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Principle of Data Transmission I: 4-1

• Data transmission

– To carefully select codewords from the set of channel input words (of a given

length) so that a minimal ambiguity is obtained at the channel receiver.

• E.g., to transmit binary message through the following channel.
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Code of (00 for event A, 10 for event B) obviously induces less ambiguity at

the receiver than the code of (00 for event A, 01 for event B).



Reliable Transmission I: 4-2

• Definition of “reliable” transmission

– The message can be transmitted with arbitrarily small error.

• Objective of data transmission

– To transform a noisy channel into a reliable medium for sending messages

and recovering them at the receiver.

• How?

– By taking advantage of the common parts between the sender and the

receiver sites that are least affected by the channel noise.

– We will see that these common parts are probabilistically captured by

the mutual information between the channel input and the channel

output.



Notations I: 4-3

W
� Channel

Encoder
�

Xn
Channel

PY n|Xn(·|·) �
Y n

Channel
Decoder

�Ŵ

• A data transmission system, where

– W represents the message for transmission,

– Xn = (X1, . . . , Xn) denotes the codeword corresponding to the channel

input symbol W ,

– Y n = (Y1, . . . , Yn) represents the received vector due to channel input Xn,

– Ŵ denotes the reconstructed messages from Y n.



Query? I: 4-4

• What is the maximum amount of information (per channel input) that can be

reliably transmitted via a given noisy channel?

– E.g. We can transmit 1 bit per channel usage by the following code.
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Code = (00 for event A, 10 for event B)



Discrete memoryless channels I: 4-5

Definition 4.1 (Discrete channel) A discrete communication channel is char-

acterized by

• A finite input alphabet X .

• A finite output alphabet Y .

• A sequence of n-dimensional transition distributions

{PY n|Xn(yn|xn)}∞n=1

such that ∑
yn∈Yn

PY n|Xn(yn|xn) = 1

for every xn ∈ X n, where xn = (x1, · · · , xn) ∈ X n and yn = (y1, · · · , yn) ∈
Yn. We assume that the above sequence of n-dimensional distribution is con-

sistent, i.e.,

PY i|Xi(yi|xi) =
∑

xi+1∈X

∑
yi+1∈Y

PXi+1|Xi(xi+1|xi)PY i+1|Xi+1(yi+1|xi+1)

for every xi, yi, PXi+1|Xi and i = 1, 2, · · · .



Discrete memoryless channels I: 4-6

Definition 4.2 (Discrete memoryless channel)A discrete memoryless chan-

nel (DMC) is a channel whose sequence of transition distributions PY n|Xn satisfies

PY n|Xn(yn|xn) =
n∏

i=1

PY |X(yi|xi) (4.2.1)

for every n = 1, 2, · · · , xn ∈ X n and yn ∈ Yn. In other words, a DMC is

fully described by the channel’s transition distribution matrix Q := [px,y] of size

|X | × |Y|, where
px,y := PY |X(y|x)

for x ∈ X , y ∈ Y . Furthermore, the matrix Q is stochastic; i.e., the sum of the

entries in each of its rows is equal to 1
(
since

∑
y∈Y px,y = 1 for all x ∈ X ).



Frequently used channels I: 4-7

1. Identity (noiseless) channels: An identity channel has equal-size input and

output alphabets (|X | = |Y|) and channel transition probability satisfying

PY |X(y|x) =
{
1 if y = x

0 if y �= x.

This is a noiseless or perfect channel as the channel input is received error-free

at the channel output.



Frequently used channels I: 4-8
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2. Binary symmetric channels (BSC):

• ε ∈ [0, 1] is called the channel’s crossover probability or bit error rate.

• The channel’s transition distribution matrix is given by

Q = [px,y] =

[
p0,0 p0,1
p1,0 p1,1

]

=

[
PY |X(0|0) PY |X(1|0)
PY |X(0|1) PY |X(1|1)

]
=

[
1− ε ε

ε 1− ε

]
(4.2.4)

• ε = 0 reduces the BSC to the binary identity (noiseless) channel.



Frequently used channels I: 4-9

• BSC can be explicitly represented via a binary modulo-2 additive noise

channel whose output at time i is the modulo-2 sum of its input and noise

variables:

Yi = Xi ⊕ Zi for i = 1, 2, · · ·
where


⊕ denotes addition modulo-2,

Yi, Xi and Zi are the channel output, input and noise, respectively,

the alphabets X = Y = Z = {0, 1} are all binary,

Xi ⊥ Zj for any i, j = 1, 2, · · · , and
the noise process is a Bernoulli(ε) process

– i.e., a binary i.i.d. process with Pr[Z = 1] = ε.

.



Frequently used channels I: 4-10
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3. Binary erasure channels (BEC):

• In BEC, the receiver knows the exact location of the “error” bits in the

received bitstream or codeword, but not their actual value.

• These “error” bits are then declared as “erased” during transmission and

are called “erasures.”

• The channel transition matrix is given by

Q = [px,y] =

[
p0,0 p0,E p0,1
p1,0 p1,E p1,1

]

=

[
PY |X(0|0) PY |X(E|0) PY |X(1|0)
PY |X(0|1) PY |X(E|1) PY |X(1|1)

]
=

[
1− α α 0

0 α 1− α

]
where 0 ≤ α ≤ 1 is called the channel’s erasure probability.



Frequently used channels I: 4-11
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4. Binary symmetric erasure channel (BSEC):

• One can combine the BSC with the BEC to obtain a binary channel with

both errors and erasures.

• The channel’s transition matrix is given by

Q = [px,y] =

[
p0,0 p0,E p0,1
p1,0 p1,E p1,1

]
=

[
1− ε− α α ε

ε α 1− ε− α

]
(4.2.8)

where ε, α ∈ [0, 1] are the channel’s crossover and erasure probabilities,

respectively.

• Clearly, setting α = 0 reduces the BSEC to the BSC, and setting ε = 0

reduces the BSEC to the BEC.



Frequently used channels I: 4-12

• More generally, the channel needs not have a symmetric property in the

sense of having identical transition distributions when inputs bits 0 or 1 are

sent. For example, the channel’s transition matrix can be given by

Q = [px,y] =

[
p0,0 p0,E p0,1
p1,0 p1,E p1,1

]
=

[
1− ε− α α ε

ε′ α′ 1− ε′ − α′

]
(4.2.10)

where the probabilities ε �= ε′ and α �= α′ in general. We call such channel,

an asymmetric channel with errors and erasures.



Frequently used channels I: 4-13

5. q-ary symmetric channels:

• Given an integer q ≥ 2, the q-ary symmetric channel is a nonbinary exten-

sion of the BSC; it has alphabets X = Y = {0, 1, · · · , q − 1} of size q and

channel transition matrix given by

Q = [px,y]

=




p0,0 p0,1 · · · p0,q−1

p1,0 p1,1 · · · p1,q−1
... ... ... ...

pq−1,0 pq−1,1 · · · pq−1,q−1




=



1− ε ε

q−1 · · · ε
q−1

ε
q−1

1− ε · · · ε
q−1

... ... ... ...
ε

q−1
ε

q−1 · · · 1− ε


 (4.2.11)

where 0 ≤ ε ≤ 1 is the channel’s symbol error rate (or probability).

• When q = 2, the channel reduces to the BSC with bit error rate ε, as

expected.



Frequently used channels I: 4-14

• Similar to the BSC, the q-ary symmetric channel can be expressed as a

modulo-q additive noise channel with common input, output and noise

alphabets X = Y = Z = {0, 1, · · · , q − 1} and whose output Yi at time i

is given by

Yi = Xi ⊕q Zi,

for i = 1, 2, · · · , where ⊕q denotes addition modulo-q, and Xi and Zi are

the channel’s input and noise variables, respectively, at time i.

• Here, the noise process {Zn}∞n=1 is assumed to be an i.i.d. process with

distribution

Pr[Z = 0] = 1− ε and Pr[Z = a] =
ε

q − 1
∀a ∈ {1, · · · , q − 1}.

It is also assumed that the input and noise processes are independent from

each other.



Frequently used channels I: 4-15

6. q-ary erasure channels:

• Given an integer q ≥ 2, one can also consider a non-binary extension of

the BEC, yielding the so called q-ary erasure channel. Specifically, this

channel has input and output alphabets given by X = {0, 1, · · · , q − 1}
and Y = {0, 1, · · · , q − 1, E}, respectively, where E denotes an erasure,

and channel transition distribution given by

PY |X(y|x) =



1− α if y = x, x ∈ X
α if y = E, x ∈ X
0 if y �= x, x ∈ X

(4.2.12)

where 0 ≤ α ≤ 1 is the erasure probability.

• As expected, setting q = 2 reduces the channel to the BEC.



4.3 Block codes for data transmission over DMCs I: 4-16
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Definition 4.4 (Fixed-length data transmission code) Given positive in-

tegers n and M , and a discrete channel with input alphabet X and output alpha-

bet Y , a fixed-length data transmission code (or block code) for this channel with

blocklength n and rate 1
n
log2M message bits per channel symbol (or channel use)

is denoted by C∼n = (n,M) and consists of:

1. M information messages intended for transmission.

2. An encoding function

f : {1, 2, . . . ,M} → X n

yielding codewords f(1), f(2), · · · , f(M) ∈ X n, each of length n. The set of

these M codewords is called the codebook and we also usually write C∼n =

{f(1), f(2), · · · , f(M)} to list the codewords.

3. A decoding function g : Yn → {1, 2, . . . ,M}.



4.3 Block codes for data transmission over DMCs I: 4-17

Definition 4.5 (Average probability of error) The average probability of

error for a channel block code C∼n = (n,M) code with encoder f(·) and decoder

g(·) used over a channel with transition distribution PY n|Xn is defined as

Pe( C∼n):=
1

M

M∑
w=1

λw( C∼n),

where

λw( C∼n) := Pr[Ŵ �= W |W = w] = Pr[g(Y n) �= w|Xn = f(w)]

=
∑

yn∈Yn: g(yn) �=w

PY n|Xn(yn|f(w))

is the code’s conditional probability of decoding error given that message w is sent

over the channel.



4.3 Block codes for data transmission over DMCs I: 4-18

Observation 4.6 Another more conservative error criterion is the so-called max-

imal probability of error

λ( C∼n):= max
w∈{1,2,··· ,M}

λw( C∼n).

Clearly,

Pe( C∼n = (n,M)) ≤ λ( C∼n = (n,M));

However,

2× Pe( C∼n = (n,M)) ≥ λ( C∼′
n = (n,M/2)),

where C∼′
n is constructed by throwing away from C∼n half of its codewords with

largest conditional probability of error λw( C∼n).

So
1

2
λ( C∼′

n) ≤ Pe( C∼n) ≤ λ( C∼n)

with code rates

R =
1

n
log2(M) and R ′ =

1

n
log2(M/2) = R− 1

n
.

Consequently, a reliable transmission rate R under the average probability of error

criterion is also a reliable transmission rate under the maximal probability of error

criterion.



4.3 Block codes for data transmission over DMCs I: 4-19

Definition 4.7 (Jointly typical set) The setFn(δ) of jointly δ-typical n-tuple

pairs (xn, yn) with respect to the memoryless distribution

PXn,Y n(xn, yn) =
n∏

i=1

PX,Y (xi, yi)

is defined by

Fn(δ) :=

{
(xn, yn) ∈ X n × Yn :∣∣∣∣−1

n
log2 PXn(xn)−H(X)

∣∣∣∣ < δ,∣∣∣∣−1

n
log2 PY n(yn)−H(Y )

∣∣∣∣ < δ,

and

∣∣∣∣−1

n
log2 PXn,Y n(xn, yn)−H(X, Y )

∣∣∣∣ < δ

}
.

In short, a pair (xn, yn) generated by independently drawing n times under PX,Y is

jointly δ-typical if its joint and marginal empirical entropies are respectively δ-close

to the true joint and marginal entropies.



4.3 Block codes for data transmission over DMCs I: 4-20

Theorem 4.8 (Joint AEP) If (X1, Y1), (X2, Y2), . . ., (Xn, Yn), . . . are i.i.d.,

i.e., {(Xi, Yi)}∞i=1 is a dependent pair of DMSs, then

−1

n
log2 PXn(X1, X2, . . . , Xn) → H(X) in probability,

−1

n
log2 PY n(Y1, Y2, . . . , Yn) → H(Y ) in probability,

and

−1

n
log2 PXn,Y n((X1, Y1), . . . , (Xn, Yn)) → H(X, Y ) in probability

as n → ∞.

Proof: By the weak law of large numbers, we have the desired result. �
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Theorem 4.9 (Shannon-McMillan-Breiman theorem for pairs) Given

a dependent pair of DMSs with joint entropy H(X, Y ) and any δ greater than zero,

we can choose n big enough so that the jointly δ-typical set satisfies:

1. PXn,Y n(F c
n(δ)) < δ for sufficiently large n.

2. The number of elements in Fn(δ) is at least (1− δ)2n(H(X,Y )−δ) for sufficiently

large n, and at most 2n(H(X,Y )+δ) for every n.

3. If (xn, yn) ∈ Fn(δ), its probability of occurrence satisfies

2−n(H(X,Y )+δ) < PXn,Y n(xn, yn) < 2−n(H(X,Y )−δ).

Proof: The proof is quite similar to that of the Shannon-McMillan-Breiman the-

orem for a single memoryless source presented in the previous chapter; we hence

leave it as an exercise. �
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Definition 4.10 (Operational capacity) A rate R is said to be achievable

for a discrete channel if there exists a sequence of (n,Mn) channel codes C∼n with

lim inf
n→∞

1

n
log2Mn ≥ R and lim

n→∞Pe( C∼n) = 0.

The channel’s operational capacity, Cop, is the supremum of all achievable rates:

Cop = sup{R : R is achievable}.

• The next theorem shows Cop = C, i.e., the information capacity is equal

to the operational capacity.
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Theorem 4.11 (Shannon’s channel coding theorem) Consider a DMC

with finite input alphabet X , finite output alphabet Y and transition distribu-

tion probability PY |X(y|x), x ∈ X and y ∈ Y . Define the channel capacity (or

information capacity)

C := max
PX

I(X ;Y ) = max
PX

I(PX, PY |X)

where the maximum is taken over all input distributions PX . Then the following

hold.

• Forward part (achievability): For any 0 < ε < 1, there exist γ > 0 and a

sequence of data transmission block codes { C∼n = (n,Mn)}∞n=1 with(
C >

)
lim inf
n→∞

1

n
log2Mn ≥ C − γ

and

Pe( C∼n) < ε for sufficiently large n,

where Pe( C∼n) denotes the (average) probability of error for block code C∼n.
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• Converse part: For any 0 < ε < 1, any sequence of data transmission block

codes { C∼n = (n,Mn)}∞n=1 with

lim inf
n→∞

1

n
log2Mn > C

satisfies

Pe( C∼n) > (1− ε)µ for sufficiently large n, (4.3.1)

where

µ = 1− C

lim infn→∞ 1
n log2Mn

> 0,

i.e., the codes’ probability of error is bounded away from zero for all n suffi-

ciently large.

Notes:

• (4.3.1) actually implies that

lim inf
n→∞ Pe( C∼n) ≥ lim

ε↓0
(1− ε)µ = µ,

where the error probability lower bound is nothing to do with ε. Here we state

the converse of Theorem 4.11 in a form in parallel to the converse statements

in Theorems 3.6 and 3.15.
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• Also note that the mutual information I(X ;Y ) is actually a function of the

input statistics PX and the channel statistics PY |X . Hence, we may write it as

I(PX, PY |X) =
∑
x∈X

∑
y∈Y

PX(x)PY |X(y|x) log2
PY |X(y|x)∑

x′∈X PX(x′)PY |X(y|x′).

Such an expression is more suitable for calculating the channel capacity.

• Channel capacity C is well-defined

– since for a fixed PY |X , I(PX, PY |X) is concave and continuous in PX

with respect to both the variational distance and the Euclidean distance

(i.e., L2-distance) [415, Chapter 2], and

– since the set of all input distributions PX is a compact (closed and bounded)

subset of R|X | due to the finiteness of X .

For the above two reasons, there must exist a PX that achieves the supremum

of the mutual information and the maximum is attainable.
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Idea behind the proof of the forward part:

• It suffices to prove the existence of a good block code sequence, satisfying the

rate condition,

lim inf
n→∞

1

n
log2Mn ≥ C − γ

for some γ > 0, whose average error probability is ultimately less than ε.

• Random coding argument:

– The desired good block code sequence is not deterministically con-

structed;

– instead, its existence is implicitly proven by showing that for a class (en-

semble) of block code sequences { C∼n}∞n=1 and a code-selecting distribution

Pr[ C∼n] over these block code sequences, the expectation value of the av-

erage error probability, evaluated under the code-selecting distribution on

these block code sequences, can be made smaller than ε for n sufficiently

large:

E C∼n[Pe( C∼n)] =
∑
C∼n

Pr[ C∼n]Pe( C∼n) → 0 as n → ∞.

– Hence, there must exist at least one such a desired good code sequence

{ C∼∗
n}∞n=1 among them (with Pe( C∼∗

n) → 0 as n → ∞).
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Proof of the forward part:

• Since the forward part holds trivially when C = 0 by setting Mn = 1, we

assume in the sequel that C > 0.

• Fix ε ∈ (0, 1) and some γ with 0 < γ < min{4ε, C}.
• Observe that there exists N0 such that for n > N0, we can choose an integer

Mn with

C − γ

2
≥ 1

n
log2Mn > C − γ. (4.3.2)

(Since we are only concerned with the case of “sufficient large n,” it suffices to

consider only those n’s satisfying n > N0, and ignore those n’s for n ≤ N0.)

• Define δ := γ/8.
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• Let PX̂ be the probability distribution achieving the channel capacity:

C:=max
PX

I(PX, PY |X) = I(PX̂, PY |X).

Denote by PŶ n the channel output distribution due to channel input product

distribution PX̂n with PX̂n(xn) =
∏n

i=1 PX̂(xi); in other words,

PŶ n(y
n) =

∑
xn∈X n

PX̂n,Ŷ n(x
n, yn)

and

PX̂n,Ŷ n(x
n, yn):=PX̂n(x

n)PY n|Xn(yn|xn)
for all xn ∈ X n and yn ∈ Yn.

– Note that since PX̂n(xn) =
∏n

i=1 PX̂(xi) and the channel is memoryless,

the resulting joint input-output process {(X̂i, Ŷi)}∞i=1 is also memoryless

with

PX̂n,Ŷ n(x
n, yn) =

n∏
i=1

PX̂,Ŷ (xi, yi)

and

PX̂,Ŷ (x, y) = PX̂(x)PY |X(y|x) for x ∈ X , y ∈ Y .

We next present the proof in three steps.
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Step 1: Code construction.

• For any blocklength n, independently select Mn channel inputs with re-

placement from X n according to the distribution PX̂n(xn).

• For the selected Mn channel inputs yielding codebook

C∼n:={c1, c2, . . . , cMn},
define the encoder fn(·) and decoder gn(·), respectively, as follows:

fn(m) = cm for 1 ≤ m ≤ Mn,

and

gn(y
n) =




m, if cm is the only codeword in C∼n

satisfying (cm, y
n) ∈ Fn(δ);

any one in {1, 2, . . . ,Mn}, otherwise,

where Fn(δ) is defined in Definition 4.7 with respect to distribution PX̂n,Ŷ n.

(We assume that the codebook C∼n and the channel distribution PY |X are

known at both the encoder and the decoder.)
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Fn(δ) :=

{
(xn, yn) ∈ X n × Yn :∣∣∣∣−1

n
log2 PXn(xn)−H(X)

∣∣∣∣ < δ,

∣∣∣∣−1

n
log2 PY n(yn)−H(Y )

∣∣∣∣ < δ,

and

∣∣∣∣−1

n
log2 PXn,Y n(xn, yn)−H(X, Y )

∣∣∣∣ < δ

}
.

• Again, let me repeat the encoding and decoding process here!

– A message W is chosen according to the uniform distribution from the

set of messages.

– The encoder fn then transmits the W th codeword cW in C∼n over the

channel.

– Then Y n is received at the channel output and the decoder guesses the

sent message via Ŵ = gn(Y
n).

– Note that there is a total |X |nMn possible randomly generated codebooks

C∼n and the probability of selecting each codebook is given by

Pr[ C∼n] =

Mn∏
m=1

PX̂n(cm).
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Step 2: Conditional error probability.

• For each (randomly generated) data transmission code C∼n, the conditional

probability of error given that message m was sent, λm( C∼n), can be upper

bounded by:

λm( C∼n) ≤
∑

yn∈Yn: (cm,yn) �∈Fn(δ)

PY n|Xn(yn|cm)

+

Mn∑
m′=1
m′ �=m

∑
yn∈Yn: (cm′ ,yn)∈Fn(δ)

PY n|Xn(yn|cm), (4.3.3)

where

– the first term in (4.3.3) considers the case that the received channel

output yn is not jointly δ-typical with cm, (and hence, the decoding rule

gn(·) would possibly result in a wrong guess), and

– the second term in (4.3.3) reflects the situation when yn is jointly δ-

typical not only with the transmitted codeword cm, but also with an-

other codeword cm′ (which may cause a decoding error).



4.3 Block codes for data transmission over DMCs I: 4-32

• By taking expectation in (4.3.3) with respect to themth codeword-selecting

distribution PX̂n(cm), we obtain∑
cm∈X n

PX̂n(cm)λm( C∼n) ≤
∑

cm∈X n

∑
yn �∈Fn(δ|cm)

PX̂n(cm)PY n|Xn(yn|cm)

+
∑

cm∈X n

Mn∑
m′=1
m′ �=m

∑
yn∈Fn(δ|cm′)

PX̂n(cm)PY n|Xn(yn|cm)

= PX̂n,Ŷ n (F c
n(δ))

+

Mn∑
m′=1
m′ �=m

∑
cm∈X n

∑
yn∈Fn(δ|cm′)

PX̂n,Ŷ n(cm, y
n),

(4.3.4)

where

Fn(δ|xn):= {yn ∈ Yn : (xn, yn) ∈ Fn(δ)} .
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Step 3: Average error probability.

E C∼n[Pe( C∼n)] =
∑
C∼n

Pr[ C∼n]Pe( C∼n)

=
∑
c1∈X n

· · ·
∑

cMn∈X n

PX̂n(c1) · · ·PX̂n(cMn)

(
1

Mn

Mn∑
m=1

λm( C∼n)

)

=
1

Mn

Mn∑
m=1

∑
c1∈X n

· · ·
∑

cm−1∈X n

∑
cm+1∈X n

· · ·
∑

cMn∈X n

PX̂n(c1) · · ·PX̂n(cm−1)PX̂n(cm+1) · · ·PX̂n(cMn)

×

 ∑

cm∈X n

PX̂n(cm)λm( C∼n)
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≤ 1

Mn

Mn∑
m=1

∑
c1∈X n

· · ·
∑

cm−1∈X n

∑
cm+1∈X n

· · ·
∑

cMn∈X n

PX̂n(c1) · · ·PX̂n(cm−1)PX̂n(cm+1) · · ·PX̂n(cMn)

×PX̂n,Ŷ n (F c
n(δ))

+
1

Mn

Mn∑
m=1

∑
c1∈X n

· · ·
∑

cm−1∈X n

∑
cm+1∈X n

· · ·
∑

cMn∈X n

PX̂n(c1) · · ·PX̂n(cm−1)PX̂n(cm+1) · · ·PX̂n(cMn)

×
Mn∑
m′=1
m′ �=m

∑
cm∈X n

∑
yn∈Fn(δ|cm′)

PX̂n,Ŷ n(cm, y
n) (4.3.5)
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= PX̂n,Ŷ n (F c
n(δ))

+
1

Mn

Mn∑
m=1




Mn∑
m′=1
m′ �=m


 ∑
c1∈X n

· · ·
∑

cm−1∈X n

∑
cm+1∈X n

· · ·
∑

cMn∈X n

PX̂n(c1) · · ·PX̂n(cm−1)PX̂n(cm+1) · · ·PX̂n(cMn)

×
∑

cm∈X n

∑
yn∈Fn(δ|cm′)

PX̂n,Ŷ n(cm, y
n)




,

where (4.3.5) follows from (4.3.4), and the last step holds since PX̂n,Ŷ n (F c
n(δ))

is a constant independent of c1, . . ., cMn and m.



4.3 Block codes for data transmission over DMCs I: 4-36

(Then for n > N0)

Mn∑
m′=1
m′ �=m


 ∑
c1∈X n

· · ·
∑

cm−1∈X n

∑
cm+1∈X n

· · ·
∑

cMn∈X n

PX̂n(c1) · · ·PX̂n(cm−1)PX̂n(cm+1) · · ·PX̂n(cMn)

×
∑

cm∈X n

∑
yn∈Fn(δ|cm′)

PX̂n,Ŷ n(cm, y
n)




=

Mn∑
m′=1
m′ �=m


 ∑
cm∈X n

∑
cm′∈X n

∑
yn∈Fn(δ|cm′)

PX̂n(cm′)PX̂n,Ŷ n(cm, y
n)




=

Mn∑
m′=1
m′ �=m


 ∑
cm′∈X n

∑
yn∈Fn(δ|cm′)

PX̂n(cm′)


 ∑

cm∈X n

PX̂n,Ŷ n(cm, y
n)






=

Mn∑
m′=1
m′ �=m


 ∑
cm′∈X n

∑
yn∈Fn(δ|cm′)

PX̂n(cm′)PŶ n(y
n)
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=

Mn∑
m′=1
m′ �=m


 ∑
(cm′ ,yn)∈Fn(δ)

PX̂n(cm′)PŶ n(y
n)




≤
Mn∑
m′=1
m′ �=m

|Fn(δ)|2−n(H(X̂)−δ)2−n(H(Ŷ )−δ)

≤
Mn∑
m′=1
m′ �=m

2n(H(X̂,Ŷ )+δ)2−n(H(X̂)−δ)2−n(H(Ŷ )−δ)

= (Mn − 1)2n(H(X̂,Ŷ )+δ)2−n(H(X̂)−δ)2−n(H(Ŷ )−δ)

< Mn · 2n(H(X̂,Ŷ )+δ)2−n(H(X̂)−δ)2−n(H(Ŷ )−δ)

≤ 2n(C−4δ) · 2−n(I(X̂;Ŷ )−3δ) = 2−nδ,

where



the 1st inequality follows from the definition of the jointly typical set Fn(δ),

the 2nd inequality holds by the Shannon-McMillan-Breiman theorem for pairs (Theorem 4

the last inequality follows

{
since C = I(X̂ ; Ŷ ) by definition of X̂ and Ŷ , and

since (1/n) log2Mn ≤ C − (γ/2) = C − 4δ.
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Consequently,

E C∼n[Pe( C∼n)] ≤ PX̂n,Ŷ n (F c
n(δ)) + 2−nδ,

which for sufficiently large n (and n > N0), can be made smaller than 2δ =

γ/4 < ε by the Shannon-McMillan-Breiman theorem for pairs. �



Fano’s inequality I: 4-39

Relation between Fano’s inequality and converse proof:

• Consider an (n,Mn) channel block code C∼n with encoding and decoding func-

tions given respectively by

fn : {1, 2, · · · ,Mn} → X n

and

gn : Yn → {1, 2, · · · ,Mn}.
• Let messageW , which is uniformly distributed over the set of messages {1, 2, · · · ,Mn},
be sent via codeword Xn(W ) = fn(W ) over the DMC.

• Let Y n be received at the channel output.

• At the receiver, the decoder estimates the sent message via Ŵ = gn(Y
n).

• The probability of estimation error is given by the code’s average error proba-

bility:

Pr[W �= Ŵ ] = Pe( C∼n).

• Then Fano’s inequality yields

H(W |Y n) ≤ 1 + Pe( C∼n) log2(Mn − 1)

< 1 + Pe( C∼n) log2Mn. (4.3.6)
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Proof of the converse part:

• For any (n,Mn) block channel code C∼n as described above, we have that

W → Xn → Y n

form a Markov chain; we thus obtain by the data processing inequality that

I(W ;Y n) ≤ I(Xn;Y n). (4.3.7)

• We can also upper bound I(Xn;Y n) in terms of the channel capacity C as

follows

I(Xn;Y n) ≤ max
PXn

I(Xn;Y n)

≤ max
PXn

n∑
i=1

I(Xi;Yi) (by Theorem 2.21: Bounds on mutual information)

≤
n∑

i=1

max
PXn

I(Xi;Yi)

=

n∑
i=1

max
PXi

I(Xi;Yi) = nC. (4.3.8)
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• Consequently, code C∼n satisfies the following:

log2Mn = H(W ) (since W is uniformly distributed)

= H(W |Y n) + I(W ;Y n)

≤ H(W |Y n) + I(Xn;Y n) (by (4.3.7))

≤ H(W |Y n) + nC (by (4.3.8))

< 1 + Pe( C∼n) · log2Mn + nC. (by (4.3.6))

• This implies that

Pe( C∼n) > 1− C

(1/n) log2Mn
− 1

log2Mn
= 1− C + 1/n

(1/n) log2Mn
.

• So if

lim inf
n→∞

1

n
log2Mn =

C

1− µ
,

then for any 0 < ε < 1, there exists an integer N such that for n ≥ N ,

1

n
log2Mn ≥ C + 1/n

1− (1− ε)µ
, (4.3.9)

because, otherwise, (4.3.9) would be violated for infinitely many n, implying a

contradiction that

lim inf
n→∞

1

n
log2Mn ≤ lim inf

n→∞
C + 1/n

1− (1− ε)µ
=

C

1− (1− ε)µ
.
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• Hence, for n ≥ N ,

Pe( C∼n) > 1− [1− (1− ε)µ]
C + 1/n

C + 1/n
= (1− ε)µ > 0;

i.e., Pe( C∼n) is bounded away from zero for n sufficiently large. �

• Converse part: For any 0 < ε < 1, any sequence of data transmission

block codes { C∼n = (n,Mn)}∞n=1 with

R = lim inf
n→∞

1

n
log2Mn > C

satisfies

Pe( C∼n) > (1− ε)µ for sufficiently large n,

where

µ = 1− C

lim infn→∞ 1
n log2Mn

= 1− C

R
> 0,

i.e., the codes’ probability of error is bounded away from zero for all n

sufficiently large.
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0

1

0 C

When R > C, Pe(Cn) > (1− ε)µ is bounded

away from 0 for n sufficiently large.

µ = 1− C

R
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Observation 4.12

• The results of the above channel coding theorem is illustrated in the figure

below, where

R = lim inf
n→∞ Rn = lim inf

n→∞ (1/n) log2Mn message bits/channel use

is usually called the asymptotic coding rate of channel block codes, and Rn is

the code rate for codes of blocklength n.

�

C

lim supn→∞ Pe(Cn) = 0
for the best channel block code

lim supn→∞ Pe(Cn) > 0
for all channel block codes

R

– Note that Theorem 4.11 actually indicates{
limn→∞ Pe(Cn) = 0, for R < C;

lim infn→∞ Pe(Cn) > 0, for R > C

– Such a “two-region” behavior however only holds for a DMC.
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– For a more general channel, three partitions instead of two may result, i.e.,

(i) R < C, (ii) C < R < C̄ and (iii) R > C̄,

which respectively correspond to

(i) lim supn→∞ Pe(Cn) = 0 for the best block code,

(ii) lim supn→∞ Pe(Cn) > 0 but lim infn→∞ Pe = 0 for the best block code, and

(iii) lim infn→∞ Pe(Cn) > 0 for all channel code codes,

where C̄ is named the optimistic channel capacity.

– Since C̄ = C for DMCs, the three regions are thus reduced to two.
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4.5.1 Symmetric, Weakly Symmetric, and Quasi-symmetric Channels

Definition 4.15

• A DMC with finite input alphabet X , finite output alphabet Y and channel

transition matrixQ = [px,y] of size |X |×|Y| is said to be symmetric if the rows

of Q are permutations of each other and the columns of Q are permutations of

each other.

• The channel is said to be weakly-symmetric if the rows of Q are permutations

of each other and all the column sums in Q are equal.

Example of symmetric channel: A ternary DMC channel with X = Y =

{0, 1, 2} and transition matrix

Q =


PY |X(0|0) PY |X(1|0) PY |X(2|0)
PY |X(0|1) PY |X(1|1) PY |X(2|1)
PY |X(0|2) PY |X(1|2) PY |X(2|2)


 =


0.4 0.1 0.5

0.5 0.4 0.1

0.1 0.5 0.4


 .
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Example of weakly symmetric but non-symmetric channel: A quadra-

try DMC with |X | = |Y| = 4 and

Q =



0.5 0.25 0.25 0

0.5 0.25 0.25 0

0 0.25 0.25 0.5

0 0.25 0.25 0.5


 (4.5.1)

is weakly-symmetric (but not symmetric).

Lemma 4.16 The capacity of a weakly-symmetric channel Q is achieved by a

uniform input distribution and is given by

C = log2 |Y| −H(q1, q2, · · · , q|Y|) (4.5.3)

where (q1, q2, · · · , q|Y|) denotes any row of Q and

H(q1, q2, · · · , q|Y|):=−
|Y|∑
i=1

qi log2 qi

is the row entropy.
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Proof:

• The mutual information between the channel’s input and output is given by

I(X ;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑
x∈X

PX(x)H(Y |X = x)

where

H(Y |X = x) = −
∑
y∈Y

PY |X(y|x) log2 PY |X(y|x) = −
∑
y∈Y

px,y log2 px,y.

• Noting that every row of Q is a permutation of every other row, we obtain that

H(Y |X = x) is independent of x and can be written as

H(Y |X = x) = H(q1, q2, · · · , q|Y|)

where (q1, q2, · · · , q|Y|) is any row of Q.
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• Thus

H(Y |X) =
∑
x∈X

PX(x)H(q1, q2, · · · , q|Y|)

= H(q1, q2, · · · , q|Y|)

(∑
x∈X

PX(x)

)
= H(q1, q2, · · · , q|Y|).

This implies

I(X ;Y ) = H(Y )−H(q1, q2, · · · , q|Y|)
≤ log2 |Y| −H(q1, q2, · · · , q|Y|)

with equality achieved iff Y is uniformly distributed over Y .

• The proof is completed by confirming that for a weakly symmetric channel, the

uniform input distribution induces the uniform output distribution (see the

text). �
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Example 4.18 (Capacity of the BSC) Since the BSC with crossover proba-

bility (or bit error rate) ε is symmetric, we directly obtain from Lemma 4.16 that

its capacity is achieved by a uniform input distribution and is given by

C = log2(2)−H(1− ε, ε) = 1− hb(ε) (4.5.5)

where hb(·) is the binary entropy function.

Example 4.19 (Capacity of the q-ary symmetric channel) Similarly, the

q-ary symmetric channel with symbol error rate ε described in (4.2.11) is symmetric;

hence, by Lemma 4.16, its capacity is given by

C = log2 q −H

(
1− ε,

ε

q − 1
, · · · , ε

q − 1

)
= log2 q + ε log2

ε

q − 1
+ (1− ε) log2(1− ε).

Question: Does the uniform input achieve the channel capacity iff

the channel is weakly symmetric? No.



4.5 Calculating channel capacity I: 4-51

Definition 4.20 (Quasi-symmetric channels) A DMC with finite input al-

phabet X , finite output alphabet Y and channel transition matrix Q = [px,y] of

size |X | × |Y| is said to be quasi-symmetric if Q can be partitioned along its

columns into m weakly-symmetric sub-matrices Q1,Q2, · · · ,Qm for some in-

teger m ≥ 1, where each Qi sub-matrix has size |X |× |Yi| for i = 1, 2, · · · ,m with

Y1 ∪ · · · ∪ Ym = Y and Yi ∩ Yj = ∅ ∀i �= j, i, j = 1, 2, · · · ,m.

Quasi- = “having some, but not all of the features of” such as quasi-scholar and

quasi-official.

• The notion of “quasi-symmetry” we provide here is slightly more general than

Gallager’s notion [135, p. 94], as we herein allow each sub-matrix to be weakly-

symmetric (instead of symmetric as in [135]).
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Lemma 4.21 The capacity of a quasi-symmetric channel Q is achieved by a uni-

form input distribution and is given by

C =

m∑
i=1

aiCi (4.5.6)

where

ai:=
∑
y∈Yi

px,y = sum of any row in Qi, i = 1, · · · ,m,

and

Ci = log2 |Yi| −H
(
any row in the matrix 1

ai
Qi

)
, i = 1, · · · ,m

is the capacity of the ith weakly-symmetric “sub-channel” whose transition matrix

is obtained by multiplying each entry of Qi by
1
ai
(this normalization renders sub-

matrix Qi into a stochastic matrix and hence a channel transition matrix).
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Example 4.22 (Capacity of the BEC) The BEC with erasure probability α

and transition matrix

Q =

[
PY |X(0|0) PY |X(E|0) PY |X(1|0)
PY |X(0|1) PY |X(E|1) PY |X(1|1)

]
=

[
1− α α 0

0 α 1− α

]
is quasi-symmetric (but neither weakly-symmetric nor symmetric).

• Its transition matrixQ can be partitioned along its columns into two symmetric

(hence weakly-symmetric) sub-matrices

Q1 =

[
1− α 0

0 1− α

]
and

Q2 =

[
α

α

]
.
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• Thus applying the capacity formula for quasi-symmetric channels of Lemma 4.21

yields that the capacity of the BEC is given by

C = a1C1 + a2C2

where a1 = 1− α, a2 = α,

C1 = log2(2)−H

(
1− α

1− α
,

0

1− α

)
= 1−H(1, 0) = 1− 0 = 1,

and

C2 = log2(1)−H
(α
α

)
= 0− 0 = 0.

Therefore, the BEC capacity is given by

C = (1− α)(1) + (α)(0) = 1− α. (4.5.7)
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Example 4.23 (Capacity of the BSEC) Similarly, the BSEC with crossover

probability ε and erasure probability α and transition matrix

Q = [px,y] =

[
p0,0 p0,E p0,1
p1,0 p1,E p1,1

]
=

[
1− ε− α α ε

ε α 1− ε− α

]
is quasi-symmetric; its transition matrix can be partitioned along its columns into

two symmetric sub-matrices

Q1 =

[
1− ε− α ε

ε 1− ε− α

]
and

Q2 =

[
α

α

]
.

Hence by Lemma 4.21, the channel capacity is given by C = a1C1 + a2C2 where

a1 = 1− α, a2 = α,

C1 = log2(2)−H

(
1− ε− α

1− α
,

ε

1− α

)
= 1− hb

(
1− ε− α

1− α

)
,

and

C2 = log2(1)−H
(α
α

)
= 0.
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We thus obtain that

C = (1− α)

[
1− hb

(
1− ε− α

1− α

)]
+ (α)(0)

= (1− α)

[
1− hb

(
1− ε− α

1− α

)]
. (4.5.8)
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Definition 4.24 (Mutual information for a specific input symbol) The

mutual information for a specific input symbol is defined as:

I(x;Y ):=
∑
y∈Y

PY |X(y|x) log2
PY |X(y|x)
PY (y)

.

From the above definition, the mutual information becomes:

I(X ;Y ) =
∑
x∈X

PX(x)
∑
y∈Y

PY |X(y|x) log2
PY |X(y|x)
PY (y)

=
∑
x∈X

PX(x)I(x;Y ).
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Lemma 4.25 (KKT condition for channel capacity) For a given DMC,

an input distribution PX achieves its channel capacity iff there exists a constant C

such that {
I(x : Y ) = C ∀x ∈ X with PX(x) > 0;

I(x : Y ) ≤ C ∀x ∈ X with PX(x) = 0.
(4.5.9)

Furthermore, the constant C is the channel capacity (justifying the choice of nota-

tion).

Proof: The forward (if) part holds directly; hence, we only prove the converse

(only-if) part.

• Without loss of generality, we assume that PX(x) < 1 for all x ∈ X , since

PX(x) = 1 for some x implies that I(X ;Y ) = 0.
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• The problem of calculating the channel capacity is to maximize

I(X ;Y ) =
∑
x∈X

∑
y∈Y

PX(x)PY |X(y|x) log2
PY |X(y|x)∑

x′∈X PX(x′)PY |X(y|x′), (4.5.10)

subject to the condition ∑
x∈X

PX(x) = 1 (4.5.11)

for a given channel distribution PY |X .

• By using the Lagrange multiplier method (e.g., see Appendix B.10), maximizing

(4.5.10) subject to (4.5.11) is equivalent to maximize:

f(PX):=
∑
x∈X
y∈Y

PX(x)PY |X(y|x) log2
PY |X(y|x)∑

x′∈X
PX(x

′)PY |X(y|x′)
+λ

(∑
x∈X

PX(x)− 1

)
.
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• We then take the derivative of the above quantity with respect to PX(x
′′), and

obtain that
∂f(PX)

∂PX(x′′)
= I(x′′;Y )− log2(e) + λ.

The details for taking the derivative are as follows:

∂

∂PX(x′′)

{∑
x∈X

∑
y∈Y

PX(x)PY |X(y|x) log2 PY |X(y|x)

−
∑
x∈X

∑
y∈Y

PX(x)PY |X(y|x) log2
[∑
x′∈X

PX(x
′)PY |X(y|x′)

]
+ λ

(∑
x∈X

PX(x)− 1

)}

=
∑
y∈Y

PY |X(y|x′′) log2 PY |X(y|x′′)−
(∑

y∈Y
PY |X(y|x′′) log2

[∑
x′∈X

PX(x
′)PY |X(y|x′)

]

+ log2(e)
∑
x∈X

∑
y∈Y

PX(x)PY |X(y|x) PY |X(y|x′′)∑
x′∈X PX(x′)PY |X(y|x′)

)
+ λ

= I(x′′; Y )− log2(e)
∑
y∈Y

[∑
x∈X

PX(x)PY |X(y|x)
]

PY |X(y|x′′)∑
x′∈X PX(x′)PY |X(y|x′)

+ λ

= I(x′′; Y )− log2(e)
∑
y∈Y

PY |X(y|x′′) + λ

= I(x′′; Y )− log2(e) + λ.
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• By Property 2 of Lemma 2.46, I(X ;Y ) = I(PX, PY |X) is a concave function

in PX (for a fixed PY |X). Therefore,

1. the maximum of I(PX, PY |X) occurs for a zero derivative when PX(x) does

not lie on the boundary, namely 1 > PX(x) > 0.

2. For those PX(x) lying on the boundary, i.e., PX(x) = 0, the maximum

occurs iff a displacement from the boundary to the interior decreases the

quantity, which implies a non-positive derivative, namely

I(x;Y ) ≤ −λ + log2(e), for those x with PX(x) = 0.

• To summarize, if an input distribution PX achieves the channel capacity, then{
I(x′′;Y ) = −λ + log2(e), for PX(x

′′) > 0;

I(x′′;Y ) ≤ −λ + log2(e), for PX(x
′′) = 0.

for some λ.

• With the above result, setting C = −λ + 1 yields (4.5.9).

• Finally, multiplying both sides of each equation in (4.5.9) by PX(x) and sum-

ming over x yields that maxPX I(X ;Y ) on the left and the constant C on the

right, thus proving that the constant C is indeed the channel’s capacity. �
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Question: Does the uniform input achieve the channel capacity iff

the channel is quasi-symmetric? No.

Observation 4.28 (Capacity achieved by a uniform input distribu-

tion)

• T -symmetric channels [319, Section V, Definition 1]: A channel is T -symmetric

if

T (x) := I(x;Y )− log2 |X | =
∑
y∈Y

PY |X(y|x) log2
PY |X(y|x)∑

x′∈X PY |X(y|x′)

is a constant function of x (i.e., functionally independent of x), where I(x;Y )

is the mutual information for input x under a uniform input distribution.

• An example of a T -symmetric channel that is not quasi-symmetric is the binary-

input ternary-output channel with the following transition matrix

Q =

[
1
3

1
3

1
3

1
6

1
6

2
3

]
.

Its capacity is achieved by the uniform input distribution.
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• Unlike quasi-symmetric channels, T -symmetric channels do not admit in gen-

eral a simple closed-form expression for their capacity (such as the one given

in (4.5.6)).

C =
m∑
i=1

aiCi (4.5.6)
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• Polar coding is a new channel coding method proposed by Arikan during 2008-

2009, which can provably achieve the capacity of any binary-input memoryless

channel Q whose capacity is realized by a uniform input distribution.

• The main idea behind polar codes is channel “polarization,” which transforms

n uses of BEC(ε) into extremal “polarized” channels; i.e., channels which are

either perfect (noiseless) or completely noisy.

• It is shown that as n → ∞, the number of unpolarized channels converges to

0 and the fraction of perfect channels converges to I(X ;Y ) = 1 − ε under a

uniform input, which is the capacity of the BEC (see Example 4.22 in Section

4.5).

• A polar code can then be naturally obtained by sending information bits di-

rectly through those perfect channels and sending known bits (usually called

frozen bits) through the completely noisy channels.
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�

�

�⊕ �

BEC(ε)

BEC(ε)

�

�

U2

U1

X2

X1

Y2

Y1

• We start with the simplest case (often named basic transformation) of n = 2.

• Under uniformly distributed X1 and X2, we have

I(Q):=I(X1;Y1) = I(X2;Y2) = 1− ε.

• Now consider the following linear modulo-2 operation:

X1 = U1 ⊕ U2,

X2 = U2,

where U1 and U2 represent uniformly distributed independent message bits.
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�

�

�⊕ �

BEC(ε)

BEC(ε)

�

�

U2

U1

X2

X1

Y2

Y1

• The decoder performs successive cancellation decoding as follows.

– It first decodes U1 from the received (Y1, Y2),

– and then decodes U2 based on (Y1, Y2) and the previously decoded U1

(assuming the decoding is done correctly).

• This will create two new channels; namely the “worse” channel Q− and the

“better” channel Q+ given by

Q− : U1 → (Y1, Y2),

Q+ : U2 → (Y1, Y2, U1),

respectively (the names of these channels will be justified shortly).
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�

�

�⊕ �

BEC(ε)

BEC(ε)

�

�

U2

U1

U2

U1 ⊕ U2

Y2

Y1

• Q−: U1 =



Y1 ⊕ Y2, if Y1, Y2 ∈ {0, 1}
? ⊕ Y2, if Y1 = E, Y2 ∈ {0, 1}
Y1 ⊕ ? , if Y1 ∈ {0, 1}, Y2 = E

? ⊕ ? , if Y1 = Y2 = E

Noting that given output E for a BEC, the receiver knows “nothing” about

the input.

• Thus, Q− is a BEC with erasure probability ε− := 1− (1− ε)2.
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�

�

�⊕ �

BEC(ε)

BEC(ε)

�

�

U2

U1

U2

U1 ⊕ U2

Y2

Y1

• Q+: U2 =



Y1 ⊕ U1, if Y1 ∈ {0, 1}
Y2, if Y2 ∈ {0, 1}
? , if Y1 = Y2 = E

• Q+ is a BEC with erasure probability ε+ := ε2.

Thus, let U1 be the frozen bit and U2 be the info bit. One can transform the

system to a BEC(ε2) with code rate 1/2 bits/channel usage.
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The channel capacity remains the same.

I(Q+) + I(Q−) = I(U2;Y1, Y2, U1) + I(U1;Y1, Y2)

= (1− ε2) + [1− (1− (1− ε)2)]

= 2(1− ε)

= 2I(Q), (4.4.1)
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• Now, let us consider the case of n = 4 and suppose we perform the basic trans-

formation twice to send (i.i.d. uniform) message bits (U1, U2, U3, U4), yielding

Q− : V1 → (Y1, Y2), where X1 = V1 ⊕ V2,

Q+ : V2 → (Y1, Y2, V1), where X2 = V2,

Q− : V3 → (Y3, Y4), where X3 = V3 ⊕ V4,

Q+ : V4 → (Y3, Y4, V3), where X4 = V4,

where V1 = U1 ⊕ U2, V3 = U2, V2 = U3 ⊕ U4 and V4 = U4.

• 

Q−− : U1 → (Y1, Y2, Y3, Y4) with erasure probability ε−−:=1− (1− ε−)2

Q+− : U3 → (Y1, Y2, Y3, Y4, U1, U2) with erasure probability ε+−:=1− (1− ε+)2

Q−+ : U2 → (Y1, Y2, Y3, Y4, U1) with erasure probability ε−+:=(ε−)2

Q++ : U4 → (Y1, Y2, Y3, Y4, U1, U3, U2) with erasure probability ε++:=(ε+)2.
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In polar coding terminology,

• the process of using multiple basic transformations to get X1, . . . , Xn from

U1, . . . , Un (where the Ui’s are i.i.d. uniform message random variables) is

called channel “combining”

• and that of using Y1, . . . , Yn and U1, . . . , Ui−1 to obtain Ui for i ∈ {1, . . . , n}
is called channel “splitting.”

• Altogether, the phenomenon is called channel “polarization.”

Example 4.14 Consider a BEC with erasure probability ε = 0.5 and let n = 8.
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BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

⊕

⊕

⊕ ⊕

⊕

⊕ ⊕

⊕ ⊕

⊕ ⊕ ⊕

�

�

� �

�

� �

� �

� � �

U8

(0.0039)

U4

(0.3164)

U6

(0.1914)

U2

(0.8789)

U7

(0.1211)

U3

(0.8086)

U5

(0.6836)

U1

(0.9961)

T8

(0.0625)

T6

(0.5625)

T7

(0.4375)

T5

(0.9375)

T4

(0.0625)

T2

(0.5625)

T3

(0.4375)

T1

(0.9375)

V8

(0.25)

V7

(0.75)

V6

(0.25)

V5

(0.75)

V4

(0.25)

V3

(0.75)

V2

(0.25)

V1

(0.75)

X8

(0.5)

X7

(0.5)

X6

(0.5)

X5

(0.5)

X4

(0.5)

X3

(0.5)

X2

(0.5)

X1

(0.5)

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1
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• A key reason for the prevalence of polar coding after its invention is that they

form the first coding scheme that has an explicit low-complexity construction

structure while being capable of achieving channel capacity as code length

approaches infinity.

• More importantly, polar codes do not exhibit the error floor behavior, which

Turbo and (to a lesser extent) LDPC codes are prone to.

• Due to their attractive properties, polar codes were adopted in 2016 by the

3rd Generation Partnership Project (3GPP) as error correcting codes for the

control channel of the 5th generation (5G) mobile communication standard.
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and Shannon’s separation principle

• We next establish Shannon’s lossless joint source-channel coding theorem

(or lossless information transmission theorem), which provides explicit (and

directly verifiable) conditions for any communication system in terms of its

source and channel information-theoretic quantities under which the source can

be reliably transmitted (i.e., with asymptotically vanishing error probability).

• This key theorem is sometimes referred to as Shannon’s source-channel sep-

aration theorem or principle.

– Why it is named “separation principle”?

– Answer: The theorem’s necessary and sufficient conditions for reliable trans-

missibility are a function of entirely “separable” or “disentangled” informa-

tion quantities, i.e., the source’s minimal compression rate and the chan-

nel’s capacity with no quantities that depends on both the source and the

channel.
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• We will prove the theorem by assuming that the source is stationary ergodic in

the forward part and just stationary in the converse part and that the channel

is a DMC.

• Note that the theorem can be extended to more general sources and channels

with memory (see Dobrushin 1963, Vembu & Verdu & Steinberg 1995, Chen

& Alajaji 1999).

Source � Source
Encoder

� Channel
Encoder

�
Xn

Channel �
Y n

Channel
Decoder

� Source
Decoder

� Sink

A separate (tandem) source-channel coding scheme.

Source � Encoder �
Xn

Channel �
Y n

Decoder � Sink

A joint source-channel coding scheme.
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Definition 4.29 (Source-channel block code) Given a discrete source {Vi}∞i=1

with finite alphabet V and a discrete channel {PY n|Xn}∞n=1 with finite input and

output alphabets X and Y , respectively, anm-to-n source-channel block code C∼m,n

with rate m
n
source symbol/channel symbol is a pair of mappings (f (sc), g(sc)), where

f (sc) : Vm → X n

and

g(sc) : Yn → Vm.

V m � Encoder

f (sc)
�

Xn Channel
PY n|Xn

�
Y n Decoder

g(sc)
� V̂ m

An m-to-n block source-channel coding system.

The code’s error probability is given by

Pe( C∼m,n) := Pr[V m �= V̂ m] =
∑

vm∈Vm

∑
yn∈Yn : g(sc)(yn) �=vm

PVm(vm)PY n|Xn(yn|f (sc)(vm))

where PVm and PY n|Xn are the source and channel distributions, respectively.
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Theorem 4.30 (Lossless joint source-channel coding theorem for rate-

one block codes) Consider a discrete source {Vi}∞i=1 with finite alphabet V and

entropy rate H(V) and a DMC with input alphabet X , output alphabet Y and

capacity C, where both H(V) and C are measured in the same units (i.e., they

both use the same base of the logarithm). Then the following hold:

• Forward part (achievability): For any 0 < ε < 1 and given that the source is

stationary ergodic, if

H(V) < C,

then there exists a sequence of rate-one source-channel codes { C∼m,m}∞m=1 such

that

Pe( C∼m,m) < ε for sufficiently large m,

where Pe( C∼m,m) is the error probability of the source-channel code C∼m,m.
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• Converse part: For any 0 < ε < 1 and given that the source is stationary, if

H(V) > C,

then any sequence of rate-one source-channel codes { C∼m,m}∞m=1 satisfies

Pe( C∼m,m) > (1− ε)µ for sufficiently large m, (4.6.1)

where µ = HD(V)− CD with D = |V|, and HD(V) and CD are entropy rate

and channel capacity measured inD-ary digits, i.e., the codes’ error probability

is bounded away from zero and it is not possible to transmit the source over

the channel via rate-one source-channel block codes with arbitrarily low error

probability.
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Proof of the forward part:

• Without loss of generality, we assume throughout this proof that both the

source entropy rate H(V) and the channel capacity C are measured in nats

(i.e., they are both expressed using the natural logarithm).

• Key idea: We will show the existence of the desired rate-one source-channel

codes C∼m,m via a separate (tandem or two-stage) source and channel coding

scheme.

• Let γ := C −H(V) > 0.

• Given any 0 < ε < 1, by the lossless source-coding theorem for stationary

ergodic sources (Theorem 3.15), there exists a sequence of source codes of

blocklength m and size Mm with

encoder fs : Vm → {1, 2, . . . ,Mm} and decoder gs : {1, 2, . . . ,Mm} → Vm

such that
1

m
logMm < H(V) + γ/2 (4.6.2)

and

Pr [gs(fs(V
m)) �= V m] < ε/2

for m sufficiently large.
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• Furthermore, by the channel coding theorem under the maximal probability of

error criterion (see Observation 4.6 and Theorem 4.11), there exists a sequence

of channel codes of blocklength m and size M̄m with encoder

fc : {1, 2, . . . , M̄m} → Xm

and decoder

gc : Ym → {1, 2, . . . , M̄m}
such that

1

m
log M̄m > C − γ/2

(
= H(V) + γ/2 >

1

m
logMm

)
(4.6.5)

and

λ := max
w∈{1,...,M̄m}

Pr [gc(Y
m) �= w|Xm = fc(w)] < ε/2

for m sufficiently large.
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• Now we form our source-channel code by concatenating in tandem the above

source and channel codes.

• Specifically, the m-to-m source-channel code C∼m,m has the following encoder-

decoder pair (f (sc), g(sc)):

f (sc) : Vm → Xm with f (sc)(vm) = fc(fs(v
m)) ∀vm ∈ Vm

and

g(sc) : Ym → Vm

with

g(sc)(ym) =

{
gs(gc(y

m)), if gc(y
m) ∈ {1, 2, . . . ,Mm}

arbitrary, otherwise
∀ym ∈ Ym.

• The above construction is possible since {1, 2, . . . ,Mm} is a subset of {1, 2,
. . ., M̄m}.
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Pe( C∼m,m) = Pr[g(sc)(Y m) �= V m]

= Pr[g(sc)(Y m) �= V m, gc(Y
m) = fs(V

m)]

+Pr[g(sc)(Y m) �= V m, gc(Y
m) �= fs(V

m)]

= Pr[gs(gc(Y
m)) �= V m, gc(Y

m) = fs(V
m)]

+Pr[g(sc)(Y m) �= V m, gc(Y
m) �= fs(V

m)]

≤ Pr[gs(fs(V
m)) �= V m] + Pr[gc(Y

m) �= fs(V
m)]

= Pr[gs(fs(V
m)) �= V m]

+
∑

w∈{1,2,...,Mm}
Pr[fs(V

m) = w] Pr[gc(Y
m) �= w|fs(V m) = w]

= Pr[gs(fs(V
m)) �= V m]

+
∑

w∈{1,2,...,Mm}
Pr[Xm = fc(w)] Pr[gc(Y

m) �= w|Xm = fc(w)]

≤ Pr[gs(fs(V
m)) �= V m] + λ

< ε/2 + ε/2 = ε

for m sufficiently large. Thus the source can be reliably sent over the channel via

rate-one block source-channel codes as long as H(V) < C.
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Proof of the converse part: For simplicity, we assume in this proof thatH(V)
and C are measured in bits.

For any m-to-m source-channel code C∼m,m, we can write

H(V) ≤ 1

m
H(V m) (4.6.6)

=
1

m
H(V m|V̂ m) +

1

m
I(V m; V̂ m)

≤ 1

m
[Pe( C∼m,m) log2(|V|m) + 1] +

1

m
I(V m; V̂ m) (4.6.7)

≤ Pe( C∼m,m) log2 |V| +
1

m
+

1

m
I(Xm;Y m) (4.6.8)

≤ Pe( C∼m,m) log2 |V| +
1

m
+ C (4.6.9)

where

• (4.6.6) is due to the fact that (1/m)H(V m) is non-increasing inm and converges

to H(V) as m → ∞ since the source is stationary (see Observation 3.12),

• (4.6.7) follows from Fano’s inequality,

H(V m|V̂ m) ≤ Pe( C∼m,m) log2(|V|m)+hb(Pe( C∼m,m)) ≤ Pe( C∼m,m) log2(|V|m)+1,
• (4.6.8) is due to the data processing inequality since V m → Xm → Y m → V̂ m

form a Markov chain.
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Note that in the above derivation, the information measures are all measured in

bits. This implies that for m ≥ logD(2)/(εµ),

Pe( C∼m,m) ≥ H(V)− C

log2(|V|)
− 1

m log2(|V|)
= HD(V)− CD︸ ︷︷ ︸

=µ

− logD(2)

m︸ ︷︷ ︸
≤εµ

≥ (1− ε)µ.
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Theorem 4.32 (Lossless joint source-channel coding theorem for gen-

eral rate block codes) Under the same notation as in Theorem 4.30, the fol-

lowing hold:

• Forward part (achievability): For any 0 < ε < 1 and given that the source

is stationary ergodic, there exists a sequence of m-to-nm source-channel codes

{ C∼m,nm}∞m=1 such that

Pe( C∼m,nm) < ε for sufficiently large m

if

lim sup
m→∞

m

nm
<

C

H(V).

• Converse part: For any 0 < ε < 1 and given that the source is stationary, any

sequence of m-to-nm source-channel codes { C∼m,nm}∞m=1 with

lim inf
m→∞

m

nm
>

C

H(V),

satisfies

Pe( C∼m,nm) > (1− ε)µ for sufficiently large m,

for some positive constant µ that depends on lim inf
m→∞ (m/nm), H(V) and C.
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Discussion: separate vs joint source-channel coding

• Shannon’s separation principle has provided the linchpin for most modern com-

munication systems where source coding and channel coding schemes are sep-

arately constructed (with the source (resp., channel) code designed by only

taking into account the source (resp., channel) characteristics) and applied in

tandem without the risk of sacrificing optimality in terms of reliable transmis-

sibility under unlimited coding delay and complexity.

• However, in practical implementations, there is a price to pay in delay and

complexity for extremely long coding blocklengths (particularly when delay and

complexity constraints are quite stringent such as in wireless communications

systems).

• Under finite coding blocklengths and/or complexity, many studies have demon-

strated that joint source-channel coding can provide better performance than

separate coding.
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• Even in the infinite blocklength regime where separate coding is optimal in

terms of reliable transmissibility, it can be shown that for a large class of sys-

tems, joint source-channel coding can achieve an error exponentthat is as large

as double the error exponent resulting from separate coding. This indicates that

one can realize via joint source-channel coding the same performance as sepa-

rate coding, while reducing the coding delay by half (this result translates into

notable power savings of more than 2 dB when sending binary sources over

channels with Gaussian noise, fading an output quantization).
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• Definition of reliable transmission

• Discrete memoryless channels

• Data transmission code and its rate

• Joint typical set

• Shannon’s channel coding theorem and its converse theorem

• Fano’s inequality

• Calculation of the channel capacity

– Symmetric, weakly symmetric, quasi-symmetric and T -symmetric channels

– KKT condition

• Polar coding

• Joint source-channel coding theorem


