(Z™, Z™] < D.
p- [om( )] <
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Theorem 6.33 (Lossy joint source-channel coding theorem) Consider
a discrete-time stationary ergodic source {Z;}5°, with finite alphabet Z, finite
reproduction alphabet Z, bounded additive distortion measure Pm(+, ) and rate-
distortion function R(D), and consider a discrete-time memoryless channel with
input alphabet X', output alphabet ) and capacity C'. Assuming that both R(D)
and C are measured in the same units, the following hold:

e Forward part (achievability): For any D > 0, there exists a sequence of m-
to-n,, lossy source-channel codes (f (sc) g(sc)) satisfying the average distortion
fidelity criterion D for sufficiently large m if

m
(lim sup —) -R(D) < C.
m—oo Tm
e Converse part: On the other hand, for any sequence of m-to-n,, lossy source-
channel codes (9, ¢(*9) satisfying the average distortion fidelity criterion D,
we have
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Observation 6.34 (Lossy joint source-channel coding theorem with
signaling rates)

e The above theorem admits another form when the source and channel are
described in terms of “signaling rates”.

e Let T, and T, represent the durations (in seconds) per source letter and per
channel input symbol, respectively.

e In this case, % represents the source-channel transmission rate measured in
S

source symbols per channel use (or input symbol).

— Forward part: The source can be reproduced at the output of the channel
with distortion less than D (i.e., there exist lossy source-channel codes
asymptotically satisfying the average distortion fidelity criterion D) if

(%) -R(D) < C.

— Conwverse part: For any lossy source-channel codes satisfying the average
distortion fidelity criterion D, we have

(5)-no <
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e A bound on the end-to-end distortion of a communication system:

— If a source with rate-distortion function R(D) can be transmitted over a
channel with capacity C' via a source-channel block code of rate Ry > 0
(in source symbols/channel use) and reproduced at the destination with an
average distortion no larger than D, then we must have that

C. (6.6.1)

— Shannon limit:
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Example 6.35 (Shannon limit for a binary uniform DMS over a
BSC)

e Let Z = Z = {0,1} and consider a binary uniformly distributed DMS {Z;}
(i.e., a Bernoulli(1/2) source) using the additive Hamming distortion measure.

e Note that in this case, E[p(Z, Z)| = P(Z # Z) := P,
e We desire to transmit the source over a BSC with crossover probability € < 1/2.

e We then have for 0 < D < %,

R(D)=1—hy(D), and C=1— hye).

e Hence, for a given e,

Dy = min{D:l—hb(D) <! 1_—’”)(6))

=t} =rt (1= 2

e Alternatively, for a given D,

€57 = Mmax {e 1 —hy(D) < Rlsc(l — hb(e))} = h;! (1 — Ry.(1— hb(D)))
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e [t is well-known that a BSC with crossover probability € represents a binary-
input AWGN channel used with antipodal (BPSK) signaling and hard-decision
coherent demodulation.

e With average energy per signal P, noise power % and signal-to-noise ratio
(SNR) v = P/Ny, we have

e=0Q (\/ﬂ) (6.6.5)

1 <2

is the Gaussian QQ-function.

where

e If the channel is used with a source-channel code of rate Ry, source (or infor-
mation) bits/channel use, then € can be expressed in terms of a so-called SNR
per source (or information) bit

E, 1P 1
NO_RSCNO_RSC

where Ej, is the average energy per source bit.

T = 7
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e Thus,
e=0Q (\/2}230%) (6.6.6)
e The minimal 7, (in dB) for a given P, = D < 5 and a source-channel code
rate Ry, < 1:

1
WSt = 5 (Q_l(ESL))Z

Rate Ry. | P, =0 P, =10 | P, =10"*| P, =103 | P, = 1073

1/3 1.212 1.210 1.202 1.150 0.077
1/2 1.775 1.772 1.763 1.703 1.258
2/3 2.516 2.513 2.503 2.423 1.882
4/5 3.369 3.367 3.354 3.250) 2.047
e For R,. =1,
€Sl - — hgl(l - Rsc(l - hb(D))> =D = Pb
and

V,5L = %(Q_l(Pb))Q-
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Example 6.37 (Shannon limit for a memoryless Gaussian source over
an AWGN channel)

e Let Z = Z = R and consider a memoryless Gaussian source {Z;} of mean
zero and variance o and the squared error distortion function.

e The objective is to transmit the source over an AWGN channel with input

power constraint P and noise variance o3 = 52 and recover it with distortion

fidelity no larger than D, for a given threshold D > 0.
e The source’s rate-distortion function is given by

1 o2

R(D) = 510g2 D

Furthermore, the capacity (or capacity-cost function) of the AWGN channel is

given as
1 P
C(P) = =log, (1 + —2) :
2 oy

for 0< D < o>
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e The Shannon limit Dgy, for this system with rate Ry is obtained via

2
’ (6.6.10)

for 0 < Dg; < o°.
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Example 6.39 (Shannon limit for a binary uniform DMS over a
binary-input AWGN channel)

e Let Z = Z = {0,1} and consider a binary uniformly distributed DMS {Z;}
(i.e., a Bernoulli(1/2) source) using the additive Hamming distortion measure.

e The binary uniform source is sent via a source-channel code over a binary-input
AWGN channel used with antipodal (BPSK) signaling of power P and noise
variance 0%, = Ny/2.

e We then have for 0 < D < %,

R(D)=1— hy(D).



6.6 Shannon limit of communication systems I 6-60

e However, the channel capacity C(P) of the AWGN whose input takes on
two possible values +v/P or —v/ P, whose output is real-valued and whose
noise variance is o3 = %, is given by evaluating the mutual information be-

tween the channel input and output under the input distribution PX(—F\/ﬁ) =

Px(—VP)=1/2:

P 1 > 2 P P
C(P) = —-logy(e) — — e V" ?log, |cosh | — + —
(P) = oz loeale) %E/; g%: (ﬁ,yVﬁ)

Rsch 1 oo_ 2 Rsch Rsch
= | —— vi2) h
0gs(€) 5] © 0g9 [COS ( Nz TN /2>

1 > 2
— 2R80fyb IOgQ(e) o E e’ /2 IOgQ [COSh(2R807b +y V 2Rscfyb)]dya

dy

dy

where P = R .} is the channel signal power, Ej is the average energy per
source bit, and 7y, = Ej/Ny is the SNR per source bit.

e Then, it requires

1

1 —hy(P) < R

1 o0
2hcnloss(e) - = [ P logfeoshi2Ruc + yv/ IRy
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Shannon limit

iy
Pb le-3
le-d |

le-5 ;

1e-6 [ 1 1 1 1 1 1
-6 -5 -4 -3 -2 -1-.4950.19 1 2
Y (dB)

The Shannon limits for (2, 1) and (3, 1) codes under binary-input AWGN channel.

e The Shannon limits calculated above are pertinent due to the invention of
near-capacity achieving channel codes, such as Turbo or LDPC codes.

e For example, the rate-1/2 Turbo coding system proposed in 1993 can approach
a bit error rate of 107° at v, = 0.9 dB, which is only 0.714 dB away from the
Shannon limit of 0.186 dB.



6.6 Shannon limit of communication systems

Rate Ry | P,=0|P, =107 | P, =104 P, =102 | P, = 1073
1/3 —0.496| —0.496 | —0.504 | —0.559 | —0.960
1/2 0.186 0.186 0.177 0.111 —0.357
2/3 1.060 1.057 1.047 0.963 0.382
4/5 2.040 2.038 2.023 1.909 1.152

I 6-62
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Example 6.40 (Shannon limit for a binary uniform DMS over a
binary-input Rayleigh fading channel)
e Consider a BPSK modulated Rayleigh fading channel.

e [ts input power is P = R,.E}, its noise variance is 0]2\] = Ny/2 and the fading
distribution is Rayleigh:

fala) = 2ae_“2, a > 0.

e Then,
Rsc +00 +00
CDSI(V()) — 11— / T(,yb\/ fA(a) e—Rsc'Yb(?H‘a)Q 1Og2 (1 4 64Rsc’7bya) dy da.
0 —00

e We then generate the below table according to:

L= hy(FB) < : Cpsi(m),

Rate Ry. | P, =0| B, = 107 B, = 1074 b, = 1073 B, = 1073
1/3 0.489 0.487 0.479 0.412 —0.066
1/2 1.830 1.829 1.817 1.729 1.107
2/3 3.667 3.664 3.647 3.516 2.627
4/5 5.936 5.932 5.904 5.690 4.331
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e Why lossy data compression (e.g., to transmit a source with entropy larger
than capacity)

e Distortion measure

e [ossy data compression codes
e Rate-distortion function

e Distortion typical set

e AEP for distortion measure

e Rate distortion theorem



Key Notes I 6-65

Terminology
e Shannon’s source coding theorem — Shannon’s first coding theorem;
e Shannon’s channel coding theorem — Shannon’s second coding theorem:;
e Rate distortion theorem — Shannon’s third coding theorem.

e Information transmission Theorem — Joint source-channel coding theorem

— Shannon limit (BER versus SNR;,)



