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3.1 Principles of data compression I: 3-1

• Average codeword length

E.g.


PX(x = outcomeA) = 0.5;

PX(x = outcomeB) = 0.25;

PX(x = outcomeC) = 0.25.

and




code(outcomeA) = 0;

code(outcomeB) = 10;

code(outcomeC) = 11.

Then the average codeword length is

len(0) · PX(A) + len(10) · PX(B) + len(11) · PX(C)

= 1 · 0.5 + 2 · 0.25 + 2 · 0.25
= 1.5 bits.

• Categories of codes

– Variable-length codes

– Fixed-length codes (often treated as a subclass of variable-length codes)

∗ Segmentation is normally considered an implicit part of the codewords.



3.1 Principles of data compression I: 3-2

Example of segmentation of fixed-length codes.

E.g. To encode the final grades of a class with 100 students.

Assume that there are three grade levels: A, B and C.

• Without segmentation ⌈
log2 3

100
⌉
= 159 bits.

• With segmentation length of 10 students

10× ⌈
log2 3

10
⌉
= 160 bits.



3.1 Principles of data compression I: 3-3

• Fixed-length codes

– Block codes

∗ The encoding (or decoding) of the next segment of source symbols is

independent of the previous segments.

– Fixed-length tree codes

∗ The encoding/decoding of the next segment retains and uses some knowl-

edge of earlier segments.

• Block diagram of a data compression system

Source �
sourcewords

(source symbols)

Source
encoder
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codewords
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Key difference in data compress schemes I: 3-4

• Block codes for asymptotic lossless data compression

– Asymptotic in blocklength n

• Variable-length codes for completely lossless data compression

3.2.1 Block codes for DMS

Definition 3.1 (Discrete memoryless source)A discrete memoryless source

(DMS) {Xn}∞n=1 consists of a sequence of i.i.d. random variables, X1, X2, X3, . . .,

all taking values in a common finite alphabet X . In particular, if PX(·) is the

common distribution or probability mass function (pmf) of the Xi’s, then

PXn(x1, x2, . . . , xn) =

n∏
i=1

PX(xi).



3.2.1 Block codes for DMS I: 3-5

Definition 3.2 An (n,M) block code with blocklength n and size M (which can

be a function of n in general,1 i.e., M = Mn) for a discrete source {Xn}∞n=1 is

a set C∼n = {c1, c2, . . . , cM} ⊆ X n consisting of M reproduction (or reconstruc-

tion) words, where each reproduction word is a sourceword (an n-tuple of source

symbols).

To simplify the exposition, we make an abuse of notation by writing C∼n = (n,M)

to mean that C∼n is a block code with blocklength n and size M .

• Note that ci is not a “codeword” but a “reproduction word.” It is an n-tuple

of source symbols.

• One can binary-index (or enumerate) the reproduction words in C∼n = {c1, c2,
. . ., cM} using k:= �log2M� bits.

1In the literature, both (n,M) and (M,n) have been used to denote a block code

with blocklength n and size M . For example, R. W. Yeung [415, p. 149] adopts the

former one, while T. M. Cover and J. A. Thomas [83, p. 193] use the latter. We

use the (n,M) notation since M = Mn is a function of n in general.



3.2.1 Block codes for DMS I: 3-6

• As such k-bit words in {0, 1}k are usually stored for retrieval at a later date, the
(n,M) block code can be represented by an encoder-decoder pair of functions

(f, g):

– the encoding function f : X n → {0, 1}k maps each sourceword xn to a

k-bit word f(xn), which we call a codeword.

– the decoding function g : {0, 1}k → {c1, c2, . . . , cM} is a retrieving oper-

ation that produces the reproduction words.

• Since the codewords are binary-valued, such a block code is called a binary

code.

• More generally, a D-ary block code (where D > 1 is an integer) would use an

encoding function f : X n → {0, 1, . . . , D − 1}k where each codeword f(xn)

contains k D-ary code symbols.



3.2.1 Block codes for DMS I: 3-7

• Furthermore, since the behavior of block codes is investigated for sufficiently

large n and M (tending to infinity), it is legitimate to replace �log2M� by

log2M for the case of binary codes. With this convention, the data compres-

sion rate or code rate is

k

n
=

1

n
log2M (in bits per source symbol).

Similarly, for D-ary codes, the rate is

k

n
=

1

n
logD M (in D-ary code symbols per source symbol).

For computational convenience, nats (under the natural logarithm) can be used

instead of bits or D-ary code symbols; in this case, the code rate becomes:

1

n
logM (in nats per source symbol).



3.2.1 Block codes for DMS I: 3-8

• (Weakly) δ-typical set

Fn(δ):=

{
xn ∈ X n :

∣∣∣∣∣−1

n

n∑
i=1

log2 PX(xi)−H(X)

∣∣∣∣∣ < δ

}
.

E.g. n = 2 and δ = 0.4 and X = {A,B,C,D}.

The source distribution is




PX(A) = 0.4

PX(B) = 0.3

PX(C) = 0.2

PX(D) = 0.1

The entropy equals:

0.4 log2
1

0.4
+ 0.3 log2

1

0.3
+ 0.2 log2

1

0.2
+ 0.1 log2

1

0.1
= 1.84644 bits

Then for x21 = (A,A),∣∣∣∣∣−1

2

2∑
i=1

log2 PX(xi)−H(X)

∣∣∣∣∣ =

∣∣∣∣−1

2
(log2 PX(A) + log2 PX(A))− 1.84644

∣∣∣∣
=

∣∣∣∣−1

2
(log2 0.4 + log2 0.4)− 1.84644

∣∣∣∣ = 0.525



3.2.1 Block codes for DMS I: 3-9

Source

∣∣∣∣∣−1

2

2∑
i=1

log2 PX(xi)−H(X)

∣∣∣∣∣
AA 0.525 bits 	∈ F2(0.4)

AB 0.317 bits ∈ F2(0.4)

AC 0.025 bits ∈ F2(0.4)

AD 0.475 bits 	∈ F2(0.4)

BA 0.317 bits ∈ F2(0.4)

BB 0.109 bits ∈ F2(0.4)

BC 0.183 bits ∈ F2(0.4)

BD 0.683 bits 	∈ F2(0.4)

CA 0.025 bits ∈ F2(0.4)

CB 0.183 bits ∈ F2(0.4)

CC 0.475 bits 	∈ F2(0.4)

CD 0.975 bits 	∈ F2(0.4)

DA 0.475 bits 	∈ F2(0.4)

DB 0.683 bits 	∈ F2(0.4)

DC 0.975 bits 	∈ F2(0.4)

DD 1.475 bits 	∈ F2(0.4)

⇒ F2(0.4) = {AB,AC,BA,BB,BC,CA,CB}.



3.2.1 Block codes for DMS I: 3-10

Source

∣∣∣∣∣−1

2

2∑
i=1

logPX(xi)−H(X)

∣∣∣∣∣ codeword

AA 0.525 bits 	∈ F2(0.4) 000

AB 0.317 bits ∈ F2(0.4) 001

AC 0.025 bits ∈ F2(0.4) 010

AD 0.475 bits 	∈ F2(0.4) 000

BA 0.317 bits ∈ F2(0.4) 011

BB 0.109 bits ∈ F2(0.4) 100

BC 0.183 bits ∈ F2(0.4) 101

BD 0.683 bits 	∈ F2(0.4) 000

CA 0.025 bits ∈ F2(0.4) 110

CB 0.183 bits ∈ F2(0.4) 111

CC 0.475 bits 	∈ F2(0.4) 000

CD 0.975 bits 	∈ F2(0.4) 000

DA 0.475 bits 	∈ F2(0.4) 000

DB 0.683 bits 	∈ F2(0.4) 000

DC 0.975 bits 	∈ F2(0.4) 000

DD 1.475 bits 	∈ F2(0.4) 000

We can therefore encode the

seven outcomes in F2(0.4) by

seven distinct codewords, and

encode all the remaining nine

outcomes outside F2(0.4) by a

single codeword.



3.2.1 Block codes for DMS I: 3-11

Theorem 3.4 (Shannon1948-McMillan1953-Breiman1960)

(Asymptotic equipartition property or AEP or Entropy stability

property) If {Xn}∞n=1 is a DMS with entropy H(X), then

−1

n
log2 PXn(X1, . . . , Xn) → H(X) in probability.

In other words, for any δ > 0,

lim
n→∞Pr

{∣∣∣∣−1

n
log2 PXn(X1, . . . , Xn)−H(X)

∣∣∣∣ > δ

}
= 0.

• Almost all the source sequences in Fn(δ) are nearly equiprobable or equally

surprising (cf. Property 1 of Theorem 3.5); Hence, Theorem 3.4 is named

AEP.

E.g. The probabilities of the elements in

F2(0.3) = {AB,AC,BA,BB,BC,CA,CB}
are respectively 0.12, 0.08, 0.12, 0.09, 0.06, 0.08 and 0.06.

The sum of these seven probability masses are 0.61.



3.2.1 Block codes for DMS I: 3-12

Source

∣∣∣∣∣−1

2

2∑
i=1

logPX(xi)−H(X)

∣∣∣∣∣ codeword
reconstructed

sequence

AA 0.525 nats 	∈ F2(0.4) 000 ambiguous

AB 0.317 bits ∈ F2(0.4) 001 AB

AC 0.025 bits ∈ F2(0.4) 010 AC

AD 0.475 bits 	∈ F2(0.4) 000 ambiguous

BA 0.317 bits ∈ F2(0.4) 011 BA

BB 0.109 bits ∈ F2(0.4) 100 BB

BC 0.183 bits ∈ F2(0.4) 101 BC

BD 0.683 bits 	∈ F2(0.4) 000 ambiguous

CA 0.025 bits ∈ F2(0.4) 110 CA

CB 0.183 bits ∈ F2(0.4) 111 CB

CC 0.475 bits 	∈ F2(0.4) 000 ambiguous

CD 0.975 bits 	∈ F2(0.4) 000 ambiguous

DA 0.475 bits 	∈ F2(0.4) 000 ambiguous

DB 0.683 bits 	∈ F2(0.4) 000 ambiguous

DC 0.975 bits 	∈ F2(0.4) 000 ambiguous

DD 1.475 bits 	∈ F2(0.4) 000 ambiguous



3.2.1 Block codes for DMS I: 3-13

Theorem 3.5 (Consequence of the AEP) Given a DMS {Xn}∞n=1 with en-

tropy H(X) and any δ greater than zero, then the weakly δ-typical set Fn(δ)

satisfies the following.

1. If xn ∈ Fn(δ), then

2−n(H(X)+δ) ≤ PXn(xn) ≤ 2−n(H(X)−δ).

2. PXn (F c
n(δ)) < δ for sufficiently large n, where the superscript “c” denotes the

complementary set operation.

3. |Fn(δ)| > (1 − δ)2n(H(X)−δ) for sufficiently large n, and |Fn(δ)| ≤ 2n(H(X)+δ)

for every n, where |Fn(δ)| denotes the number of elements in Fn(δ).

Proof:

• Property 1 is an immediate consequence of the definition of Fn(δ). I.e.,

Fn(δ) :=

{
xn ∈ X n :

∣∣∣∣∣−1

n

n∑
i=1

log2 PX(xi)−H(X)

∣∣∣∣∣ < δ

}
.



3.2.1 Block codes for DMS I: 3-14

In other words,∣∣∣∣∣−1

n

n∑
i=1

log2 PX(xi)−H(X)

∣∣∣∣∣ < δ ⇔
∣∣∣∣−1

n
log2 PXn(xn)−H(X)

∣∣∣∣ < δ

⇔ H(X)− δ < −1

n
log2 PXn(xn) < H(X) + δ.

• Property 2 is a direct consequence of the AEP. We nevertheless provide a direct

proof of Property 2. Observe that by Chebyshev’s inequality,

PXn(F c
n(δ)) = PXn

{
xn ∈ X n :

∣∣∣∣−1

n
log2 PXn(xn)−H(X)

∣∣∣∣ > δ

}
≤ σ2

X

nδ2
< δ,

for n > σ2
X/δ

3, where the variance

σ2
X := Var[− log2 PX(X)]

(
=

∑
x∈X

PX(x) [log2 PX(x)]
2 − (H(X))2

)

≤ E[(log2 PX(X))2] =
∑
x∈X

PX(x)(log2 PX(x))
2 ≤

∑
x∈X

max
0≤p≤1

p(log2 p)
2 (p∗ =

1

e2
)

=
∑
x∈X

4

e2
[log2(e)]

2 =
4

e2
[log2(e)]

2 × |X | < ∞ for finite alphabet

is a constant independent of n.



3.2.1 Block codes for DMS I: 3-15

• To prove Property 3, we have from Property 1 that

1 ≥
∑

xn∈Fn(δ)

PXn(xn) ≥
∑

xn∈Fn(δ)

2−n(H(X)+δ) = |Fn(δ)|2−n(H(X)+δ),

and, using Properties 1 and 2, we have that

1−δ < 1− σ2
X

nδ2
≤

∑
xn∈Fn(δ)

PXn(xn) ≤
∑

xn∈Fn(δ)

2−n(H(X)−δ) = |Fn(δ)|2−n(H(X)−δ),

for n ≥ σ2
X/δ

3.



Shannon’s Source Coding Theorem I: 3-16

Theorem 3.6 (Shannon’s source coding theorem) Given integer D > 1,

consider a discrete memoryless source {Xn}∞n=1 with entropy HD(X). Then the

following hold.

• Forward part (achievability): For any 0 < ε < 1, there exists 0 < δ < ε and

a sequence of D-ary block codes { C∼n = (n,Mn)}∞n=1 with

lim sup
n→∞

1

n
logD Mn ≤ HD(X) + δ (3.2.1)

satisfying

Pe( C∼n) < ε (3.2.2)

for all sufficiently large n, where Pe( C∼n) denotes the probability of decoding

error for block code C∼n.

• Strong converse part: For any 0 < ε < 1, any sequence of D-ary block codes

{ C∼n = (n,Mn)}∞n=1 with

lim sup
n→∞

1

n
logD Mn < HD(X) (3.2.3)

satisfies

Pe( C∼n) > 1− ε

for all n sufficiently large.



Shannon’s Source Coding Theorem I: 3-17

Note

• Since ε can be made arbitrarily small, (3.2.2) is equivalent to

lim sup
n→∞

Pe( C∼n) = 0.

• In parallel, (3.2.3) is equivalent to

lim sup
n→∞

Pe( C∼n) = 1.

Keys of the proof of the forward part

• Only need to prove the existence of such block code.

• The code chosen is indeed the weakly δ-typical set.



Shannon’s Source Coding Theorem I: 3-18

Proof:

Forward Part:

• Without loss of generality, we will prove the result for the case of binary codes

(i.e., D = 2). Also recall that subscript D in HD(X) will be dropped (i.e.,

omitted) specifically when D = 2.

• Given 0 < ε < 1, fix δ such that 0 < δ < ε and choose n > 2/δ.

• Binary-index the sourcewords in Fn(δ/2) with the following encoding map:{
xn → binary index of xn, if xn ∈ Fn(δ/2);

xn → all-zero codeword, if xn 	∈ Fn(δ/2).

Then by the Shannon-McMillan-Breiman AEP theorem (spec., the 3rd prop-

erty in Theorem 3.5), we obtain that

Mn = |Fn(δ/2)|+1 ≤ 2n(H(X)+δ/2)+1 < 2·2n(H(X)+δ/2) < 2nδ/2·2n(H(X)+δ/2) = 2n(H(X)+δ),

for n > 2/δ. Hence, a sequence of C∼n = (n,Mn) block code satisfying (3.2.1)

is established.

• It remains to show that the error probability for this sequence of (n,Mn) block

code can be made smaller than ε for all sufficiently large n.
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By the Shannon-McMillan-Breiman AEP theorem (spec., the 2nd property in

Theorem 3.5),

PXn(F c
n(δ/2)) <

δ

2
for all sufficiently large n.

Consequently, for those n satisfying the above inequality, and being bigger than

2/δ,

Pe( C∼n) ≤ PXn(F c
n(δ/2)) < δ ≤ ε.

(See Slide I: 3-12 to confirm that only the “ambiguous” sequences outside the

typical set contribute to the probability of error.)
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Set of Source Symbols Sn

� � � � � � � � � � � � � � � � �� ��

Codeword Set C∼n

Strong Converse Part:

• Fix any sequence of block codes { C∼n}∞n=1 with

lim sup
n→∞

1

n
log2 | C∼n| < H(X).

Let Sn be the set of source symbols that can be correctly decoded through

C∼n-coding system. (A quick example is depicted above.) Then |Sn| = | C∼n|.
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• By choosing δ small enough with ε/2 > δ > 0, and also by definition of limsup

operation, we have

(∃ N0)(∀ n > N0)
1

n
log2 |Sn| = 1

n
log2 | C∼n| < H(X)− 2δ,

which implies

|Sn| < 2n(H(X)−2δ).
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• Furthermore, from Property 2 of the Consequence of the AEP, we obtain that

(∃ N1)(∀ n > N1) PXn(F c
n(δ)) < δ.

Consequently, for n > N :=max{N0, N1, log2(2/ε)/δ}, the probability of cor-

rectly block decoding satisfies

1− Pe( C∼n) =
∑
xn∈Sn

PXn(xn)

=
∑

xn∈Sn∩Fc
n(δ)

PXn(xn) +
∑

xn∈Sn∩Fn(δ)

PXn(xn)

≤ PXn(F c
n(δ)) + |Sn ∩ Fn(δ)| · max

xn∈Fn(δ)
PXn(xn)

< δ + |Sn| · max
xn∈Fn(δ)

PXn(xn)

<
ε

2
+ 2n(H(X)−2δ) · 2−n(H(X)−δ)

=
ε

2
+ 2−nδ

< ε,

which is equivalent to Pe( C∼n) > 1− ε for n > N .
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Notes

• Ultimate data compression rate

R := lim sup
n→∞

1

n
log2Mn nats per source symbol.

• Shannon’s source coding theorem

– Arbitrary good performance can be achieved by extending the block-

length.(∀ ε > 0 and 0 < δ < ε
)
(∃ C∼n) such that

1

n
log2Mn < H(X)+δ and Pe( C∼n) < ε.

So R = lim sup
n→∞

1

n
log2Mn can be made smaller than H(X) + δ for arbitrarily

small δ.

In other words, at rate R < H(X) + δ for arbitrarily small δ > 0, the error

probability can be made arbitrarily close to zero (< ε).

• How about further making R < H(X)? Answer:(
∀ { C∼n}n≥1 with lim sup

n→∞
1

n
log2 | C∼n| < H(X)

)
Pe( C∼n) → 1.



Summary of Shannon’s Source Coding Theorem I: 3-24

• Behavior of error probability as blocklength n → ∞ for a DMS

�

H(X)

Pe
n→∞−→ 1

for all block codes
Pe

n→∞−→ 0
for the best data compression block code

R

• Key to the achievability proof

Existence of a typical-like setAn = {xn1 , xn2 , . . . , xnM} with
M ≈ 2nH(X) and PXn(Ac

n) → 0 (or PXn(An) → 1.)

In other words,

Existence of a typical-like setAn whose size is prohibitively

small, and whose probability mass is large.

– This is the basic idea for the generalization of Shannon’s source coding

theorem to a more general (than i.i.d.) source.



Summary of Shannon’s Source Coding Theorem I: 3-25

• Notes to the strong converse theorem

– It is named the strong converse theorem because the result is very strong.

∗ All code sequences with R < H(X) have error probability approaching

1!

· Of course, you can always design a lousy code with error probabi-

lity approaching 1. Here, what the theorem truly claims is that all

(sequences of) designs are (asymptotically) lousy.

– The strong converse theorem applies to all stationary-ergodic sources.

• A weak converse statement (than the strong converse) is:

– For general sources, such as non-stationary non-ergodic sources, we can

find some code sequence with R < H(X ) whose error probability is only

bounded away from zero, and does not approach 1 at all. Notably, for

general sources, H(X ) is no longer in the form of a single-letter entropy

H(X) but the entropy rate 1
nH(Xn) or sup-entropy rate H̄(X).
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• Recall that the merit of the stationary ergodic assumption is on its validity of

law of large numbers.

• In order to extend the Shannon’s source coding theorem to stationary ergodic

sources, we need to generalize the information measure for such sources.

Definition 3.8 (Entropy rate) The entropy rate for a source {Xn}∞n=1 is

denoted by H(X ) and defined by

H(X ):= lim
n→∞

1

n
H(Xn)

provided the limit exists, where Xn = (X1, · · · , Xn).

– Comment: The limit of limn→∞ 1
nH(Xn) exists for all stationary sources.
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Lemma 3.9 For a stationary source {Xn}∞n=1, the conditional entropy

H(Xn|Xn−1, . . . , X1)

is nonincreasing in n and also bounded from below by zero. Hence by Lemma A.20,

the limit

lim
n→∞H(Xn|Xn−1, . . . , X1)

exists.

Proof: We have

H(Xn|Xn−1, . . . , X1) ≤ H(Xn|Xn−1, . . . , X2) (3.2.4)

= H(Xn, · · · , X2)−H(Xn−1, · · · , X2)

= H(Xn−1, · · · , X1)−H(Xn−2, · · · , X1) (3.2.5)

= H(Xn−1|Xn−2, . . . , X1)

where (3.2.4) follows since conditioning never increases entropy, and (3.2.5) holds

because of the stationarity assumption. Finally, recall that each conditional entropy

H(Xn|Xn−1, . . . , X1) is nonnegative.
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Lemma 3.10 (Cesaro-mean theorem) If an → a as n → ∞ and bn =

(1/n)
∑n

i=1 ai, then bn → a as n → ∞.

Proof: an → a implies that for any ε > 0, there exists N such that for all n > N ,

|an − a| < ε. Then

|bn − a| =

∣∣∣∣∣1n
n∑

i=1

(ai − a)

∣∣∣∣∣
≤ 1

n

n∑
i=1

|ai − a|

=
1

n

N∑
i=1

|ai − a| + 1

n

n∑
i=N+1

|ai − a|

≤ 1

n

N∑
i=1

|ai − a| + n−N

n
ε.

Hence, lim supn→∞ |bn − a| ≤ ε. Since ε can be made arbitrarily small, the lemma

holds.
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Theorem 3.11 The entropy rate of a stationary source {Xn}∞n=1 always exist and

is equal to

H(X ) = lim
n→∞H(Xn|Xn−1, . . . , X1).

Proof: The result directly follows by writing
1

n
H(Xn) =

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1) (chain-rule for entropy)

and applying the Cesaro-mean theorem.

Observation 3.12 It can also be shown that for a stationary source, (1/n)H(Xn)

is nonincreasing in n and (1/n)H(Xn) ≥ H(Xn|Xn−1, . . . , X1) for all n ≥ 1. (The

proof is left as an exercise. See Problem 3.)



Practices of Finding the Entropy Rate I: 3-30

• I.i.d. source

H(X ) = lim
n→∞

1

n
H(Xn) = H(X)

since H(Xn) = n×H(X) for every n.

• First-order stationary Markov source

H(X ) = lim
n→∞

1

n
H(Xn) = lim

n→∞H(Xn|Xn−1, . . . , X1) = H(X2|X1),

where

H(X2|X1):=−
∑
x1∈X

∑
x2∈X

π(x1)PX2|X1
(x2|x1) · logPX2|X1

(x2|x1),

and π(·) is the stationary distribution for the Markov source.

– In addition, if the Markov source is also binary,

H(X ) = lim
n→∞

1

n
H(Xn) =

β

α + β
Hb(α) +

α

α + β
Hb(β),

whereHb(α):=−α logα−(1−α) log(1−α) is the binary entropy function,

and PX2|X1
(0|1) = α and PX2|X1

(1|0) = β
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Theorem 3.14 (Generalized AEP or Shannon-McMillan-Breiman The-

orem [12]) If {Xn}∞n=1 is a stationary ergodic source, then

−1

n
log2 PXn(X1, . . . , Xn)

a.s.−→ H(X ).

Theorem 3.15 (Shannon’s source coding theorem for stationary er-

godic sources) Given integerD > 1, let {Xn}∞n=1 be a stationary ergodic source

with entropy rate (in base D)

HD(X ):= lim
n→∞

1

n
HD(X

n).

Then the following hold.

• Forward part (achievability): For any 0 < ε < 1, there exists δ with 0 < δ <

ε and a sequence of D-ary block codes { C∼n = (n,Mn)}∞n=1 with

lim sup
n→∞

1

n
logD Mn < HD(X ) + δ,

and probability of decoding error satisfied

Pe( C∼n) < ε

for all sufficiently large n.
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• Strong converse part: For any 0 < ε < 1, any sequence of D-ary block codes

{ C∼n = (n,Mn)}∞n=1 with

lim sup
n→∞

1

n
logD Mn < HD(X )

satisfies

Pe( C∼n) > 1− ε

for all n sufficiently large.
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• A discrete memoryless (i.i.d.) source is stationary and ergodic.

• In general, it is hard to check whether a process is ergodic or not.

• If a stationary process is a “non-trivial” (see below where 0 < θ < 1) mixture of

two or more “asymptotically mutually singular” stationary ergodic processes,

i.e., its n-fold distribution can be written as the weighted sum of the n-fold

distributions of “distinct” stationary ergodic processes, then it is not ergodic.

– For example, let P and Q be two distinct distributions on a finite alphabet

X such that the process {Xn}∞n=1 is i.i.d. with distribution P and the

process {Yn}∞n=1 is i.i.d. with distribution Q. Flip a biased coin (with

Heads probability equal to θ, 0 < θ < 1) once and let

Zi =

{
Xi if Heads

Yi if Tails

for i = 1, 2, · · · . Then the resulting process {Zi}∞i=1 has its n-fold distribu-

tion as a mixture of the n-fold distributions of {Xn}∞n=1 and {Yn}∞n=1:

PZn(an) = θPXn(an) + (1− θ)PY n(an)

for all an ∈ X n, n = 1, 2, · · · . Then the process {Zi}∞i=1 is stationary but

not ergodic.



Problems of Ergodicity Assumption I: 3-34

• A specific case that ergodicity can be easily verified is the case of stationary

Markov sources.

Observation

1. An irreducible finite-state stationary Markov source is ergodic.

– Note that irreducibility can be verified in terms of the transition pro-

bability matrix. For example, all the entries in transition probability

matrix are non-zero.

2. Hence, the generalized AEP theorem holds for irreducible finite-state sta-

tionary Markov sources. For example, if the Markov source is of the first-

order, then

−1

n
logPXn(Xn)

a.s.−→ lim
n→∞

1

n
H(Xn) = H(X2|X1).
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• A source can be compressed only when it has redundancy.

– A very important concept is that the output of a perfect lossless

data compressor should be (asymptotic) i.i.d. with (asymp-

totic) uniform marginal distribution (so that its entropy rate is

log2 |X |). Because if it were not so, there would be redundancy in the

output and hence the compressor cannot be claimed perfect.

• This arises the need to define the redundancy of a (stationary ergodic) source.

• Categories of redundancy

– intra-sourceword redundancy

∗ due to non-uniform marginal distribution

– inter-sourceword redundancy

∗ due to the source memory
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Definition (Redundancy)

1. Source redundancy due to the non-uniformity of the source marginal distri-

bution ρd:

ρd:= log2 |X | −H(X1).

2. Source redundancy due to the source memory ρm:

ρm:=H(X1)−H(X ).

3. Hence, the source total redundancy ρt is given by:

ρt:=ρd + ρm = log2 |X | −H(X ).
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E.g.

Source ρd ρm ρt

i.i.d. uniform 0 0 0

i.i.d. non-uniform log2 |X | −H(X1) 0 ρd
1st-order symmetric

Markov
0 H(X1)−H(X2|X1) ρm

1st-order non-

symmetric Markov
log2 |X | −H(X1) H(X1)−H(X2|X1) ρd + ρm

• A first-order Markov process is symmetric if for any x1 and x̂1,

{a : a = PX2|X1
(y|x1) for some y} = {a : a = PX2|X1

(y|x̂1) for some y}.
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3.3.1 Non-singular Codes and Uniquely Decodable Codes

• Non-singular codes

– To encode all sourcewords with distinct variable-length codewords

• Uniquely decodable codes

– Concatenation of codewords (without punctuation mechanism) can be

uniquely decodable.

E.g., a non-singular but non-uniquely decodable code

code of A = 0,

code of B = 1,

code of C = 00,

code of D = 01,

code of E = 10,

code of F = 11.

The code is not uniquely decodable because the codeword sequence, 01, can

be reconstructed as either AB or D.
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Definition 3.19 Consider a discrete source {Xn}∞n=1 with finite alphabet X along

with a D-ary code alphabet B = {0, 1, · · · , D − 1}, where D > 1 is an integer.

Fix integer n ≥ 1, then a D-ary n-th order variable-length code (VLC) is a map

f : X n → B∗

mapping (fixed-length) sourcewords of length n to D-ary codewords in B∗ of vari-
able lengths, where B∗ denotes the set of all finite-length strings from B (i.e.,

c ∈ B∗ ⇔ ∃ integer l ≥ 1 such that c ∈ Bl).

The codebook C of a VLC is the set of all codewords:

C = f(X n) = {f(xn) ∈ B∗ : xn ∈ X n}.
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Definition 3.20 Let C be a D-ary n-th order VLC code

f : X n → {0, 1, · · · , D − 1}∗

for a discrete source {Xn}∞n=1 with alphabet X and distribution PXn(xn), xn ∈
X n. Setting 	(cxn) as the length of the codeword cxn = f(xn) associated with

sourceword xn, then the average codeword length for C is given by

	:=
∑

xn∈X n

PXn(xn)	(cxn)

and its average code rate (in D-ary code symbols/source symbol) is given by

Rn:=
	

n
=

1

n

∑
xn∈X n

PXn(xn)	(cxn).



3.3 Variable-Length Code for Lossless Data Comp. I: 3-41

Theorem 3.21 (Kraft1949-McMillan1956 inequality for uniquely de-

codable codes) Let C be a uniquely decodable D-ary n-th order VLC for a dis-

crete source {Xn}∞n=1 with alphabet X . Let the M = |X |n codewords of C have

lengths 	1, 	2, . . . , 	M , respectively. Then the following inequality must hold
M∑

m=1

D−	m ≤ 1.

Proof: Suppose that we use the codebook C to encode N sourcewords (xni ∈ X n,

i = 1, · · · , N) arriving in a sequence; this yields a concatenated codeword sequence

c1c2c3 . . . cN.

Let the lengths of the codewords be respectively denoted by

	(c1), 	(c2), . . . , 	(cN).

Consider 
∑

c1∈C

∑
c2∈C

· · ·
∑
cN∈C

D−[	(c1)+	(c2)+···+	(cN )]


 .

It is obvious that the above expression is equal to(∑
c∈C

D−	(c)

)N

=

(
M∑

m=1

D−	m

)N

.
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(Note that |C| = M .) On the other hand, all the code sequences with length

i = 	(c1) + 	(c2) + · · · + 	(cN)

contribute equally to the sum of the identity, which is D−i. Let Ai denote the

number of N -codeword sequences that have length i. Then the above identity can

be re-written as(
M∑

m=1

D−	m

)N

=
LN∑
i=1

AiD
−i, where L:=max

c∈C
	(c).

Since C is by assumption a uniquely decodable code, the codeword sequence must

be unambiguously decodable. Observe that a code sequence with length i has at

most Di unambiguous combinations. Therefore, Ai ≤ Di, and(
M∑

m=1

D−	m

)N

=

LN∑
i=1

AiD
−i ≤

LN∑
i=1

DiD−i = LN,

which implies that
M∑

m=1

D−	m ≤ (LN)1/N.

The proof is completed by noting that the above inequality holds for every N , and

the upper bound (LN)1/N goes to 1 as N goes to infinity.
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Theorem 3.22 The average rate of every uniquely decodable D-ary n-th order

VLC for a discrete memoryless source {Xn}∞n=1 is lower-bounded by the source

entropy HD(X) (measured in D-ary code symbols/source symbol).

Proof: Consider a uniquely decodable D-ary n-th order VLC code for the source

{Xn}∞n=1

f : X n → {0, 1, · · · , D − 1}∗
and let 	(cxn) denote the length of the codeword cxn = f(xn) for sourceword xn.
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Hence,

Rn −HD(X) =
1

n

∑
xn∈X n

PXn(xn)	(cxn)− 1

n
HD(X

n)

=
1

n

[ ∑
xn∈X n

PXn(xn)	(cxn)−
∑

xn∈X n

(−PXn(xn) logD PXn(xn))

]

=
1

n

∑
xn∈X n

PXn(xn) logD
PXn(xn)

D−	(cxn)

≥ 1

n

[ ∑
xn∈X n

PXn(xn)

]
logD

[∑
xn∈X n PXn(xn)

][∑
xn∈X n D−	(cxn)

]
(log-sum inequality)

= −1

n
log

[ ∑
xn∈X n

D−	(cxn)

]
≥ 0

where the last inequality follows from the Kraft inequality for uniquely decodable

codes and the fact that the logarithm is a strictly increasing function.



Summary for Unique Decodability I: 3-45

1. Uniquely decodability ⇒ the Kraft inequality holds.

2. Uniquely decodability ⇒ average code rate of VLCs for memoryless sources is

lower bounded by the source entropy.

Exercise 3.23

1. Find a non-singular and also non-uniquely decodable code that violates the

Kraft inequality. (Hint: Slide I: 3-38.)

2. Find a non-singular and also non-uniquely decodable code that beats the en-

tropy lower bound. (Hint: Same as the previous one.)
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• Prefix codes or instantaneous codes

– A special case of uniquely decodable codes

– Note that a uniquely decodable code may not necessarily be decoded in-

stantaneously.

Definition 3.24 A code is called a prefix(-free) code or an instantaneous code

if no codeword is a prefix of any other codeword.



Tree Representation of Prefix Codes I: 3-47

�

�

�

�

�

�

�

�
�

	

(0)

(1)

00

01

10

(11)
110

(111) 1110

1111

The codewords are those residing on the leaves,

which in this case are 00, 01, 10, 110, 1110 and 1111.
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Prefix
codes

Uniquely
decodable codes

Non-singular
codes
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Theorem 3.25 (Kraft inequality for prefix codes) There exists aD-ary

nth-order prefix code for a discrete source {Xn}∞n=1 with alphabet X if, and only

if, the codewords of length 	m, m = 1, . . . ,M , satisfy the Kraft inequality, where

M = |X |n.
Proof: Without loss of generality, we provide the proof for the case of D = 2

(binary codes).

1. [The forward part] Prefix codes satisfy the Kraft inequality.

The codewords of a prefix code can always be put on a tree. Pick up a length

	max:= max
1≤m≤M

	m.

• A tree has originally 2	max nodes on level 	max.

• Each codeword of length 	m obstructs 2	max−	m nodes on level 	max.

– When any node is chosen as a codeword, all its children will be excluded

from being codewords.

– There are exactly 2	max−	m excluded nodes on level 	max of the tree. We

therefore say that each codeword of length 	m obstructs 2	max−	m nodes on

level 	max.
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• Note that no two codewords obstruct the same nodes on level 	max. Hence the

number of totally obstructed codewords on level 	max should be no larger than

2	max, i.e.,
M∑

m=1

2	max−	m ≤ 2	max,

which immediately implies the Kraft inequality:

M∑
m=1

2−	m ≤ 1.

This part can also be proven by stating the fact that a prefix code is a uniquely

decodable code. The objective of adding this proof is to illustrate the characteristics

of a tree-like prefix code.
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2. [The converse part] Kraft inequality implies the existence of a prefix code.

Suppose that 	1, 	2, . . . , 	M satisfy the Kraft inequality. We will show that there

exists a binary tree with M selected nodes where the ith node resides on level 	i.

• Let ni be the number of nodes (among the M nodes) residing on level i

(namely, ni is the number of codewords with length i or ni = |{m : 	m = i}|),
and let

	max:= max
1≤m≤M

	m.

• Then from the Kraft inequality, we have

n12
−1 + n22

−2 + · · · + n	max2
−	max ≤ 1.

• The above inequality can be re-written in a form that is more suitable for this

proof as:

n12
−1 ≤ 1

n12
−1 + n22

−2 ≤ 1

· · ·
n12

−1 + n22
−2 + · · · + n	max2

−	max ≤ 1.



Prefix Code to Kraft Inequality I: 3-52

Hence,

n1 ≤ 2

n2 ≤ 22 − n12
1

· · ·
n	max ≤ 2	max − n12

	max−1 − · · · − n	max−12
1,

which can be interpreted in terms of a tree model as:

– the 1st inequality says that the number of codewords of length 1 is less than

the available number of nodes on the 1st level, which is 2.

– The 2nd inequality says that the number of codewords of length 2 is less than

the total number of nodes on the 2nd level, which is 22, minus the number

of nodes obstructed by the 1st level nodes already occupied by codewords.

– The succeeding inequalities demonstrate the availability of a sufficient num-

ber of nodes at each level after the nodes blocked by shorter length code-

words have been removed.

– Because this is true at every codeword length up to the maximum codeword

length, the assertion of the theorem is proved.
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Corollary 3.26 A uniquely decodable D-ary n-th order code can always be re-

placed by a D-ary n-th order prefix code with the same average codeword length

(and hence the same average code rate).

Proof: Uniquely decodability

⇒ the Kraft inequality holds.

⇒ [The converse part] Kraft inequality implies the existence of a prefix

code.

Theorem 3.27 Consider a discrete memoryless source {Xn}∞n=1.

1. For any D-ary n-th order prefix code for the source, the average code rate is

no less than the source entropy HD(X).

2. There must exist a D-ary n-th order prefix code for the source whose average

code rate is no greater than HD(X) + 1
n
, namely,

Rn:=
1

n

∑
xn∈X n

PXn(xn)	(cxn) ≤ HD(X) +
1

n
, (3.3.1)

where cxn is the codeword for sourceword xn, and 	(cxn) is the length of code-

word cxn.
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Proof: A prefix code is uniquely decodable, and hence it directly follows from

Theorem 3.22 that its average code rate is no less than the source entropy.

To prove the second part, we can design a prefix code satisfying both (3.3.1) and

the Kraft inequality, which immediately implies the existence of the desired code

by Theorem 3.25.

• Choose the codeword length for sourceword xn as

	(cxn) = �− logD PXn(xn)� + 1. (3.3.2)

Then

D−	(cxn) ≤ PXn(xn).

• Summing both sides over all source symbols, we obtain∑
xn∈X n

D−	(cxn) ≤ 1,

which is exactly the Kraft inequality.
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• On the other hand, (3.3.2) implies

	(cxn) ≤ − logD PXn(xn) + 1,

which in turn implies∑
xn∈X n

PXn(xn)	(cxn) ≤
∑

xn∈X n

[− PXn(xn) logD PXn(xn)
]
+

∑
xn∈X n

PXn(xn)

= HD(X
n) + 1 = nHD(X) + 1,

where the last equality holds since the source is memoryless.
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E.g. A memoryless source with source alphabet

{A,B,C}
and probability distribution

PX(A) = 0.8, PX(B) = PX(C) = 0.1

has entropy being equal to

−0.8 · log2 0.8− 0.1 · log2 0.1− 0.1 · log2 0.1 = 0.92 bits.

• One of the best binary first-order or single-letter encoding (with n = 1) prefix

codes for this source is given by

c(A) = 0, c(B) = 10 and c(C) = 11,

where c(·) is the encoding function.

• Then the resultant average code rate for this code is

0.8× 1 + 0.2× 2 = 1.2 bits ≥ 0.92 bits.

The optimal variable-length code for a specific source X usually has average code-

word length strictly larger than the source entropy.
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• Now if we consider a second-order (with n = 2) prefix code by encoding two

consecutive source symbols at a time, the new source alphabet becomes

{AA,AB,AC,BA,BB,BC,CA,CB,CC},
and the resultant probability distribution is calculated by

(∀ x1, x2 ∈ {A,B,C}) PX2(x1, x2) = PX(x1)PX(x2)

as the source is memoryless. Then one of the best binary prefix codes for the

source is given by

c(AA) = 0

c(AB) = 100

c(AC) = 101

c(BA) = 110

c(BB) = 111100

c(BC) = 111101

c(CA) = 1110

c(CB) = 111110

c(CC) = 111111.
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• The average code rate of this code now becomes

0.64(1× 1) + 0.08(3× 3 + 4× 1) + 0.01(6× 4)

2
= 0.96 bits,

which is closer to the source entropy of 0.92 bits.

• As n increases, the average code rate will be brought closer to the source

entropy.
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Theorem 3.28 (Lossless variable-length source coding theorem) Fix in-

teger D > 1 and consider a discrete memoryless source {Xn}∞n=1 with distribution

PX and entropy HD(X) (measured in D-ary units). Then the following hold.

• Forward part (achievability): For any ε > 0, there exists a D-ary n-th order

prefix (hence uniquely decodable) code

f : X n → {0, 1, · · · , D − 1}∗

for the source with an average code rate Rn satisfying

Rn ≤ HD(X) + ε

for n sufficiently large.

• Converse part: Every uniquely decodable code

f : X n → {0, 1, · · · , D − 1}∗

for the source has an average code rate Rn ≥ HD(X).

Proof: The forward part follows directly from Theorem 3.27 by choosing n large

enough such that 1/n < ε, and the converse part is already given by Theorem 3.22

(cf. Slide I: 3-43).
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Observation 3.29 Theorem 3.28 actually also holds for the class of stationary

sources by replacing the source entropy HD(X) with the source entropy rate

HD(X ) := lim
n→∞

1

n
HD(X

n),

measured in D-ary units. The proof is very similar to the proofs of Theorems 3.22

and 3.27 with slight modifications (such as using the fact that 1
nHD(X

n) is nonin-

creasing with n for stationary sources).

Observation 3.30 (Rényi’s entropy and lossless data compression)

• Implicit in Theorem 3.28, the use of average codeword length as a performance

criterion is the assumption that the cost of compression varies linearly with

codeword length.

• This is not always the case as in some applications, where the processing cost of

decoding may be elevated and buffer overflows caused by long codewords can

cause problems, an exponential cost/penalty function for codeword lengths

can be more appropriate than a linear cost function [Campbell’65, Jelinek’68,

Blumer & McEliece ’88].



Final Note on Prefix Codes I: 3-61

• Given a D-ary n-th order VLC C
f : X n → {0, 1, . . . , D − 1}∗

for a discrete source {Xi}∞n=1 with alphabet X and distribution PXn, Campbell

considers the following exponential cost function, called the average codeword

length of order t:

Ln(t):=
1

t
logD

( ∑
xn∈X n

PXn(xn)Dt·	(cxn)
)
,

where t is a chosen positive constant, cxn = f(xn) is the codeword associated

with sourceword xn and 	(·) is the length of cxn.

• In the limiting case when t → 0,

Ln(t) →
∑
x∈X

PX(x)	(cx) = 	

and we recover the average codeword length, as desired.

• Also, when t → ∞, Ln(t) → maxx∈X 	(cx), which is the maximum codeword

length for all codewords in C.
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Theorem 3.31 (Lossless source coding theorem under exponential

costs) Consider a DMS {Xn} with Rényi entropy in D-ary units and of order α

given by

Hα(X) =
1

1− α
logD

(∑
x∈X

Pα
X(x)

)
.

Fixing t > 0 and setting α = 1
1+t

, the following hold.

• For any ε > 0, there exists a D-ary n-th order uniquely decodable code

f : X n → {0, 1, . . . , D− 1}∗ for the source with an average code rate of order

t satisfying
1

n
Ln(t) ≤ Hα(X) + ε

for n sufficiently large.

• Conversely, it is not possible to find a uniquely decodable code whose average

code rate of order t is less than Hα(X).
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(A) Huffman Codes: Optimal Variable-Length Codes

Lemma 3.32 Let C be an optimal binary prefix code with codeword lengths 	i, i =

1, · · · ,M , for a source with alphabet X = {a1, . . . , aM} and symbol probabilities

p1, . . . , pM . We assume, without loss of generality, that

p1 ≥ p2 ≥ p3 ≥ · · · ≥ pM,

and that any group of source symbols with identical probability is listed in order of

increasing codeword length (i.e., if pi = pi+1 = · · · = pi+s, then 	i ≤ 	i+1 ≤ · · · ≤
	i+s). Then the following properties hold.

1. Higher probability source symbols have shorter codewords, i.e., pi > pj implies

	i ≤ 	j, for i, j = 1, · · · ,M .

2. The two least probable source symbols have codewords of equal length: 	M−1 =

	M .

3. Among the codewords of length 	M , two of the codewords are identical except

in the last digit.
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Proof:

1) If pi > pj and 	i > 	j, then it is possible to construct a better code C′ by
interchanging (“swapping”) codewords i and j of C, since

	(C′)− 	(C) = pi	j + pj	i − (pi	i + pj	j)

= (pi − pj)(	j − 	i)

< 0.

Hence code C′ is better than code C, contradicting the fact that C is optimal.

2) We first know that 	M−1 ≤ 	M , since:

• If pM−1 > pM , then 	M−1 ≤ 	M by result 1) above.

• If pM−1 = pM , then 	M−1 ≤ 	M by our assumption about the ordering of

codewords for source symbols with identical probability.

Now, if 	M−1 < 	M , we may delete the last digit of codeword M , and the

deletion cannot result in another codeword since C is a prefix code. Thus the

deletion forms a new prefix code with a better average codeword length than C,
contradicting the fact that C is optimal. Hence, we must have that 	M−1 = 	M .
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3) Among the codewords of length 	M , if no two codewords agree in all digits

except the last, then we may delete the last digit in all such codewords to

obtain a better codeword.
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Lemma 3.33 (Huffman) Consider a source with alphabet X = {a1, . . . , aM}
and symbol probabilities p1, . . . , pM such that

p1 ≥ p2 ≥ · · · ≥ pM.

Consider the reduced source alphabet Y obtained from X by combining the two

least likely source symbols aM−1 and aM into an equivalent symbol aM−1,M with

probability pM−1 + pM . Suppose that C′, given by f ′ : Y → {0, 1}∗, is an optimal

code for the reduced source Y . We now construct a code C, f : X → {0, 1}∗, for
the original source X as follows:

• The codewords for symbols a1, a2, · · · , aM−2 are exactly the same as the cor-

responding codewords in C′:

f(a1) = f ′(a1), f(a2) = f ′(a2), · · · , f(aM−2) = f ′(aM−2).

• The codewords associated with symbols aM−1 and aM are formed by appending

a “0” and a “1”, respectively, to the codeword f ′(aM−1,M ) associated with the

letter aM−1,M in C′:

f(aM−1) = [f ′(aM−1,M )0] and f(aM) = [f ′(aM−1,M)1].

Then code C is optimal for the original source X .
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Huffman encoding algorithm:

1. Repeatedly apply the above lemma until one is left with a reduced source with

two symbols. An optimal binary prefix code for this source consists of the

codewords 0 and 1.

2. Then proceed backwards, constructing (as outlined in the above lemma) opti-

mal codes for each reduced source until one arrives at the original source.
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Example 3.34 Consider a source with alphabet {1, 2, 3, 4, 5, 6} and symbol prob-
abilities 0.25, 0.25, 0.25, 0.1, 0.1 and 0.05, respectively.

• Step 1:

0.05

0.1

0.1

0.25

0.25

0.25

0.15

0.1

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.25

0.25

0.5

0.5 1.0
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• Step 2:

0.05

0.1

0.1

0.25

0.25

0.25

(1111)

(1110)

(110)

(10)

(01)

(00)

0.15

0.1

0.25

0.25

0.25

111

110

10

01

00

0.25

0.25

0.25

0.25

11

10

01

00

0.5

0.25

0.25

1

01

00

0.5

0.5

1

0
1.0

By following the Huffman encoding procedure as shown in above figures, we obtain

the Huffman code as

00, 01, 10, 110, 1110, 1111.
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Observation 3.35

• Huffman codes are not unique for a given source distribution;

– e.g., by inverting all the code bits of a Huffman code, one gets another

Huffman code,

– or by resolving ties in different ways in the Huffman algorithm, one also

obtains different Huffman codes.

• One can obtain optimal codes that are not Huffman codes;

– e.g., by interchanging two codewords of the same length of a Huffman code,

one may get another non-Huffman (but optimal) code.

– Furthermore, one can construct an optimal suffix(-free) code (i.e., a code

in which no codeword can be a suffix of another codeword) from a Huffman

code by reversing the Huffman codewords.

– Binary Huffman codes always satisfy the Kraft inequality with equality

(their code tree is “saturated”).
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• Any n-th order binary Huffman code f : X n → {0, 1}∗ for a stationary source

{Xn}∞n=1 with finite alphabet X satisfies:

H(X ) ≤ 1

n
H(Xn) ≤ Rn <

1

n
H(Xn) +

1

n
.

Thus, as n increases to infinity, Rn → H(X ) = limn→∞ 1
nH(Xn) but the

complexity as well as encoding-decoding delay grows exponentially with n.

• Finally, note that non-binary (i.e., for D > 2) Huffman codes can also be

constructed in a mostly similar way as for the case of binary Huffman codes by

designing a D-ary tree and iteratively applying Lemma 3.33, where now the D

least likely source symbols are combined at each stage.

– The only difference from the case of binary Huffman codes is that we have

to ensure that we are ultimately left with D symbols at the last stage of

the algorithm to guarantee the code’s optimality.

– This is remedied by expanding the original source alphabet X by adding

“dummy” symbols (each with zero probability) so that the alphabet size

of the expanded source |X ′| is the smallest positive integer greater than or

equal to |X | with
|X ′| = 1 (modulo D − 1) (For D > 2).



3.3.3 Examples of Binary Prefix Codes I: 3-72

– In fact, we wish

|X ′| = D + k(D − 1) for some integer k,

which trivially holds for D = 2.

– For example, if |X | = 6 and D = 3 (ternary codes), we obtain that

|X ′| = 7,

meaning that we need to enlarge the original source X by adding one

dummy (zero-probability) source symbol.
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Generalized Huffman codes under exponential costs:

• When the lossless compression problem allows for exponential costs, a

straightforward generalization of Huffman’s algorithm, which minimizes

the average code rate of order t, 1
n
Ln(t), can be obtained.

• More specifically, while in Huffman’s algorithm, each new node (for a com-

bined or equivalent symbol) is assigned weight pi + pj, where pi and pj
are the lowest weights (probabilities) among the available nodes, in the

generalized algorithm, each new node is assigned weight 2t(pi + pj).

• With this simple modification, one can directly construct such generalized

Huffman codes.



Historical Note I: 3-74

David A. Huffman had finished his B.S. and M.S. in electrical engineering and

also served in the U.S. Navy before he became a Ph.D. student at the Mas-

sachusetts Institute of Technology (MIT). There, in 1951, he attended an in-

formation theory class taught by Prof. Robert M. Fano who was working at

that time together with Claude E. Shannon on finding the most efficient code,

but could not solve the problem. So Fano assigned the question to his students

in the information theory class as a term paper. Huffman tried a long time

and was about to give up when he had the sudden inspiration to start building

the tree backwards from leaves to root instead from root to leaves. Once he

had understood this, he was quickly able to prove that his code was the most

efficient one. Naturally, Huffman’s term paper was later on published.

Huffman became a faculty member of MIT in 1953, and later in 1967 he changed

to the University of California, Santa Cruz, where he stayed until his retirement

in 1994. He won many awards for his accomplishments like, e.g., in 1999 the

Richard Hamming Medal from the Institute of Electrical and Electronics Engi-

neers (IEEE). Huffman died in 1999.
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Assume X = {1, . . . ,M} and PX(x) > 0 for all x ∈ X .

Note that it is not guaranteed that

PX(1) ≥ PX(2) ≥ · · · ≥ PX(M).

Define

F (x):=
∑
a≤x

PX(a),

and

F̄ (x):=
∑
a<x

PX(a) +
1

2
PX(x).

Encoder: For any x ∈ X , express F̄ (x) in decimal binary form, say

F̄ (x) = .c1c2 . . . ck . . . ,

and take the first k (fractional) bits as the codeword of source symbol x, i.e.,

(c1, c2, . . . , ck),

where

k:=�log2(1/PX(x))� + 1.
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Decoder: Given codeword (c1, . . . , ck), compute the cumulative sum of F (·) start-
ing from the smallest element in {1, 2, . . . ,M} until the first x satisfying

F (x) ≥ .c1 . . . ck.

Then x should be the original source symbol.

F̄ (x) =

{
F (x), x 	= 1, 2, 3, 4;

F (x)− 1
2PX(x), x = 1, 2, 3, 4

PX(x) =



0.1, x = 1

0.3, x = 2

0.2, x = 3

0.4, x = 4

Ave codeword length �̄ = 3.4 < 1.84644︸ ︷︷ ︸
H(X)

+2

�




1 2 3 4
(k = 5) (k = 3) (k = 4) (k = 3)

0.1

0.4

0.6

1

�

�

�

�

0.05 = (0.00001 . . .)2

0.25 = (0.010 . . .)2

0.5 = (0.1000 . . .)2

0.8 = (0.110 . . .)2

×0.03125

×

×

× 0.75
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Proof of decodability: For any number a ∈ [0, 1], let [a]k denote the operation that

chops the binary representation of a after k bits (i.e., removing the (k + 1)th bit,

the (k + 2)th bit, etc). Then

F̄ (x)− [
F̄ (x)

]
k
<

1

2k
.

Since k = �log2(1/PX(x))�+1 ≥ log2(1/PX(x))+1, we have for x ∈ {1, 2, . . . ,M},
1

2k
≤ 1

2
PX(x)

=

[∑
a<x

PX(a) +
PX(x)

2

]
−

∑
a≤x−1

PX(a)

= F̄ (x)− F (x− 1).

Hence,

F (x− 1) =

[
F (x− 1) +

1

2k

]
− 1

2k
≤ F̄ (x)− 1

2k
<

[
F̄ (x)

]
k
.

In addition,

F (x) > F̄ (x) ≥ [
F̄ (x)

]
k
.

Consequently, x is the first element satisfying

F (x) ≥ [
F̄ (x)

]
k
= .c1c2 . . . ck.
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Average codeword length:

	̄ =
∑
x∈X

PX(x)

⌈
log2

1

PX(x)

⌉
+ 1

<
∑
x∈X

PX(x) log2
1

PX(x)
+ 2

= (H(X) + 2) bits.

Observation 3.36 The Shannon-Fano-Elias code is a prefix code.
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Historical Note about Fano code

• Fano code: The Fano code is generated according to the following algorithm:

1. Arrange the symbols in order of nonincreasing probability.

2. Divide the list of ordered symbols into two parts, with the total probability

of the left part being as close to the total probability of the right part as

possible.

3. Assign the binary digit 0 to the left part of the list, and the digit 1 to the

right part.

4. Recursively apply Step 2 and Step 3 to each of the two parts, subdividing

into further parts and adding bits to the codewords until each symbol is

the single member of a part.

Note that effectively this algorithm constructs a tree. Hence, the Fano code is

a prefix code.
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Exemplified construction of Fano code for alphabet of size 5 and probability

distributions 0.35, 0.25, 0.15, 0.15 and 0.1, respectively.

p1 p2 p3 p4 p5
0.35 0.25 0.15 0.15 0.1

0.6 0.4

0 1

0.35 0.25 0.15 0.15 0.1

0.15 0.25

0 1 0 1

0.15 0.1

0 1

00 01 10 110 111

Remarks

– In the literature, the Fano code is usually known as the Shannon-Fano

code, even though it is an invention of Professor Robert Fano from MIT

and not of Shannon. (Another example for such mis-naming is Stein’s

Lemma, which is not the invention of Prof. Charles M. Stein.)
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– To make things even worse, there exists another code that is also known as

Shannon-Fano code, but actually should be called Shannon code because

it was proposed by Shannon.

∗ Under the premise that the symbols must be in order of nonincreasing

probability, this Shannon code is exactly the Shannon-Fano-Elias code

just introduced with

k:=�log2(1/PX(x))�.
Note that without symbols being arranged in order of nonincreasing

probability, a larger k should be used:

k:=�log2(1/PX(x))� + 1.

– The Kraft Inequality is still satisfied for one less k:

∑
x∈X

2
−
⌈
log2

1
PX (x)

⌉
≤

∑
x∈X

2
− log2

1
PX (x) =

M∑
i=1

PX(x) = 1.

So the existence of such prefix code (with k being one less) is priori known.

Shannon code substantiates this prognosis.



(B) Shannon-Fano-Elias Codes I: 3-82

– Shannon code performs similarly to the Fano code, but Fano code is in

general slightly better.

– The idea of Shannon-Fano-Elias code has been additionally credited to the

late Professor Peter Elias from MIT (hence the name Shannon-Fano-Elias

coding), but actually Elias denied this. The concept has probably come

from Shannon himself during a talk that he gave at MIT.
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• The Huffman codes and Shannon-Fano-Elias codes can be constructed when

the source statistics is known.

• If the source statistics is unknown, is it possible to find a code whose average

codeword length is arbitrarily close to entropy? Yes, if “asymptotic achievabil-

ity” is allowed.
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• Let the source alphabet be X :={a1, . . . , aM}.
• Define

N(ai|xn):=number of ai appearances in x1, x2, . . . , xn.

• Then the (current) relative frequency of ai is

N(ai|xn)
n

.

• Let cn(ai) denote the Huffman codeword of source symbol ai with respect to

distribution [
N(a1|xn)

n
,
N(a2|xn)

n
, · · · , N(aJ |xn)

n

]
.
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Now suppose that xn+1 = aj.

1. The codeword cn(aj) is outputted.

2. Update the relative frequency for each source outcome according to:

N(aj|xn+1)

n + 1
=

n× [N(aj|xn)/n] + 1

n + 1

and
N(ai|xn+1)

n + 1
=

n× [N(ai|xn)/n]
n + 1

for i 	= j.
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Definition 3.37 (Sibling property) A prefix code is said to have the sibling

property if its codetree satisfies:

1. every node in the code-tree (except for the root node) has a sibling (i.e., the

code tree is saturated), and

2. the node can be listed in nondecreasing order of probabilities with each node

being adjacent to its sibling.

Observation 3.38 A prefix code is a Huffman code if, and only if, it satisfies the

sibling property.
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E.g.
a1(00, 3/8)

a2(01, 1/4)

a3(100, 1/8)

a4(101, 1/8)

a5(110, 1/16)

a6(111, 1/16)

b11(1/8)

b10(1/4)

b0(5/8)

b1(3/8)

8/8

b0

(
5

8

)
≥ b1

(
3

8

)
︸ ︷︷ ︸

sibling pair

≥ a1

(
3

8

)
≥ a2

(
1

4

)
︸ ︷︷ ︸

sibling pair

≥ b10

(
1

4

)
≥ b11

(
1

8

)
︸ ︷︷ ︸

sibling pair

≥ a3

(
1

8

)
≥ a4

(
1

8

)
︸ ︷︷ ︸

sibling pair

≥ a5

(
1

16

)
≥ a6

(
1

16

)
︸ ︷︷ ︸

sibling pair
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E.g. (cont.)

• If the next observation (n = 17) is a3, then its codeword 100 is outputted.

• The estimated distribution is updated as

P
(17)

X̂
(a1) =

16× (3/8)

17
=

6

17
, P

(17)

X̂
(a2) =

16× (1/4)

17
=

4

17

P
(17)

X̂
(a3) =

16× (1/8)+1

17
=

3

17
, P

(17)

X̂
(a4) =

16× (1/8)

17
=

2

17

P
(17)

X̂
(a5) =

16× [1/(16)]

17
=

1

17
, P

(17)

X̂
(a6) =

16× [1/(16)]

17
=

1

17
.

The sibling property is no longer satisfied; hence, the Huffman codetree needs

to be updated.
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a1(00, 6/17)

a2(01, 4/17)

a3(100, 3/17)

a4(101, 2/17)

a5(110, 1/17)

a6(111, 1/17)

b11(2/17)

b10(5/17)

b0(10/17)

b1(7/17)

17/17

b0

(
10

17

)
≥ b1

(
7

17

)
︸ ︷︷ ︸

sibling pair

≥ a1

(
6

17

)
≥ b10

(
5

17

)

≥ a2

(
4

17

)
≥ a3

(
3

17

)
≥ a4

(
2

17

)
︸ ︷︷ ︸

sibling pair

≥ b11

(
2

17

)
≥ a5

(
1

17

)
≥ a6

(
1

17

)
︸ ︷︷ ︸

sibling pair

a1 is not adjacent to its sibling a2.
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E.g. (cont.) The updated Huffman codetree.

a1(10, 6/17)

a2(00, 4/17)

a3(01, 3/17)

a4(110, 2/17)

a5(1110, 1/17)

a6(1111, 1/17)

b111(2/17)

b11(4/17)

b0(7/17)
b1(10/17)

17/17

b1

(
10

17

)
≥ b0

(
7

17

)
︸ ︷︷ ︸

sibling pair

≥ a1

(
6

17

)
≥ b11

(
4

17

)
︸ ︷︷ ︸

sibling pair

≥ a2

(
4

17

)
≥ a3

(
3

17

)
︸ ︷︷ ︸

sibling pair

≥ a4

(
2

17

)
≥ b111

(
2

17

)
︸ ︷︷ ︸

sibling pair

≥ a5

(
1

17

)
≥ a6

(
1

17

)
︸ ︷︷ ︸

sibling pair
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Encoder:

1. Parse the input sequence into strings that have never appeared before.

2. Let L be the number of distinct strings of the parsed source. Then we need

log2L bits to index these strings (starting from one). The codeword of each

string is the index of its prefix concatenated with the last bit in its source string.

E.g.

• The input sequence is 1011010100010;

• Step 1:

– The algorithm first grabs the first letter 1 and finds that it has never ap-

peared before. So 1 is the first string.

– Then, the algorithm scoops the second letter 0 and also determines that it

has not appeared before, and hence, put it to be the next string.

– The algorithm moves on to the next letter 1 and finds that this string has

appeared. Hence, it hits another letter 1 and yields a new string 11, and

so on.

– Under this procedure, the source sequence is parsed into the strings

1, 0, 11, 01, 010, 00, 10.
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• Step 2:

– We need �log2(L)� + 1 bits to index these strings (starting from one). In

the above example, �log2(L)� + 1 = 3. So the indices will be:

parsed source : 1 0 11 01 010 00 10

index : 001 010 011 100 101 110 111

– The codeword of each string is then the index of its prefix concatenated

with the last bit in its source string. For example, the codeword of source

string 010 will be the index of 01, i.e., 100, concatenated with the last bit

of the source string, i.e., 0.

• The resultant codeword string is:

(000, 1)(000, 0)(001, 1)(010, 1)(100, 0)(010, 0)(001, 0)

or equivalently,

0001000000110101100001000010.

Theorem 3.39 The Lempel-Ziv algorithm asymptotically achieves the entropy

rate of any stationary ergodic source (with unknown statistics).
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• It is also named as the Lempel-Ziv-Welch compression algorithm after Welch

developed an efficient version of the original Lempel-Ziv technique in 1984.

• Note that the conventional Lempel-Ziv encoder requires two passes: the first

pass to decide L, and the second pass to generate the codewords.

• The algorithm, however, can be modified so that it requires only one pass over

the entire source string.

• Also, note that the above algorithm uses an equal number of bits to all the

location indices, which can also be relaxed by proper modification.



Key Notes I: 3-94

• Average “per-source-symbol” codeword length versus “per-source-symbol” en-

tropy

• Categories of codes

– Fixed-length codes (and their relation with segmentation or blocking)

∗ Block codes

∗ Fixed-length tree codes

– Variable-length codes

∗ Non-singular codes

∗ Uniquely decodable codes

∗ Prefix codes

• AEP theorem

• Weakly δ-typical set and Shannon-McMillan-Breiman theorem

• Shannon’s source coding theorem and its converse theorem for DMS



Key Notes I: 3-95

• Entropy rate and the proof of its existence for stationary sources

• Shannon’s source coding theorem and its converse theorem for stationary-

ergodic sources

• Redundancy of sources

• Kraft inequality and its relation to uniquely decodable codes, as well as prefix

codes

• Source coding theorem for variable-length codes

• Huffman codes and adaptive Huffman codes

• Shannon-Fano-Elias codes

• Lempel-Ziv codes


