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Continuous sources I: 5-1

• Model

{Xt ∈ X , t ∈ I}
– Discrete sources

∗ Both X and I are discrete.

– Continuous sources

∗ Discrete-time continuous sources

· X is continuous; I is discrete.

∗ Waveform sources

· Both X and I are continuous.

• We have so far examined information measures and their operational charac-

terization for discrete-time discrete-alphabet systems. In this chapter,

we turn our focus to discrete-time continuous-alphabet (real-valued)

sources.
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• If the random variable takes on values in a continuum, the minimum number

of bits per symbol needed to losslessly describe it must be infinite.

• This is illustrated in the following example and validated in Lemma 5.2.

Example 5.1

– Consider a real-valued random variable X that is uniformly distributed on

the unit interval, i.e., with pdf given by

fX(x) =

{
1 if x ∈ [0, 1);

0 otherwise.

– Given a positive integer m, we can discretize X by uniformly quantizing it

into m levels by partitioning the support of X into equal-length segments

of size ∆ = 1
m (∆ is called the quantization step-size) such that:

qm(X) =
i

m
, if

i− 1

m
≤ X <

i

m
,

for 1 ≤ i ≤ m.

– Then the entropy of the quantized random variable qm(X) is given by

H(qm(X)) = −
m∑
i=1

1

m
log2

(
1

m

)
= log2m (in bits).
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– Since the entropy H(qm(X)) of the quantized version ofX is a lower bound

to the entropy of X (as qm(X) is a function of X) and satisfies in the limit

lim
m→∞H(qm(X)) = lim

m→∞ log2m = ∞,

we obtain that the entropy of X is infinite. �

• The above example indicates that to compress a continuous source without

incurring any loss or distortion requires an infinite number of bits.

• Thus when studying continuous sources, the entropy measure is limited in its

effectiveness and the introduction of a new measure is necessary.

• Such a new measure is obtained upon close examination of the entropy

of a uniformly quantized real-valued random-variable minus the

quantization accuracy as the accuracy increases without bound.
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Lemma 5.2 Consider a real-valued random variable X with support [a, b)

and pdf fX such that{
(i) −fX log2 fX is (Riemann-)integrable, and

(ii) − ∫ b

a fX(x) log2 fX(x)dx is finite.

Then a uniform quantization of X with an n-bit accuracy (i.e., with a quanti-

zation step-size of ∆ = 2−n) yields an entropy approximately equal to

−
∫ b

a

fX(x) log2 fX(x)dx + n bits

for n sufficiently large. In other words,

lim
n→∞ [H(qn(X))− n] = −

∫ b

a

fX(x) log2 fX(x)dx

where qn(X) is the uniformly quantized version of X with quantization step-

size ∆ = 2−n.
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Proof:

Step 1: Mean-value theorem.

Let ∆ = 2−n be the quantization step-size, and let

ti:=

{
a + i∆, i = 0, 1, · · · , j − 1

b, i = j

where

j =

⌈
b− a

∆

⌉
.

From the mean-value theorem, we can choose xi ∈ [ti−1, ti] for 1 ≤ i ≤ j

such that

pi :=

∫ ti

ti−1

fX(x)dx = fX(xi)(ti − ti−1) = ∆ · fX(xi).
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Step 2: Definition of h(n)(X).

Let

h(n)(X) := −
j∑

i=1

[fX(xi) log2 fX(xi)]∆ = −
j∑

i=1

[fX(xi) log2 fX(xi)]2
−n.

Since −fX(x) log2 fX(x) is (Riemann-)integrable,

h(n)(X) → −
∫ b

a

fX(x) log2 fX(x)dx as n → ∞.

Therefore, given any ε > 0, there exists N such that for all n > N ,∣∣∣∣−
∫ b

a

fX(x) log2 fX(x)dx− h(n)(X)

∣∣∣∣ < ε.
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Step 3: Computation of H(qn(X)). The entropy of the (uniformly) quan-

tized version of X , qn(X), is given by

H(qn(X)) = −
j∑

i=1

pi log2 pi

= −
j∑

i=1

(fX(xi)∆) log2(fX(xi)∆)

= −
j∑

i=1

(fX(xi)2
−n) log2(fX(xi)2

−n)

where the pi’s are the probabilities of the different values of qn(X).
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Step 4: H(qn(X))− h(n)(X) . From Steps 2 and 3,

H(qn(X))− h(n)(X) = −
j∑

i=1

[fX(xi)2
−n] log2(2

−n)

= n

j∑
i=1

∫ ti

ti−1

fX(x)dx

= n

∫ b

a

fX(x)dx

= n.

Hence, we have that for n > N ,[
−

∫ b

a

fX(x) log2 fX(x)dx + n

]
− ε < H(qn(X)) = h(n)(X) + n

<

[
−

∫ b

a

fX(x) log2 fX(x)dx + n

]
+ ε,

yielding that

limn→∞ [H(qn(X))− n] = − ∫ b

a fX(x) log2 fX(x)dx. �
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Lemma 5.2 actually holds not limited for support [a, b) but for any support SX .

Theorem 5.3 [340, Theorem 1](Rényi 1959) For any real-valued random vari-

able with pdf fX , if

−
j∑

i=1

pi log2 pi

is finite, where the pi’s are the probabilities of the different values of uniformly

quantized qn(X) over support SX , then

lim
n→∞

[H(qn(X))− n] = −
∫
SX

fX(x) log2 fX(x)dx

provided the integral on the right-hand side exists.

This suggests that
∫
SX

fX(x) log2
1

fX(x)dx could be a good information measure for

continuous-alphabet sources.
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Definition 5.4 (Differential entropy) The differential entropy (in bits) of a

continuous random variable X with pdf fX and support SX is defined as

h(X):=−
∫
SX

fX(x) · log2 fX(x)dx = E[− log2 fX(X)],

when the integral exists.

Example 5.5 A continuous random variableX with support SX = [0, 1) and pdf

fX(x) = 2x for x ∈ SX has differential entropy equal to∫ 1

0

−2x · log2(2x)dx =
x2(log2 e− 2 log2(2x))

2

∣∣∣∣1
0

=
1

2 ln 2
− log2(2) = −0.278652 bits.
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Next, we have that qn(X) is given by

qn(X) =
i

2n
, if

i− 1

2n
≤ X <

i

2n
,

for 1 ≤ i ≤ 2n. Hence,

Pr

{
qn(X) =

i

2n

}
=

(2i− 1)

22n
,

which yields

H(qn(X)) = −
2n∑
i=1

2i− 1

22n
log2

(
2i− 1

22n

)

=

[
− 1

22n

2n∑
i=1

(2i− 1) log2(2i− 1) + 2 log2(2
n)

]
.
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n H(qn(X)) H(qn(X))− n

1 0.811278 bits −0.188722 bits

2 1.748999 bits −0.251000 bits

3 2.729560 bits −0.270440 bits

4 3.723726 bits −0.276275 bits

5 4.722023 bits −0.277977 bits

6 5.721537 bits −0.278463 bits

7 6.721399 bits −0.278600 bits

8 7.721361 bits −0.278638 bits

9 8.721351 bits −0.278648 bits
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Example 5.7 (Differential entropy of a uniformly distributed ran-

dom variable) Let X be a continuous random variable that is uniformly dis-

tributed over the interval (a, b), where b > a; i.e., its pdf is given by

fX(x) =

{
1

b−a if x ∈ (a, b);

0 otherwise.

So its differential entropy is given by

h(X) = −
∫ b

a

1

b− a
log2

1

b− a
= log2(b− a) bits.

• Note that if (b− a) < 1 in the above example, then h(X) is negative.



5.1 Differential entropy I: 5-14

Example 5.8 (Differential entropy of a Gaussian random variable)

Let X ∼ N (µ, σ2); i.e., X is a Gaussian (or normal) random variable with finite

mean µ, variance Var(X) = σ2 > 0 and pdf

fX(x) =
1√
2πσ2

e
−(x−µ)2

2σ2

for x ∈ R. Then its differential entropy is given by

h(X) =

∫
R

fX(x)

[
1

2
log2(2πσ

2) +
(x− µ)2

2σ2
log2 e

]
dx

=
1

2
log2(2πσ

2) +
log2 e

2σ2
E[(X − µ)2]

=
1

2
log2(2πσ

2) +
1

2
log2 e

=
1

2
log2(2πeσ

2) bits. (5.1.1)

• Note that for a Gaussian random variable, its differential entropy is only a

function of its variance σ2 (it is functionally independent from its mean µ).

• This is similar to the differential entropy of a uniform random variable, which

only depends on difference (b− a) but not the mean (a + b)/2.
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Definition 5.9 (Joint differential entropy) If Xn = (X1, X2, · · · , Xn) is a

continuous random vector of size n (i.e., a vector of n continuous random variables)

with joint pdf fXn and support SXn ⊆ R
n, then its joint differential entropy is

defined as

h(Xn) := −
∫
SXn

fXn(x1, x2, · · · , xn) log2 fXn(x1, x2, · · · , xn) dx1 dx2 · · · dxn
= E[− log2 fXn(Xn)]

when the n-dimensional integral exists.
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Definition 5.10 (Conditional differential entropy) Let X and Y be two

jointly distributed continuous random variables with joint pdf fX,Y and support

SX,Y ⊆ R
2 such that the conditional pdf of Y given X , given by

fY |X(y|x) = fX,Y (x, y)

fX(x)
,

is well defined for all (x, y) ∈ SX,Y , where fX is the marginal pdf of X . Then the

conditional entropy of Y given X is defined as

h(Y |X):=−
∫
SX,Y

fX,Y (x, y) log2 fY |X(y|x) dx dy = E[− log2 fY |X(Y |X)],

when the integral exists.

• Chain rule for differential entropy:

h(X, Y ) = h(X) + h(Y |X) = h(Y ) + h(X|Y ).
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Definition 5.11 (Divergence or relative entropy) Let X and Y be two

continuous random variables with marginal pdfs fX and fY , respectively, such that

their supports satisfy SX ⊆ SY ⊆ R. Then the divergence (or relative entropy or

Kullback-Leibler distance) between X and Y is written as D(X‖Y ) or D(fX‖fY )
and defined by

D(X‖Y ):=

∫
SX

fX(x) log2
fX(x)

fY (x)
dx = E

[
fX(X)

fY (X)

]
when the integral exists. The definition carries over similarly in the multivariate

case: for Xn = (X1, X2, · · · , Xn) and Y n = (Y1, Y2, · · · , Yn) two random vectors

with joint pdfs fXn and fY n, respectively, and supports satisfying SXn ⊆ SY n ⊆ R
n,

the divergence between Xn and Y n is defined as

D(Xn‖Y n):=

∫
SXn

fXn(x1, x2, · · · , xn) log2
fXn(x1, x2, · · · , xn)
fY n(x1, x2, · · · , xn) dx1 dx2 · · · dxn

when the integral exists.

• Note that D(qn(X)‖qn(Y )) → D(X‖Y ) for continuous X and Y .
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Definition 5.12 (Mutual information) LetX and Y be two jointly distributed

continuous random variables with joint pdf fX,Y and support SXY ⊆ R
2. Then the

mutual information between X and Y is defined by

I(X ;Y ):=D(fX,Y ‖fXfY ) =
∫
SX,Y

fX,Y (x, y) log2
fX,Y (x, y)

fX(x)fY (y)
dx dy,

assuming the integral exists, where fX and fY are the marginal pdfs of X and Y ,

respectively.

• For n and m sufficiently large,

I(qn(X); qm(Y )) = H(qn(X)) +H(qm(Y ))−H(qn(X), qm(Y ))

≈ [h(X) + n] + [h(Y ) +m]− [h(X, Y ) + n +m]

= h(X) + h(Y )− h(X, Y )

=

∫
SX,Y

fX,Y (x, y) log2
fX,Y (x, y)

fX(x)fY (y)
dx dy.

Hence,

lim
n,m→∞ I(qn(X); qm(Y )) = h(X) + h(Y )− h(X, Y ).

• This justifies using identical notations for both I(·; ·) and D(·‖·) as opposed to

the discerning notations of H(·) for entropy and h(·) for differential entropy.
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Lemma 5.14 The following properties hold for the information measures of con-

tinuous systems.

1. Non-negativity of divergence: Let X and Y be two continuous random

variables with marginal pdfs fX and fY , respectively, such that their supports

satisfy SX ⊆ SY ⊆ R. Then

D(fX‖fY ) ≥ 0

with equality iff fX(x) = fY (x) for all x ∈ SX except in a set of fX-measure

zero (i.e., X = Y almost surely).

2. Non-negativity of mutual information: For any two continuous random

variables X and Y ,

I(X ;Y ) ≥ 0

with equality iff X and Y are independent.

3. Conditioning never increases differential entropy: For any two con-

tinuous random variables X and Y with joint pdf fX,Y and well-defined con-

ditional pdf fX|Y ,
h(X|Y ) ≤ h(X)

with equality iff X and Y are independent.
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4. Chain rule for differential entropy: For a continuous random vector

Xn = (X1, X2, · · · , Xn),

h(X1, X2, . . . , Xn) =
n∑

i=1

h(Xi|X1, X2, . . . , Xi−1),

where h(Xi|X1, X2, . . . , Xi−1):=h(X1) for i = 1.

5. Chain rule for mutual information: For continuous random vector

Xn = (X1, X2, · · · , Xn) and random variable Y with joint pdf fXn,Y and

well-defined conditional pdfs fXi,Y |Xi−1, fXi|Xi−1 and fY |Xi−1 for i = 1, · · · , n,
we have that

I(X1, X2, · · · , Xn;Y ) =

n∑
i=1

I(Xi;Y |Xi−1, · · · , X1),

where I(Xi;Y |Xi−1, · · · , X1):=I(X1;Y ) for i = 1.

6. Data processing inequality: For continuous random variables X , Y and

Z such that X → Y → Z, i.e., X and Z are conditional independent given

Y ,

I(X ;Y ) ≥ I(X ;Z).
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7. Independence bound for differential entropy: For a continuous ran-

dom vector Xn = (X1, X2, · · · , Xn),

h(Xn) ≤
n∑

i=1

h(Xi)

with equality iff all the Xi’s are independent from each other.

8. Invariance of differential entropy under translation: For continuous

random variables X and Y with joint pdf fX,Y and well-defined conditional

pdf fX|Y ,

h(X + c) = h(X) for any constant c ∈ R, and h(X + Y |Y ) = h(X|Y ).

The results also generalize in the multivariate case: for two continuous random

vectors Xn = (X1, X2, · · · , Xn) and Y n = (Y1, Y2, · · · , Yn) with joint pdf

fXn,Y n and well-defined conditional pdf fXn|Y n,

h(Xn + cn) = h(Xn)

for any constant n-tuple cn = (c1, c2, · · · , cn) ∈ R
n, and

h(Xn + Y n|Y n) = h(Xn|Y n),

where the addition of two n-tuples is performed component-wise.
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9. Differential entropy under scaling: For any continuous random variable

X and any non-zero real constant a,

h(aX) = h(X) + log2 |a|.

10. Joint differential entropy under linear mapping: Consider the ran-

dom (column) vector X = (X1, X2, · · · , Xn)
T with joint pdf fXn, where T

denotes transposition, and let Y = (Y1, Y2, · · · , Yn)
T be a random (column)

vector obtained from the linear transformation Y = AX , where A is an in-

vertible (non-singular) n× n real-valued matrix. Then

h(Y ) = h(Y1, Y2, · · · , Yn) = h(X1, X2, · · · , Xn) + log2 |det(A)|,
where det(A) is the determinant of the square matrix A.
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11. Joint differential entropy under nonlinear mapping: Consider the

random (column) vector X = (X1, X2, · · · , Xn)
T with joint pdf fXn, and

let Y = (Y1, Y2, · · · , Yn)
T be a random (column) vector obtained from the

nonlinear transformation

Y = g(X):=(g1(X1), g2(X2), · · · , gn(Xn))
T ,

where each gi : R → R is a differentiable function, i = 1, 2, · · · , n. Then
h(Y ) = h(Y1, Y2, · · · , Yn)

= h(X1, · · · , Xn) +

∫
Rn

fXn(x1, · · · , xn) log2 |det(J)| dx1 · · · dxn,

where J is the n× n Jacobian matrix given by

J:=




∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn... ... · · · ...

∂gn
∂x1

∂gn
∂x2

· · · ∂gn
∂xn


 .
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Theorem 5.18 (Joint differential entropy of the multivariate Gaus-

sian) If X ∼ Nn(µ,KX) is a Gaussian random vector with mean vector µ and

(positive-definite) covariance matrix KX , then its joint differential entropy is given

by

h(X) = h(X1, X2, · · · , Xn) =
1

2
log2 [(2πe)

ndet(KX)] . (5.2.1)

In particular, in the univariate case of n = 1, (5.2.1) reduces to (5.1.1).

Proof:

• Without loss of generality we assume that X has a zero mean vector since its

differential entropy is invariant under translation by Property 8 of Lemma 5.14:

h(X) = h(X − µ);

so we assume that µ = 0.
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• Since the (positive-definite) covariance matrix KX is a real-valued symmetric

matrix, then it is orthogonally diagonizable; i.e., there exits a square (n × n)

orthogonal matrix A (i.e., satisfying AT = A−1) such that AKXA
T is a

diagonal matrix whose entries are given by the eigenvalues of KX .

• As a result the linear transformation Y = AX ∼ Nn

(
0,AKXA

T
)
is a Gaus-

sian vector with the diagonal covariance matrixKY = AKXA
T and has there-

fore independent components.
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• Thus

h(Y ) = h(Y1, Y2, · · · , Yn)

= h(Y1) + h(Y2) + · · · + h(Yn) (by independence of Y )

=

n∑
i=1

1

2
log2 [2πeVar(Yi)]

=
n

2
log2(2πe) +

1

2
log2

[
n∏

i=1

Var(Yi)

]

=
n

2
log2(2πe) +

1

2
log2 [det (KY )]

=
1

2
log2 (2πe)

n +
1

2
log2 [det (KX)] (5.2.5)

=
1

2
log2 [(2πe)

n det (KX)] ,

where (5.2.5) holds since

det (KY ) = det
(
AKXA

T
)

= det(A)det (KX) det(A
T )

= det(A)2det (KX)

= det (KX) .
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• Now noting that |det(A)| = 1 yield that

h(Y1, Y2, · · · , Yn) = h(X1, X2, · · · , Xn)+log2 |det(A)|︸ ︷︷ ︸
=0

= h(X1, X2, · · · , Xn).

We therefore obtain that

h(X1, X2, · · · , Xn) =
1

2
log2 [(2πe)

n det (KX)] ,

hence completing the proof. �

• An important fact: Among all real-valued size-n random vectors (of sup-

port Rn) with identical mean vector and covariance matrix, the Gaussian ran-

dom vector has the largest differential entropy. The proof of this fact requires

the following inequality.

Corollary 5.19 (Hadamard’s inequality) For any real-valued n×n positive-

definite matrix K = [Ki,j]i,j=1,··· ,n,

det(K) ≤
n∏

i=1

Ki,i

with equality iff K is a diagonal matrix, where Ki,i are the diagonal entries of K.
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Theorem 5.20 (Maximal differential entropy for real-valued random

vectors) Let X = (X1, X2, · · · , Xn)
T be a real-valued random vector with sup-

port SXn⊆R
n, mean vector µ and covariance matrix KX . Then

h(X1, X2, · · · , Xn) ≤ 1

2
log2 [(2πe)

n det(KX)] , (5.2.11)

with equality iff X is Gaussian; i.e., X ∼ Nn

(
µ,KX

)
.

Proof: We will present the proof in two parts: the scalar or univariate case, and

the multivariate case (baed on the univariate case).
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(i) Scalar case (n = 1): Let X be a real-valued random variable with support

SX⊆R, mean µ and variance σ2.

For a Gaussian random variable Y ∼ N (µ, σ2), we can write

0 ≤ D(X‖Y )

=

∫
SX

fX(x) log2
fX(x)

1√
2πσ2

e
−(x−µ)2

2σ2

dx

= −h(X) +

∫
SX

fX(x)

[
log2

(√
2πσ2

)
+

(x− µ)2

2σ2
log2 e

]
dx

= −h(X) +
1

2
log2(2πσ

2) +
log2 e

2σ2

∫
SX

(x− µ)2fX(x) dx︸ ︷︷ ︸
=σ2

= −h(X) +
1

2
log2

[
2πeσ2

]
.

Thus

h(X) ≤ 1

2
log2

[
2πeσ2

]
, (5.2.12)

with equality iff X = Y (almost surely); i.e., X ∼ N (µ, σ2).
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(ii). Multivariate case (n > 1): As in the proof of Theorem 5.18, we can use an

orthogonal square matrix A (i.e., satisfying AT = A−1 and hence |det(A)| = 1)

such that AKXA
T is diagonal. Therefore, the random vector generated by the

linear map

Z = AX

will have a covariance matrix given byKZ = AKXA
T and hence have uncorrelated

(but not necessarily independent) components.
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Thus h(X) = h(Z)− log2 |det(A)|︸ ︷︷ ︸
=0

(5.2.13)

= h(Z1, Z2, · · · , Zn)

≤
n∑

i=1

h(Zi) (5.2.14)

≤
n∑

i=1

1

2
log2 [2πeVar(Zi)] (5.2.15)

=
n

2
log2(2πe) +

1

2
log2

[
n∏

i=1

Var(Zi)

]

=
1

2
log2 (2πe)

n +
1

2
log2 [det (KZ)] (5.2.16)

=
1

2
log2 (2πe)

n +
1

2
log2 [det (KX)] (5.2.17)

=
1

2
log2 [(2πe)

n det (KX)] ,

where (5.2.15) follows from (5.2.12) (the scalar case above).

Finally, equality is achieved in both (5.2.14) and (5.2.15) iff the random variables

Z1, Z2, . . ., Zn are Gaussian and independent from each other, or equivalently iff

X ∼ Nn

(
µ,KX

)
. �



5.2 Joint & cond. diff. entrop., diverg. & mutual info I: 5-32

Observation 5.21 The following two results can also be shown (the proof is left

as an exercise):

1. Among all continuous random variables admitting a pdf with support the in-

terval (a, b), where b > a are real numbers, the uniformly distributed random

variable maximizes differential entropy.

2. Among all continuous random variables admitting a pdf with support the in-

terval [0,∞) and finite mean µ, the exponential distribution with parameter

(or rate parameter) λ = 1/µ maximizes differential entropy.

3. Among all continuous random variables admitting a pdf with support R, finite

mean µ and finite differential entropy and satisfying E[|X − µ|] = λ, where

λ > 0 is a fixed finite parameter, the Laplacian random variable with mean µ,

variance 2λ2 and pdf

fX(x) =
1

2λ
e−

|x−µ|
λ for x ∈ R

maximizes differential entropy.
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• The extension of AEP theorem from discrete cases to continuous cases is not

based on “number counting” (which is always infinity for continuous sources),

but on “volume measuring.”

Theorem 5.23 (AEP for continuous memoryless sources) Let {Xi}∞i=1

be a continuous memoryless source (i.e., an infinite sequence of continuous i.i.d.

random variables) with pdf fX(·) and differential entropy h(X). Then

−1

n
log fX(X1, . . . , Xn) → E[− log2 fX(X)] = h(X) in probability.

Proof: The proof is an immediate result of the law of large numbers (e.g., see

Theorem 3.3). �
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Definition 5.24 (Typical set) For δ > 0 and any n given, define the typical

set for the above continuous source as

Fn(δ):=

{
xn ∈ R

n :

∣∣∣∣−1

n
log2 fX(X1, . . . , Xn)− h(X)

∣∣∣∣ < δ

}
.

Definition 5.25 (Volume) The volume of a set A ⊂ R
n is defined as

Vol(A) :=

∫
A
dx1 · · · dxn.

Theorem 5.26 (Consequence of the AEP for continuous memoryless

sources) For a continuous memoryless source {Xi}∞i=1 with differential entropy

h(X), the following hold.

1. For n sufficiently large, PXn {Fn(δ)} > 1− δ.

2. Vol(Fn(δ))≤ 2n(h(X)+δ) for all n.

3. Vol(Fn(δ))≥ (1− δ)2n(h(X)−δ) for n sufficiently large.

Proof: The proof is quite analogous to the corresponding theorem for discrete

memoryless sources (Theorem 3.4) and is left as an exercise. �
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Definition 5.27 (Discrete-time continuous memoryless channels) Con-

sider a discrete-time channel with continuous input and output alphabets given by

X ⊆ R and Y ⊆ R, respectively, and described by a sequence of n-dimensional

transition (conditional) pdfs {fY n|Xn(yn|xn)}∞n=1 that govern the reception of yn =

(y1, y2, · · · , yn) ∈ Yn at the channel output when xn = (x1, x2, · · · , xn) ∈ X n is

sent as the channel input.

The channel (without feedback) is said to be memoryless with a given (marginal)

transition pdf fY |X if its sequence of transition pdfs fY n|Xn satisfies

fY n|Xn(yn|xn) =
n∏

i=1

fY |X(yi|xi) (5.4.1)

for every n = 1, 2, · · · , xn ∈ X n and yn ∈ Yn.
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• Average cost constraint (t(·), P ) on any input n-tuple xn = (x1, x2, · · · , xn)
transmitted over the channel by requiring that

1

n

n∑
i=1

t(xi) ≤ P, (5.4.2)

where t(·) is a given non-negative real-valued function describing the cost for

transmitting an input symbol, and P is a given positive number representing

the maximal average amount of available resources per input symbol.

Definition 5.28 The capacity (or capacity-cost function) of a discrete-time con-

tinuous memoryless channel with input average cost constraint (t, P ) is denoted by

C(P ) and defined as

C(P ) := sup
FX :E[t(X)]≤P

I(X ;Y ) (in bits/channel use) (5.4.3)

where the supremum is over all input distributions FX .
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Property A.4 (Properties of the supremum)

3. If −∞ < supA < ∞, then (∀ ε > 0)(∃ a0 ∈ A) a0 > supA− ε.

(The existence of a0 ∈ (supA− ε, supA] for any ε > 0 under the condition

of | supA| < ∞ is called the approximation property for the supremum.)

Lemma 5.29 (Concavity of capacity) If C(P ) as defined in (5.4.3) is finite

for any P > 0, then it is concave, continuous and strictly increasing in P .

Proof: Fix P1 > 0 and P2 > 0. Then since C(P ) is finite for any P > 0, then by

the 3rd property in Property A.4, there exist two input distributions FX1 and FX2

such that for all ε > 0,

I(Xi;Yi) ≥ C(Pi)− ε (5.4.4)

and

E[t(Xi)] ≤ Pi (5.4.5)

where Xi denotes the input with distribution FXi
and Yi is the corresponding

channel output for i = 1, 2.
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Now, for 0 ≤ λ ≤ 1, let Xλ be a random variable with distribution

FXλ
:= λFX1 + (1− λ)FX2.

Then by (5.4.5)

EXλ
[t(X)] = λEX1[t(X)] + (1− λ)EX2[t(X)] ≤ λP1 + (1− λ)P2. (5.4.6)

Furthermore,

C(λP1 + (1− λ)P2) = sup
FX : E[t(X)]≤λP1+(1−λ)P2

I(FX, fY |X)

≥ I(FXλ
, fY |X)

≥ λI(FX1, fY |X) + (1− λ)I(FX2, fY |X)
= λI(X1;Y1) + (1− λ)I(X2 : Y2)

≥ λC(P1)− ε + (1− λ)C(P2)− ε,

where the first inequality holds by (5.4.6), the second inequality follows from the

concavity of the mutual information with respect to its first argument (cf. Lemma 2.46)

and the third inequality follows from (5.4.4).
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Letting ε → 0 yields that

C(λP1 + (1− λ)P2) ≥ λC(P1) + (1− λ)C(P2)

and hence C(P ) is concave in P .

Finally, it can directly be seen by definition that C(·) is non-decreasing, which,
together with its concavity, imply that it is continuous and strictly increasing. �

• The most commonly used cost function is the power cost function,

t(x) = x2,

resulting in the average power constraint P for each transmitted input n-

tuple:
1

n

n∑
i=1

x2i ≤ P. (5.4.7)

• For better understanding, we only focus on the discrete-time memory-

less (additive white) Gaussian (noise) channel with average input

power constraint P :

Yi = Xi + Zi, for i = 1, 2, · · · , (5.4.8)

where Yi, Xi and Zi are the channel output, input and noise at time i, {Zi}∞i=1

i.i.d. Gaussian with mean zero and variance σ2, and {Xi}∞i=1 ⊥ {Zi}∞i=1.
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Derivation of the Capacity C(P ) for the discrete-time memoryless (addi-

tive white) Gaussian (noise) channel with average input power con-

straint P .

• For Gaussian distributed Z, we obtain

I(X ;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X) (5.4.9)

= h(Y )− h(Z|X) (5.4.10)

= h(Y )− h(Z) (5.4.11)

= h(Y )− 1

2
log2

(
2πeσ2

)
, (5.4.12)

where (5.4.9) follows from (5.4.8), (5.4.10) holds since differential entropy is

invariant under translation (see Property 8 of Lemma 5.14), (5.4.11) follows

from the independence of X and Z, and (5.4.12) holds since Z ∼ N (0, σ2) is

Gaussian (see (5.1.1)).

• Now since Y = X + Z, we have that

E[Y 2] = E[X2] + E[Z2] + 2E[X ]E[Z] = E[X2] + σ2 + 2E[X ](0) ≤ P + σ2

since the input in (5.4.3) is constrained to satisfy E[X2] ≤ P .
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• Thus the variance of Y satisfies

Var(Y ) ≤ E[Y 2] ≤ P + σ2,

and

h(Y ) ≤ 1

2
log2 (2πeVar(Y )) ≤ 1

2
log2

(
2πe(P + σ2)

)
where the first inequality follows by Theorem 5.20 since Y is real-valued (with

support R).

• Noting that equality holds in the first inequality above iff Y is Gaussian and in

the second inequality iff Var(Y ) = P + σ2, we obtain that choosing the input

X as X ∼ N (0, P ) yields Y ∼ N (0, P + σ2) and hence maximizes I(X ;Y )

over all inputs satisfying E[X2] ≤ P .

• Thus, the capacity of the discrete-time memoryless Gaussian channel with input

average power constraint P and noise variance (or power) σ2 is given by

C(P ) =
1

2
log2

(
2πe(P + σ2)

)− 1

2
log2

(
2πeσ2

)
=

1

2
log2

(
1 +

P

σ2

)
. (5.4.13)
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Definition 5.31 (Fixed-length data transmission code) Given positive

integers n and M , and a discrete-time memoryless Gaussian channel with input

average power constraint P , a fixed-length data transmission code (or block code)

C∼n = (n,M) for this channel with blocklength n and rate 1
n
log2M message bits

per channel symbol (or channel use) consists of:

1. M information messages intended for transmission.

2. An encoding function

f : {1, 2, . . . ,M} → R
n

yielding real-valued codewords c1 = f(1), c2 = f(2), · · · , cM = f(M), where

each codeword cm = (cm1, . . . , cmn) is of length n and satisfies the power

constraint P
1

n

n∑
i=1

c2i ≤ P,

for m = 1, 2, · · · ,M .

3. A decoding function g : Rn → {1, 2, . . . ,M}.
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Theorem 5.32 (Shannon’s coding theorem for the memoryless Gaus-

sian channel) Consider a discrete-time memoryless Gaussian channel with input

average power constraint P , channel noise variance σ2 and capacity C(P ) as given

by (5.4.13).

• Forward part (achievability): For any ε ∈ (0, 1), there exist 0 < γ < 2ε and

a sequence of data transmission block code { C∼n = (n,Mn)}∞n=1 satisfying

1

n
log2Mn > C(P )− γ

with each codeword c = (c1, c2, . . . , cn) in C∼n satisfying

1

n

n∑
i=1

c2i ≤ P (5.4.14)

such that the probability of error Pe( C∼n) < ε for sufficiently large n.

• Converse part: If for any sequence of data transmission block codes { C∼n =

(n,Mn)}∞n=1 whose codewords satisfy (5.4.14), we have that

lim inf
n→∞

1

n
log2Mn > C(P ),

then the codes’ probability of error Pe( C∼n) is bounded away from zero for all

n sufficiently large.
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Proof of the forward part: The theorem holds trivially when C(P ) = 0

because we can choose Mn = 1 for every n and have Pe( C∼n) = 0. Hence, we

assume without loss of generality C(P ) > 0.

Step 0:

• Take a positive γ satisfying γ < min{2ε, C(P )}.
• Pick ξ > 0 small enough such that 2[C(P ) − C(P − ξ)] < γ, where the

existence of such ξ is assured by the strictly increasing property of C(P ).

Hence, we have

C(P − ξ)− γ

2
> C(P )− γ > 0.

• Choose Mn to satisfy

C(P − ξ)− γ

2
>

1

n
log2Mn > C(P )− γ,

for which the choice should exist for all sufficiently large n.

• Take δ = γ/8.

• Let FX be the distribution that achieves C(P − ξ), where C(P ) is given

by (5.4.13). In this case, FX is the Gaussian distribution with mean zero

and variance P − ξ and admits a pdf fX . Hence, E[X2] ≤ P − ξ and

I(X ;Y ) = C(P − ξ).



5.4 Capacity for discrete memoryless Gaussian chan I: 5-45

Step 1: Random coding with average power constraint.

Randomly draw Mn codewords according to pdf fXn with

fXn(xn) =
n∏

i=1

fX(xi).

By law of large numbers, each randomly selected codeword

cm = (cm1, . . . , cmn)

satisfies

lim
n→∞

1

n

n∑
i=1

c2mi = E[X2] ≤ P − ξ

for m = 1, 2, . . . ,Mn.
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Step 2: Code construction.

• For Mn selected codewords {c1, . . . , cMn}, replace the codewords that vio-
late the power constraint (i.e., (5.4.14)) by an all-zero codeword 0.

• Define the encoder as

fn(m) = cm for 1 ≤ m ≤ Mn.

• Given a received output sequence yn, the decoder gn(·) is given by

gn(y
n) =




m, if (cm, y
n) ∈ Fn(δ)

and (∀ m′ �= m) (cm′, yn) �∈ Fn(δ),

arbitrary, otherwise,

where the set

Fn(δ):=

{
(xn, yn) ∈ X n × Yn :

∣∣∣∣−1

n
log2 fXnY n(xn, yn)− h(X, Y )

∣∣∣∣ < δ,

∣∣∣∣−1

n
log2 fXn(xn)− h(X)

∣∣∣∣ < δ,

and

∣∣∣∣−1

n
log2 fY n(yn)− h(Y )

∣∣∣∣ < δ

}
.
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Note that Fn(δ) is generated by

fXnY n(xn, yn) =

n∏
i=1

fXY (xi, yi)

where fXnY n(xn, yn) is the joint input-output pdf realized when the mem-

oryless Gaussian channel (with n-fold transition pdf

fY n|Xn(yn|xn) =
n∏
i=1

fY |X(yi|xi))

is driven by input Xn with pdf

fXn(xn) =

n∏
i=1

fX(xi)

(where fX achieves C(P − ξ)).
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Step 3: Conditional probability of error.

• Let λm = λm( C∼n) denote the conditional error probability given codeword

m is transmitted (with respect to code C∼n).

• Define

E0:=
{
xn ∈ X n :

1

n

n∑
i=1

x2i > P

}
.

• Then

λm( C∼n) ≤
∫
yn �∈Fn(δ|cm)

fY n|Xn(yn|cm) dyn +
Mn∑
m′=1
m′ �=m

∫
yn∈Fn(δ|cm′)

fY n|Xn(yn|cm) dyn,

where

Fn(δ|xn):= {yn ∈ Yn : (xn, yn) ∈ Fn(δ)} .
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• By taking expectation with respect to the mth codeword-selecting distribu-

tion fXn(cm), we obtain

E[λm] =

∫
cm∈X n

fXn(cm)λm( C∼n) dcm

=

∫
cm∈X n∩E0

fXn(cm)λm( C∼n) dcm +

∫
cm∈X n∩Ec0

fXn(cm)λm( C∼n) dcm

≤
∫
cm∈E0

fXn(cm) dcm +

∫
cm∈X n

fXn(cm)λm( C∼n) dcm

≤ PXn(E0) +
∫
cm∈X n

∫
yn �∈Fn(δ|cm)

fXn(cm)fY n|Xn(yn|cm) dyndcm

+

∫
cm∈X n

Mn∑
m′=1
m′ �=m

∫
yn∈Fn(δ|cm′)

fXn(cm)fY n|Xn(yn|cm) dyndcm.

= PXn(E0) + PXn,Y n (F c
n(δ))

+

Mn∑
m′=1
m′ �=m

∫
cm∈X n

∫
yn∈Fn(δ|cm′)

fXn,Y n(cm, y
n) dyndcm. (5.4.15)
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• Note that the additional term PXn(E0) in (5.4.15) is to cope with the errors

due to all-zero codeword replacement, which will be less than δ for all

sufficiently large n by the law of large numbers.

• Finally, by carrying out a similar procedure as in the proof of the channel

coding theorem for discrete channels (cf. Theorem 4.11), we obtain:

E[Pe(Cn)] ≤ PXn(E0) + PXn,Y n (F c
n(δ))

+Mn · 2n(h(X,Y )+δ)2−n(h(X)−δ)2−n(h(Y )−δ)

≤ PXn(E0) + PXn,Y n (F c
n(δ)) + 2n(C(P−ξ)−4δ) · 2−n(I(X;Y )−3δ)

= PXn(E0) + PXn,Y n (F c
n(δ)) + 2−nδ.

Accordingly, we can make the average probability of error, E[Pe(Cn)], less

than 3δ = 3γ/8 < 3ε/4 < ε for all sufficiently large n. �
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Proof of the converse part: Consider an (n,Mn) block data transmission

code satisfying the power constraint

1

n

n∑
i=1

c2i ≤ P

with encoding function

fn : {1, 2, . . . ,Mn} → X n

and decoding function

gn : Yn → {1, 2, . . . ,Mn}.
• Since the message W is uniformly distributed over {1, 2, . . . ,Mn}, we have

H(W ) = log2Mn.

• Since W → Xn = fn(W ) → Y n form a Markov chain (as Y n only depends on

Xn), we obtain by the data processing lemma that

I(W ;Y n) ≤ I(Xn;Y n).
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• We can also bound I(Xn;Y n) by C(P ) as follows:

I(Xn;Y n) ≤ sup
FXn : (1/n)

∑n
i=1E[X2

i ]≤P

I(Xn;Y n)

≤ sup
FXn : (1/n)

∑n
i=1E[X2

i ]≤P

n∑
j=1

I(Xj;Yj) (by Theorem 2.21)

= sup
(P1,P2,...,Pn) : (1/n)

∑n
i=1 Pi=P

sup
FXn : (∀ i) E[X2

i ]≤Pi

n∑
j=1

I(Xj;Yj)

≤ sup
(P1,P2,...,Pn) : (1/n)

∑n
i=1 Pi=P

n∑
j=1

sup
FXn : (∀ i) E[X2

i ]≤Pi

I(Xj;Yj)

= sup
(P1,P2,...,Pn) : (1/n)

∑n
i=1 Pi=P

n∑
j=1

sup
FXj

: E[X2
j ]≤Pj

I(Xj;Yj)

= sup
(P1,P2,...,Pn):(1/n)

∑n
i=1 Pi=P

n∑
j=1

C(Pj) = sup
(P1,P2,...,Pn):(1/n)

∑n
i=1 Pi=P

n
n∑

j=1

1

n
C(Pj)

≤ sup
(P1,P2,...,Pn):(1/n)

∑n
i=1 Pi=P

nC


1

n

n∑
j=1

Pj


 (by concavity of C(P ))

= nC(P ).
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• Consequently, recalling that Pe( C∼n) is the average error probability incurred

by guessing W from observing Y n via the decoding function gn : Yn →
{1, 2, . . . ,Mn}, we get

log2Mn = H(W )

= H(W |Y n) + I(W ;Y n)

≤ H(W |Y n) + I(Xn;Y n)

≤ hb(Pe( C∼n)) + Pe( C∼n) · log2(|W| − 1)︸ ︷︷ ︸
Fano’s inequality

+nC(P )

≤ 1 + Pe( C∼n) · log2(Mn − 1) + nC(P ),

(by the fact that (∀ t ∈ [0, 1]) hb(t) ≤ 1)

< 1 + Pe( C∼n) · log2Mn + nC(P ),

which implies that

Pe( C∼n) > 1− C(P )

(1/n) log2Mn
− 1

log2Mn
= 1− C(P ) + 1/n

(1/n) log2Mn
.
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• So as identical to the converse proof of Theorem 4.11, we obtain if

lim inf
n→∞

1

n
log2Mn − C(P ) = 1− µ > 0,

then for any 0 < ε < 1,

Pe( C∼n) ≥ (1− ε)µ for n sufficiently large.

�
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Theorem 5.33 (Gaussian noise minimizes capacity of additive-noise

channels) Every discrete-time continuous memoryless channel with additive noise

(admitting a pdf) of mean zero and variance σ2 and input average power constraint

P has its capacity C(P ) lower bounded by the capacity of the memoryless Gaussian

channel with identical input constraint and noise variance:

C(P ) ≥ 1

2
log2

(
1 +

P

σ2

)
.

Proof:

• Let fY |X and fYg|Xg denote the transition pdfs of the additive-noise channel and

the Gaussian channel, respectively, where both channels satisfy input average

power constraint P .

• Let Z and Zg respectively denote their zero-mean noise variables of identical

variance σ2.
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• Then we have

I(fXg, fY |X)− I(fXg, fYg|Xg)

=

∫
X

∫
Y
fXg(x)fZ(y − x) log2

fZ(y − x)

fY (y)
dydx

−
∫
X

∫
Y
fXg(x)fZg(y − x) log2

fZg(y − x)

fYg(y)
dydx

=

∫
X

∫
Y
fXg(x)fZ(y − x) log2

fZ(y − x)

fY (y)
dydx

−
∫
X

∫
Y
fXg(x)fZ(y − x) log2

fZg(y − x)

fYg(y)
dydx

=

∫
X

∫
Y
fXg(x)fZ(y − x) log2

fZ(y − x)fYg(y)

fZg(y − x)fY (y)
dydx

≥
∫
X

∫
Y
fXg(x)fZ(y − x)(log2 e)

(
1− fZg(y − x)fY (y)

fZ(y − x)fYg(y)

)
dydx

= (log2 e)

[
1−

∫
Y

fY (y)

fYg(y)

(∫
X
fXg(x)fZg(y − x)dx

)
dy

]
= 0,

with equality holding in the inequality iff fY (y)/fYg(y) = fZ(y−x)/fZg(y−x)

for all x.
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• Therefore,

1

2
log2

(
1 +

P

σ2

)
= sup

FX : E[X2]≤P

I(FX, fYg|Xg)

= I(f∗
Xg
, fYg|Xg)

≤ I(f∗
Xg
, fY |X)

≤ sup
FX : E[X2]≤P

I(FX, fY |X)

= C(P ).

�
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We further examine the capacity of the memoryless (unity-power) fading channel,

which is widely used to model wireless communications channels:

Yi = AiXi + Zi, for i = 1, 2, . . . , (5.4.16)

1. With only decoder side information (DSI): In this case, as both A and Y

are known at the receiver, we can consider (Y,A) as the channel’s output and

thus aim to maximize

I(X ;A, Y ) = I(X ;A) + I(X ;Y |A) = I(X ;Y |A)
where I(X ;A) = 0 since X and A are independent from each other.

Thus

CDSI(P ) = sup
FX : E[X2]≤P

I(X ;Y |A)

= sup
FX : E[X2]≤P

[h(Y |A)− h(Y |X,A)]

= EA

[
1

2
log2

(
1 +

A2P

σ2

)]
(5.4.17)

where the expectation is taken with respect to the fading distribution. Note

that the capacity achieving distribution here is also Gaussian with mean zero

and variance P and is independent of the fading coefficient.
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In light of the concavity of the logarithm and using Jensen’s inequality, we

readily obtain that

CDSI(P ) = EA

[
1

2
log2

(
1 +

A2P

σ2

)]
≤ 1

2
log2

(
1 +

E[A2]P

σ2

)
=

1

2
log2

(
1 +

P

σ2

)
:=CG(P ) (5.4.18)

which is the capacity of the AWGN channel with identical SNR, and where the

last step follows since E[A2] = 1.

Thus we conclude that fading degrades capacity as

CDSI(P ) ≤ CG(P ).
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2. With full side information (FSI): In this case, the transmitter can adaptively

adjust its input power according to the value of the fading coefficient. It can

be shown using Lagrange multipliers that the capacity in this case is given by

CFSI(P ) = EA

[
sup

p(·) : EA[p(A)]=P

1

2
log2

(
1 +

A2p(A)

σ2

)]

= EA

[
1

2
log2

(
1 +

A2p∗(A)
σ2

)]
(5.4.19)

where

p∗(a) = max

(
0,

1

λ
− σ2

a2

)
and λ satisfies

EA[p(A)] = P.

The optimal power allotment p∗(A) above is a so-called water-filling allotment,

which we examine in more detail in the next section )in the case of parallel

AWGN channels).
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Theorem 5.36 (Capacity of uncorrelated parallel Gaussian channels)

The capacity of k uncorrelated parallel Gaussian channels under an overall input

power constraint P is given by

C(P ) =
k∑

i=1

1

2
log2

(
1 +

Pi

σ2
i

)
,

where σ2
i is the noise variance of channel i,

Pi = max{0, θ − σ2
i },

and θ is chosen to satisfy
∑k

i=1 Pi = P . This capacity is achieved by a tuple of

independent Gaussian inputs (X1, X2, · · · , Xk), where Xi ∼ N (0, Pi) is the input

to channel i, for i = 1, 2, · · · , k.

σ2
1

σ2
2

σ2
3

σ2
4

P1

P2

P4

P = P1 + P2 + P4
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Proof:

• By definition,

C(P ) = sup
F
Xk :

∑k
i=1E[X2

k ]≤P

I(Xk;Y k).

• Since the noise random variables Z1, . . . , Zk are independent from each other,

I(Xk;Y k) = h(Y k)− h(Y k|Xk)

= h(Y k)− h(Zk +Xk|Xk)

= h(Y k)− h(Zk|Xk)

= h(Y k)− h(Zk)

= h(Y k)−
k∑

i=1

h(Zi)

≤
k∑

i=1

h(Yi)−
k∑

i=1

h(Zi)

≤
k∑

i=1

1

2
log2

(
1 +

Pi

σ2
i

)
.

• Equalities hold above if all the Xi inputs are independent of each other with

each input Xi ∼ N (0, Pi) such that
∑k

i=1 Pi = P .
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• Thus the problem is reduced to finding the power allotment that maximizes the

overall capacity subject to the equality constraint
∑k

i=1 Pi = P and inequality

constraints Pi ≥ 0, i = 1, . . . , k.

• By using the Lagrange multipliers technique and verifying the KKT condition

(see Example B.21 in Appendix B.8), the maximizer (P1, . . . , Pk) of

max

{
k∑

i=1

1

2
log2

(
1 +

Pi

σ2
i

)
+

k∑
i=1

λiPi − ν

(
k∑

i=1

Pi − P

)}

can be found by taking the derivative of the above equation (with respect to

Pi) and setting it to zero, which yields

λi =




− 1

2 ln(2)

1

Pi + σ2
i

+ ν = 0, if Pi > 0;

− 1

2 ln(2)

1

Pi + σ2
i

+ ν ≥ 0, if Pi = 0.

Hence,{
Pi = θ − σ2

i , if Pi > 0;

Pi ≥ θ − σ2
i , if Pi = 0,

(equivalently, Pi = max{0, θ − σ2
i }),

where θ:= log2 e/(2ν) is chosen to satisfy
∑k

i=1 Pi = P . �
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Observation 5.37

• According to the water-filling principle, one needs to use capacity-achieving

Gaussian inputs and allocate more power to less noisy channels for the op-

timization of channel capacity. However, Gaussian inputs do not fit digital

communication systems in practice.

• One may then wonder what is the optimal power allocation scheme when the

channel inputs are practically dictated to be discrete in value, such as inputs

used in conjunction with binary phase-shift keying (BPSK), quadrature phase-

shift keying (QPSK), or 16 quadrature- amplitude modulation (16-QAM) sig-

naling.

• Surprisingly under certain conditions, the answer is different from the water-

filling principle.

• The optimal power allocation for parallel AWGN channels with inputs con-

strained to be discrete is established in 2006 (Lozano, Tulino & Verdú), resulting

in a new graphical power allocation interpretation called the mercury/water-

filling principle.
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• Furthermore, it was found in 2012 (Wang, Chen & Wang) that when the chan-

nel’s additive noise is no longer Gaussian, the mercury adjustment fails to in-

terpret the optimal power allocation scheme and a new two-phase water-filling

principle was observed.
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Theorem 5.38 (Capacity of correlated parallel Gaussian channels)

The capacity of k correlated parallel Gaussian channels with positive-definite noise

covariance matrix KZ under overall input power constraint P is given by

C(P ) =
k∑

i=1

1

2
log2

(
1 +

Pi

λi

)
,

where λi is the i-th eigenvalue of KZ ,

Pi = max{0, θ − λi},
and θ is chosen to satisfy

∑k
i=1 Pi = P . This capacity is achieved by a tuple of zero-

mean Gaussian inputs (X1, X2, · · · , Xk) with covariance matrix KX having the

same eigenvectors asKZ , where the i-th eigenvalue ofKX is Pi, for i = 1, 2, · · · , k.
Proof:

• In correlated parallel Gaussian channels, the input power constraint becomes

k∑
i=1

E[X2
i ] = tr(KX) ≤ P,

where tr(·) denotes the trace of the k × k matrix KX .
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• Since in each channel, the input and noise variables are independent from each

other, we have

I(Xk;Y k) = h(Y k)− h(Y k|Xk)

= h(Y k)− h(Zk +Xk|Xk)

= h(Y k)− h(Zk|Xk)

= h(Y k)− h(Zk).

• Since h(Zk) is not determined by the input, determining the system’s capacity

reduces to maximizing h(Y k) over all possible inputs (X1, . . . , Xk) satisfying

the power constraint.

• Now observe that the covariance matrix of Y k is equal to

KY = KX +KZ,

which implies by Theorem 5.20 that the differential entropy of Y k is upper

bounded by

h(Y k) ≤ 1

2
log2

[
(2πe)kdet(KX +KZ)

]
,

with equality iff Y k Gaussian. It remains to find out whether we can find

inputs (X1, . . . , Xk) satisfying the power constraint which achieve the above

upper bound and maximize it.
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• As in the proof of Theorem 5.18, we can orthogonally diagonalize KZ as

KZ = AΛAT ,

where AAT = Ik (and thus det(A)2 = 1), Ik is the k × k identity matrix,

and Λ is a diagonal matrix with positive diagonal components consisting of the

eigenvalues of KZ (as KZ is positive definite). Then

det(KX +KZ) = det(KX +AΛAT )

= det(AATKXAAT +AΛAT )

= det(A) · det(ATKXA +Λ) · det(AT )

= det(ATKXA +Λ)

= det(B +Λ),

where B:=ATKXA.

• Since for any two matrices C and D,

tr(CD) = tr(DC),

we have that

tr(B) = tr(ATKXA) = tr(AATKX) = tr(IkKX) = tr(KX).
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• Thus the capacity problem is further transformed

to maximizing det(B +Λ) subject to tr(B) ≤ P.

• By observing that B + Λ is positive definite (because Λ is positive definite)

and using Hadamard’s inequality given in Corollary 5.19, we have

det(B +Λ) ≤
k∏

i=1

(Bii + λi),

where λi is the component of matrix Λ locating at ith row and ith column,

which is exactly the i-th eigenvalue of KZ .

• Thus, the maximum value of det(B + Λ) under tr(B) ≤ P is realized by a

diagonal matrix B (to achieve equality in Hadamard’s inequality) with

k∑
i=1

Bii = P and each Bii ≥ 0.
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Thus,

C(P ) =
1

2
log2

[
(2πe)kdet(B +Λ)

]− 1

2
log2

[
(2πe)kdet(Λ)

]
=

k∑
i=1

1

2
log2

(
1 +

Bii

λi

)
.

• Finally, as in the proof of Theorem 5.36, we obtain a water-filling allotment for

the optimal diagonal elements of B:

Bii = max{0, θ − λi},
where θ is chosen to satisfy

∑k
i=1Bii = P . �
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Observation 5.39 (Capacity of memoryless MIMO channels)

Y i = Hi X i + Z i, for i = 1, 2, . . . , (5.6.1)

where X i is the M × 1 transmitted vector, Y i is the N × 1 received vector, and

Z i is the N × 1 AWGN vector.

In general, Y i, Hi, X i and Z i are complex-valued.

When Z = (Z1, Z2, . . . , ZN)
T is Gaussian with zero-mean and covariance matrix

KZ = σ2IN , we have

fZ(z) =




(
1√
2πσ2

)N

exp
(
− 1

2σ2

∑N
j=1Z

2
i

)
, if Z real-valued(

1
πσ2

)N
exp

(
− 1

σ2

∑N
j=1 |Zj|2

)
, if Z complex-valued.

Thus, the joint differential entropy for a complex-valued Gaussian Z is equal to

h(Z) = h(Z1, Z2, . . . , ZN) =
�
�
�
�1

2
log2

[
(��2πe)Ndet(KZ)

]
,

where the multiplicative factors 1/2 and 2 in the differential entropy formula in

Theorem 5.18 are removed. Accordingly, the multiplicative factor 1/2 in the capac-

ity formula for real-valued AWGN channels is no longer necessary when a complex-

valued AWGN channel is considered.
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• The noise covariance matrix KZ is often assumed to be given by the identity

matrix IN (by multiplying the received vector Y i with the whitening matrix

W of Z i).

•
CFSI(P ) = EH

[
max

KX :tr(KX)≤P
log2

(
det(HKX H† + IN)

)]
(5.6.2)

CDSI(P ) = max
KX :tr(KX)≤P

EH

[
log2

(
det(HKX H† + IN)

)]
(5.6.3)

where “†” is the Hermitian (conjugate) transposition operation.

• A key finding is that in virtue of their spatial diversity, such channels can

provide significant capacity gains vis-a-vis the traditional single-antenna (with

M = N = 1) channel.

– Under RayleighH, CDSI(P ) scales linearly in min{M,N} at high channel

SNR values.
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• If a discrete-time channel has an additive but non-Gaussian memoryless noise

and an input power constraint, then it is often hard to calculate its capacity.

• Hence, we introduce an upper bound and a lower bound on the capacity of

such a channel (we assume that the noise admits a pdf).

Definition 5.41 (Entropy power) For a continuous random variable Z with

(well-defined) differential entropy h(Z) (measured in bits), its entropy power is

denoted by Ze and defined as

Ze:=
1

2πe
22·h(Z).

Lemma 5.42 For a discrete-time continuous-alphabet memoryless additive-noise

channel with input power constraint P and noise variance σ2, its capacity satisfies

1

2
log2

P + σ2

Ze
≥ C(P ) ≥ 1

2
log2

P + σ2

σ2
. (5.7.1)

Proof: The lower bound in (5.7.1) is already proved in Theorem 5.33. The upper

bound follows from

I(X ;Y ) = h(Y )− h(Z) ≤ 1

2
log2[2πe(P + σ2)]− 1

2
log2[2πeZe].

�
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• Whenever two independent Gaussian random variables, Z1 and Z2, are added,

the power (variance) of the sum is equal to the sum of the powers (variances)

of Z1 and Z2. This relationship can then be written as

22h(Z1+Z2) = 22h(Z1) + 22h(Z2),

or equivalently

Var(Z1 + Z2) = Var(Z1) + Var(Z2).

• (Entropy-power inequality) However, when two independent random

variables are non-Gaussian, the relationship becomes

22h(Z1+Z2) ≥ 22h(Z1) + 22h(Z2), (5.7.2)

or equivalently

Ze(Z1 + Z2) ≥ Ze(Z1) + Ze(Z2). (5.7.3)

• It reveals that the sum of two independent random variables may introduce

more (differential) entropy power than the sum of each individual en-

tropy power, except in the Gaussian case.
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Observation 5.43 (Capacity bounds in terms of Gaussian capacity

and non-Gaussianness)

• It can be readily verified that

1

2
log2

P + σ2

Ze
=

1

2
log2

P + σ2

σ2
+D(Z‖ZG)

where D(Z‖ZG) is the divergence between Z and a Gaussian random variable

ZG of mean zero and variance σ2.

• Note that D(Z‖ZG) is called the non-Gaussianness of Z (e.g, see Tulino &

Verdú 2006) and is a measure of the “non-Gaussianity” of the noise Z.

• Thus
1

2
log2

P + σ2

Ze
≥ C(P ) ≥ 1

2
log2

P + σ2

σ2

can be written as

CG(P ) +D(Z‖ZG) ≥ C(P ) ≥ CG(P ). (5.7.4)
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�
X(t)

H(f)�+
�

Waveform channel

Z(t)

�
Y (t)

• The output waveform is given by

Y (t) = (X(t) + Z(t)) ∗ h(t), t ≥ 0,

where “∗” represents the convolution operation.
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• (Time-unlimited) X(t) is the channel input waveform with average power

constraint

lim
T→∞

1

T

∫ T/2

−T/2

E[X2(t)]dt ≤ P (5.8.1)

and bandwidth W cycles per second or Hertz (Hz); i.e., its spectrum or

Fourier transform

X(f):=F [X(t)] =

∫ +∞

−∞
X(t)e−j2πftdt = 0

for all frequencies |f | > W , where j =
√−1 is the imaginary unit number.

• Z(t) is the noise waveform of a zero-mean stationary white Gaussian process

with power spectral density N0/2; i.e.,

PSDZ(f) = F [KZ(t)] =

∫ +∞

−∞
KZ(t)e

−j2πftdt =
N0

2
∀f

where KZ(τ ):=E[Z(s)Z(s + τ )], s, τ ∈ R.

• h(t) is the impulse response of an ideal bandpass filter with cutoff frequencies

at ±W Hz:

H(f) = F [(h(t)] =

{
1 if −W ≤ f ≤ W ,

0 otherwise.



5.8 Capacity of band-limited white Gaussian channel I: 5-78

• Note that we can write the channel output as

Y (t) = X(t) + Z̃(t)

where Z̃(t):=Z(t) ∗ h(t) is the filtered noise waveform.

• To determine the capacity (in bits per second) of this continuous-time band-

limited white Gaussian channel with parameters, P , W and N0, we convert it

to an “equivalent” discrete-time channel with power constraint P by

using the well-known Sampling theorem (due to Nyquist, Kotelnikov and

Shannon), which states that sampling a band-limited signal with bandwidth

W at a rate of 1/(2W ) is sufficient to reconstruct the signal from its samples.

• Since X(t), Z̃(t) and Y (t) are all band-limited to [−W,W ], we can thus

represent these signals by their samples taken 1
2W

seconds apart and model the

channel by a discrete-time channel described by:

Yn = Xn + Z̃n, n = 1, 2, · · · ,
where Xn:=X( n

2W
) are the input samples and Z̃n and Yn are the random

samples of the noise Z̃(t) and output Y (t) signals, respectively.
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• Since Z̃(t) is a filtered version of Z(t), which is a zero-mean stationary Gaussian

process, we obtain that Z̃(t) is also zero-mean, stationary and Gaussian.

– This directly implies that the samples Z̃n, n = 1, 2, · · · , are zero-mean

Gaussian identically distributed random variables.

– Note that

PSDZ̃(f) = PSDZ(f)|H(f)|2 =
{

N0
2 if −W ≤ f ≤ W ,

0 otherwise.

Hence, covariance function of the filtered noise process is

KZ̃(τ ) = E[Z̃(s)Z̃(s + τ )] = F−1[PSDZ̃(f)] = N0W sinc(2Wτ ) τ ∈ R.

(5.8.2)

– (5.8.2) implies

E[Z̃nZ̃n′] = KZ̃(
n−n′
2W

) =

{
N0W, n = n′

0, n �= n′
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• We conclude that the capacity of the band-limited white Gaussian channel in

bits per channel use is given using (5.4.13) by

1

2
log2

(
1 +

P

N0W

)
bits/channel use.

• Given that we are using the channel (with inputs Xn) every
1

2W
seconds, we

obtain that the capacity in bits/second of the band-limited white Gaussian

channel is given by

C(P ) =

1
2
log2

(
1 + P

N0W

)
1

2W

= W log2

(
1 +

P

N0W

)
bits/second, (5.8.3)

where P
N0W

is typically referred to as the signal-to-noise ratio (SNR).

• (5.8.3) is achieved by zero-mean i.i.d. Gaussian {Xn}∞n=−∞ with E[X2
n] = P ,

which can be obtained by sampling a zero-mean, stationary and Gaussian X(t)

with

PSDX(f) =

{
P
2W if −W ≤ f ≤ W ,

0 otherwise.
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Examining this X(t) confirms that it satisfies (5.8.1):

1

T

∫ T/2

−T/2

E[X2(t)]dt = E[X2(t)] = KX(0) = P · sinc(2W · 0) = P.

Example 5.44 (Telephone line channel) Suppose telephone signals are band-

limited to 4 KHz. Given an SNR of 40 decibels (dB) – i.e., 10 log10
P

N0W
= 40 dB

– then from (5.8.3), we calculate that the capacity of the telephone line channel

(when modeled via the band-limited white Gaussian channel) is given by

4000 log2(1 + 10000) = 53151.4 bits/second = 51.906 Kbits/second.

By increasing the bandwidth to 1.2 MHz, the capacity becomes

1200000 log2(1 + 10000) = 15945428 bits/second = 15.207 Mbits/second.
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Observation 5.46 (Band-limited colored Gaussian channel) If the above

band-limited channel has a stationary colored (non-white) additive Gaussian noise,

then it can be shown (e.g., see [19]) that the capacity of this channel becomes

C(P ) =
1

2

∫ W

−W

max

[
0, log2

θ

PSDZ(f)

]
df,

where θ is the solution of

P =

∫ W

−W

max [0, θ − PSDZ(f)] df.



5.8 Capacity of band-limited white Gaussian channel I: 5-83

(a) The spectrum of PSDZ(f) where the horizontal line repre-

sents θ, the level at which water rises to.

(b) The input spectrum that achieves capacity.

Water-pouring for the band-limited colored Gaussian channel.
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• Differential entropy and its operational meaning in quantization efficiency

• Maximal differential entropy of Gaussian source, among all sources with the

same mean and variance

• The mismatch in properties of entropy and differential entropy

• Relative entropy and mutual information of continuous systems

• Capacity-cost function and its proof

• Calculation of the capacity-cost function for specific channels

– Memoryless additive Gaussian channels

– Uncorrelated and correlated parallel Gaussian channels

– Water-filling scheme (graphical interpretation)

– Gaussian band-limited waveform channels

• Interpretation of entropy-power (provide an upper bound on capacity of non-

Gaussian channels)

– Operational characteristics of entropy-power inequality


