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2.1.1 Self-information I: 2-1

• Self-information, denoted by I(E), is the information you gain by learning an

event E has occurred.

• What properties should I(E) have?

1. I(E) is a decreasing function of pE := Pr(E), i.e., I(E) = I(pE).

– The less likely event E is, the more information is gained when one

learns it has occurred.

– Here, I(·) is a function defined over the event space, and I(·) is a function
defined over [0, 1].

2. I(pE) is continuous in pE.

– Intuitively, one should expect that a small change in pE corresponds to

a small change in the amount of information carried by E.

3. If E1 ⊥⊥ E2, where ⊥⊥≡ independence, then I(E1∩E2) = I(E1)+I(E2),

or equivalently, I(pE1 × pE2) = I(pE1) + I(pE2).

– The amount of information one gains by learning that two independent

events have jointly occurred should be equal to the sum of the amounts

of information of each individual event.

4. I(E) ≥ 0. (Optional but automatically satisfied for the one-and-only

function that satisfies the previous three properties.)



2.1.1 Self-information I: 2-2

Theorem 2.1 The only function defined over p ∈ (0, 1] and satisfying

1. I(p) is monotonically decreasing in p;

2. I(p) is a continuous function of p for 0<p ≤ 1;

3. I(p1 × p2) = I(p1) + I(p2);

is I(p) = −c · logb(p), where c is a positive constant and the base b of the logarithm

is any number larger than one.

Proof: The proof is completed in three steps.

Step 1: I(p) = −c · logb(p) is true for p = 1/n for any positive integer n.

Step 2: I(p) = −c · logb(p) is true for positive rational number p.
Step 3: I(p) = −c · logb(p) is true for real-valued p.



2.1.1 Self-information I: 2-3

Step 1: Claim. For n = 1, 2, 3, . . .,
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.

Proof:

(n = 1) Condition 3 ⇒ I(1) = I(1) + I(1) ⇒ I(1) = 0 = −c · logb(1).
(n > 1) For any positive integer r, ∃ non-negative integer k such that

nk ≤ 2r < nk+1 ⇒ I
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)
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⇒ By Condition 3,
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Hence, since I(1/n) > I(1) = 0,

k

r
≤ I(1/2)

I(1/n)
≤ k + 1

r
.

On the other hand, by the monotonity of the logarithm, we obtain

logb n
k ≤ logb 2

r ≤ logb n
k+1 ⇔ k

r
≤ logb(2)

logb(n)
≤ k + 1

r
.



2.1.1 Self-information I: 2-4

Therefore, ∣∣∣∣ logb(2)logb(n)
− I(1/2)

I(1/n)

∣∣∣∣ < 1

r
.

Since n > 1 is fixed, and r can be made arbitrarily large, we can let r → ∞
to get:

I

(
1

n

)
=

I(1/2)

logb(2)
· logb(n) = −c · logb

(
1

n

)
,

where c = I(1/2)/ logb(2) > 0. This completes the proof of the claim.

Step 2: Claim. I(p) = −c · logb(p) for positive rational number p.
Proof: A rational number p can be represented by p = r/s, where r and s are

both positive integers. Then Condition 3 gives that
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which, from Step 1, implies that

I(p) = I

(
r

s

)
= I

(
1

s

)
− I

(
1

r

)
= c · logb s− c · logb r = −c · logb p.

Step 3: For any p ∈ [0, 1], it follows by continuity (i.e., Condition 2) that

I(p) = lima↑p, a rational I(a) = limb↓p, b rational I(b) = −c · logb(p). �



Uncertainty and information I: 2-5

Summary:

• After observing event E with Pr(E) = p, you gain information I(p).

• Equivalently, after observing event E with Pr(E) = p, you lose uncertainty

I(p).

• The amount of information gained = The amount of uncertainty lost



2.1.2 Entropy I: 2-6

• Self-information for outcome x (or elementary event {X = x})

I(x) := logb
1

PX(x)
,

where the constant c in the previous theorem is chosen to be 1.

• Entropy = expected self-information

H(X) := E[I(X)] =
∑
x∈X

PX(x) logb
1

PX(x)
.

– Units of entropy

∗ log2 = bits

∗ log = loge = ln = nats

– Example. Binary entropy function.

H(X) = −p · log p− (1− p) log(1− p) nats

= −p · log2 p− (1− p) log2(1− p) bits

for PX(1) = 1− PX(0) = p.



2.1.3 Properties of entropy I: 2-7

Definition 2.2 (Entropy) The entropy of a discrete random variable X with

pmf PX(·) is denoted by H(X) or H(PX) and defined by

H(X):=−
∑
x∈X

PX(x) · log2 PX(x) (bits).

Assumption. The alphabet X of the random variable X is finite.

Lemma 2.4 (Fundamental inequality (FI)) For any x > 0 and D > 1,

we have that

logD(x) ≤ logD(e) · (x− 1)

with equality if and only if (iff) x = 1.

Lemma 2.5 (Non-negativity) H(X) ≥ 0. Equality holds iff X is determin-

istic (when X is deterministic, the uncertainty of X is obviously zero).

Proof: 0 ≤ PX(x) ≤ 1 implies that log2[1/PX(x)] ≥ 0 for every x ∈ X . Hence,

H(X) =
∑
x∈X

PX(x) log2
1

PX(x)
≥ 0,

with equality holding iff PX(x) = 1 for some x ∈ X . �



2.1.3 Properties of entropy I: 2-8

Comment: When X is deterministic, the uncertainty of X is obviously zero.

Lemma 2.6 (Upper bound on entropy) If a random variable X takes val-

ues from a finite set X , then

H(X) ≤ log2 |X |,
where |X | denotes the size of the set X . Equality holds iff X is equiprobable or

uniformly distributed over X (i.e., PX(x) =
1
|X | for all x ∈ X ).

• Interpretation: Uniform distribution maximizes entropy.

• Hint of proof: Subtract one side of the inequality by the other side, and apply

the fundamental inequality or log-sum inequality.



2.1.3 Properties of entropy I: 2-9

Proof:

log2 |X | −H(X) = log2 |X | ×
(∑

x∈X
PX(x)

)
−

(
−

∑
x∈X

PX(x) log2 PX(x)

)
=

∑
x∈X

PX(x)× log2 |X | +
∑
x∈X

PX(x) log2 PX(x)

=
∑
x∈X

PX(x) log2
(|X | × PX(x)

)
≥

∑
x∈X

PX(x) · log2(e)
(
1− 1

|X | × PX(x)

)
= log2(e)

∑
x∈X

(
PX(x)− 1

|X |
)

= log2(e) · (1− 1) = 0

where the inequality follows from the FI Lemma, with equality iff (∀ x ∈ X ),

|X | × PX(x) = 1, which means PX(·) is a uniform distribution on X . �



2.1.3 Properties of entropy I: 2-10

Lemma 2.7 (Log-sum inequality) For non-negative numbers, a1, a2, . . ., an
and b1, b2, . . ., bn,

n∑
i=1

(
ai logD

ai
bi

)
≥

(
n∑

i=1

ai

)
logD

∑n
i=1 ai∑n
i=1 bi

(2.1.1)

with equality holding iff (∀ 1 ≤ i ≤ n) (ai/bi) = (a1/b1), a constant independent

of i.

(By convention, 0 · logD(0) = 0, 0 · logD(0/0) = 0 and a · logD(a/0) = ∞ if a > 0.

This can be justified by “continuity.”)

• Comment: A tip for memorizing the log-sum inequality: log-first ≥ sum-first.

• Hint of proof: Subtract one side of the inequality by the other side, and apply

the fundamental inequality.



2.1.4 Joint entropy and conditional entropy I: 2-11

Definition 2.8 (Joint entropy) The joint entropy H(X, Y ) of random vari-

ables (X, Y ) is defined by

H(X, Y ) := −
∑

(x,y)∈X×Y
PX,Y (x, y) · log2 PX,Y (x, y)

= E[− log2 PX,Y (X, Y )].

Definition 2.9 (Conditional entropy) Given two jointly distributed random

variables X and Y , the conditional entropy H(Y |X) of Y given X is defined by

H(Y |X):=
∑
x∈X

PX(x)

−
∑
y∈Y

PY |X(y|x) · log2 PY |X(y|x)
 (2.1.5)

where PY |X(·|·) is the conditional pmf of Y given X .



2.1.4 Joint entropy and conditional entropy I: 2-12

Theorem 2.10 (Chain rule for entropy)

H(X, Y ) = H(X) +H(Y |X). (2.1.6)

Proof: Since

PX,Y (x, y) = PX(x)PY |X(y|x),
we directly obtain that

H(X, Y ) = E[− log2 PX,Y (X, Y )]

= E[− log2 PX(X)] + E[− log2 PY |X(Y |X)]

= H(X) +H(Y |X).

�

Corollary 2.11 (Chain rule for conditional entropy)

H(X, Y |Z) = H(X|Z) +H(Y |X,Z).



2.1.5 Properties of joint and conditional entropy I: 2-13

Lemma 2.12 (Conditioning never increases entropy) Side information

Y decreases the uncertainty about X :

H(X|Y ) ≤ H(X)

with equality holding iffX and Y are independent. In other words, “conditioning”

reduces entropy.

• Interpretation: Only when X is independent of Y , the pre-given Y will be of

no help in determining X .

• Hint of proof: Subtract one side of the inequality by the other side, and apply

the fundamental inequality or log-sum inequality.



2.1.5 Properties of joint and conditional entropy I: 2-14

Proof:

H(X)−H(X|Y ) =
∑

(x,y)∈X×Y
PX,Y (x, y) · log2

PX|Y (x|y)
PX(x)

=
∑

(x,y)∈X×Y
PX,Y (x, y) · log2

PX|Y (x|y)PY (y)

PX(x)PY (y)

=
∑

(x,y)∈X×Y
PX,Y (x, y) · log2

PX,Y (x, y)

PX(x)PY (y)

≥
 ∑

(x,y)∈X×Y
PX,Y (x, y)

 log2

∑
(x,y)∈X×Y PX,Y (x, y)∑

(x,y)∈X×Y PX(x)PY (y)

= 0

where the inequality follows from the log-sum inequality, with equality holding iff

PX,Y (x, y)

PX(x)PY (y)
= constant ∀ (x, y) ∈ X × Y .

Since probability must sum to 1, the above constant equals 1, which is exactly the

case of X being independent of Y . �



2.1.5 Properties of joint and conditional entropy I: 2-15

Lemma 2.13 Entropy is additive for independent random variables; i.e.,

H(X, Y ) = H(X) +H(Y ) for independent X and Y.

Proof: By the previous lemma, independence of X and Y implies H(Y |X) =

H(Y ). Hence

H(X, Y ) = H(X) +H(Y |X) = H(X) +H(Y ).

�

• In general, H(X, Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ).



2.1.5 Properties of joint and conditional entropy I: 2-16

Lemma 2.14 Conditional entropy is lower additive; i.e.,

H(X1, X2|Y1, Y2) ≤ H(X1|Y1) +H(X2|Y2).

Equality holds iff

PX1,X2|Y1,Y2(x1, x2|y1, y2) = PX1|Y1(x1|y1)PX2|Y2(x2|y2)
for all x1, x2, y1 and y2.



2.2 Mutual information I: 2-17

• Definition of mutual information

I(X ;Y ) := H(X) +H(Y )−H(X, Y )

= H(Y )−H(Y |X)

= H(X)−H(X|Y )

I(X ;Y )H(X|Y ) H(Y |X)H(X) � H(Y )�

H(X, Y )
�
�
���

�
�

���

Relation between entropy and mutual information.



2.2.1 Properties of mutual information I: 2-18

Lemma 2.15

1. I(X ;Y ) =
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2
PX,Y (x, y)

PX(x)PY (y)
.

2. I(X ;Y ) = I(Y ;X).

3. I(X ;Y ) = H(X) +H(Y )−H(X, Y ).

4. I(X ;Y ) ≤ H(X) with equality holding iff X is a function of Y (i.e., X =

f(Y ) for some function f(·)).
5. I(X ;Y ) ≥ 0 with equality holding iff X and Y are independent.

6. I(X ;Y ) ≤ min{log2 |X |, log2 |Y|}.



2.2.1 Properties of mutual information I: 2-19

Lemma 2.16 (Chain rule for mutual information)

I(X ;Y, Z) = I(X ;Y ) + I(X ;Z|Y ) = I(X ;Z) + I(X ;Y |Z).
Proof: Without loss of generality, we only prove the second equality:

I(X ;Y, Z) = H(X)−H(X|Y, Z)
= H(X)−H(X|Z) +H(X|Z)−H(X|Y, Z)
= I(X ;Z) + I(X ;Y |Z).

�

X Y��

� �

Z

I(X ;Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z)



2.3 Properties of entropy and mutual information
for multiple random variables

I: 2-20

Theorem 2.17 (Chain rule for entropy) Let X1, X2, . . ., Xn be drawn ac-

cording to PXn(xn) := PX1,··· ,Xn(x1, . . . , xn), where we use the common superscript

notation to denote an n-tuple: Xn := (X1, . . . , Xn) and xn := (x1, . . . , xn). Then

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi|Xi−1, . . . , X1),

where H(Xi|Xi−1, . . . , X1) := H(X1) for i = 1. (The above chain rule can also

be written as:

H(Xn) =
n∑

i=1

H(Xi|Xi−1),

where Xi := (X1, . . . , Xi).)

Theorem 2.18 (Chain rule for conditional entropy)

H(X1, X2, . . . , Xn|Y ) =
n∑

i=1

H(Xi|Xi−1, . . . , X1, Y ).



2.3 Properties of entropy and mutual information
for multiple random variables

I: 2-21

Theorem 2.19 (Chain rule for mutual information)

I(X1, X2, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y |Xi−1, . . . , X1),

where I(Xi;Y |Xi−1, . . . , X1) := I(X1;Y ) for i = 1.

Theorem 2.20 (Independence bound on entropy)

H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi).

Equality holds iff all the Xi’s are independent from each other.

• This condition is equivalent to requiring thatXi be independent of (Xi−1, . . . , X1)

for all i. The equivalence can be directly proved using the chain rule for joint

probabilities, i.e., PXn(xn) =
∏n

i=1 PXi|Xi−1
1

(xi|xi−1
1 ).



2.3 Properties of entropy and mutual information
for multiple random variables

I: 2-22

Theorem 2.21 (Bound on mutual information) If {(Xi, Yi)}ni=1 is a pro-

cess satisfying the conditional independence assumption PY n|Xn =
∏n

i=1 PYi|Xi
,

then

I(X1, . . . , Xn;Y1, . . . , Yn) ≤
n∑

i=1

I(Xi;Yi)

with equality holding iff {Xi}ni=1 are independent.



2.4 Data processing inequality I: 2-23

Lemma 2.22 (Data processing inequality) (This is also called the data

processing lemma.) If X → Y → Z, then I(X ;Y ) ≥ I(X ;Z).

Proof: Since X → Y → Z, we directly have that I(X ;Z|Y ) = 0. By the chain

rule for mutual information,

I(X ;Z) + I(X ;Y |Z) = I(X ;Y, Z) (2.4.1)

= I(X ;Y ) + I(X ;Z|Y )

= I(X ;Y ). (2.4.2)

Since I(X ;Y |Z) ≥ 0, we obtain that I(X ;Y ) ≥ I(X ;Z) with equality holding iff

I(X ;Y |Z) = 0. �

Source �U
Encoder �X

Channel �Y
Decoder �V

I(U ;V ) ≤ I(X ;Y )

“By processing, we can only reduce the (mutual) information,
but the processed information may be in a more useful form!”

Communication context of the data processing lemma.



2.4 Data processing inequality I: 2-24

Corollary 2.23 For jointly distributed random variablesX and Y and any func-

tion g(·), we have X → Y → g(Y ) and

I(X ;Y ) ≥ I(X ; g(Y )).

Corollary 2.24 If X → Y → Z, then

I(X ;Y |Z) ≤ I(X ;Y ).

• Interpretation: For Z, all the information about X is obtained from Y ; hence,

giving Z will not help increasing the “mutual information” between X and Y .

• Without the condition of X → Y → Z, both I(X ;Y |Z) ≤ I(X ;Y ) and

I(X ;Y |Z) > I(X ;Y ) could happen.

E.g. let X and Y be independent equiprobable binary zero-one random vari-

ables, and let Z = X + Y ; hence, Z ∈ {0, 1, 2}. Then I(X ;Y ) = 0; but

I(X ;Y |Z)
= H(X|Z)−H(X|Y, Z) = H(X|Z)
= PZ(0)H(X|Z = 0) + PZ(1)H(X|Z = 1) + PZ(2)H(X|Z = 2)

= 0 + 0.5 + 0 = 0.5 bit.



2.4 Data processing inequality I: 2-25

Corollary 2.25 If X1 → X2 → · · · → Xn, then for any i, j, k, l such that

1 ≤ i ≤ j ≤ k ≤ l ≤ n, we have that

I(Xi;Xl) ≤ I(Xj;Xk).



2.5 Fano’s inequality I: 2-26

Lemma 2.26 (Fano’s inequality) Let X and Y be two random variables,

correlated in general, with alphabets X and Y , respectively, where X is finite but

Y can be countably infinite. Let X̂ := g(Y ) be an estimate of X from observing

Y , where g : Y → X is a given estimation function. Define the probability of

error as

Pe := Pr[X̂ �= X ].

Then the following inequality holds

H(X|Y ) ≤ hb(Pe) + Pe · log2(|X | − 1), (2.5.1)

where hb(x) := −x log2 x− (1−x) log2(1−x) for 0 ≤ x ≤ 1 is the binary entropy

function.



2.5 Fano’s inequality I: 2-27

Observation 2.27

• If Pe = 0 for some estimator g(·), then H(X|Y ) = 0.

• A weaker but simpler version of Fano’s inequality can be directly obtained from

(2.5.1) by noting that hb(Pe) ≤ 1:

H(X|Y ) ≤ 1 + Pe · log2(|X | − 1), (2.5.2)

which in turn yields that

Pe ≥ H(X|Y )− 1

log2(|X | − 1)
( for |X | > 2).

So, Fano’s inequality provides a lower bound to Pe (for arbitrary

estimators).



2.5 Fano’s inequality I: 2-28

• In fact, Fano’s inequality yields both upper and lower bounds on Pe in terms

of H(X|Y ).

log2(|X | − 1)

log2(|X |)

H(X|Y )

(|X | − 1)/|X |0 1Pe

Permissible (Pe,H(X|Y )) region due to Fano’s inequality.
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(A quick) Proof of Lemma 2.26:

• Define a new random variable,

E:=

{
1, if g(Y ) �= X

0, if g(Y ) = X
.

• Then using the chain rule for conditional entropy, we obtain

H(E,X|Y ) = H(X|Y ) +H(E|X, Y ) = H(E|Y ) +H(X|E, Y ).

• Observe that E is a function of X and Y ; hence, H(E|X, Y ) = 0.

• Since conditioning never increases entropy, H(E|Y ) ≤ H(E) = hb(Pe).

• The remaining term, H(X|E, Y ), can be bounded as follows:

H(X|E, Y ) = Pr[E = 0]H(X|Y,E = 0) + Pr[E = 1]H(X|Y,E = 1)

≤ (1− Pe) · 0 + Pe · log2(|X | − 1),

since X = g(Y ) for E = 0, and given E = 1, we can upper bound the

conditional entropy by the logarithm of the number of remaining outcomes,

i.e., (|X | − 1).

• Combining these results completes the proof. �



2.5 Fano’s inequality I: 2-30

• Fano’s inequality cannot be improved in the sense that the lower bound,H(X|Y ),

can be achieved for some specific cases (See Example 2.28 in the text); so it is

a sharp bound.

Definition. A bound is said to be sharp if the bound is achievable for some

specific cases. A bound is said to be tight if the bound is achievable for all

cases.



2.5 Fano’s inequality I: 2-31

Alternative proof of Fano’s inequality:

• Noting that X → Y → X̂ form a Markov chain, we directly obtain via the

data processing inequality that

I(X ;Y ) ≥ I(X ; X̂),

which implies that

H(X|Y ) ≤ H(X|X̂).

• Thus, if we show that H(X|X̂) is no larger than the right-hand side of (2.5.1),

the proof of (2.5.1) is complete. I.e.,

H(X|X̂) ≤ hb(Pe) + Pe · log2(|X | − 1),



2.5 Fano’s inequality I: 2-32

• Noting that

Pe =
∑
x∈X

∑
x̂∈X :x̂ �=x

PX,X̂(x, x̂)

and

1− Pe =
∑
x∈X

∑
x̂∈X :x̂=x

PX,X̂(x, x̂) =
∑
x∈X

PX,X̂(x, x),

we obtain that

H(X|X̂)− hb(Pe)− Pe log2(|X | − 1)

=
∑
x∈X

∑
x̂∈X :x̂ �=x

PX,X̂(x, x̂) log2
1

PX|X̂(x|x̂)
+

∑
x∈X

PX,X̂(x, x) log2
1

PX|X̂(x|x)︸ ︷︷ ︸
H(X|X̂)

−
∑
x∈X

∑
x̂∈X :x̂�=x

PX,X̂(x, x̂)


︸ ︷︷ ︸

Pe

log2
(|X | − 1)

Pe
+

[∑
x∈X

PX,X̂(x, x)

]
︸ ︷︷ ︸

1−Pe

log2(1− Pe)
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=
∑
x∈X

∑
x̂∈X :x̂ �=x

PX,X̂(x, x̂) log2
Pe

PX|X̂(x|x̂)(|X | − 1)

+
∑
x∈X

PX,X̂(x, x) log2
1− Pe

PX|X̂(x|x)
(2.5.3)

≤ log2(e)
∑
x∈X

∑
x̂∈X :x̂ �=x

PX,X̂(x, x̂)

[
Pe

PX|X̂(x|x̂)(|X | − 1)
− 1

]
(FI lemma)

+ log2(e)
∑
x∈X

PX,X̂(x, x)

[
1− Pe

PX|X̂(x|x)
− 1

]

= log2(e)

 Pe

(|X | − 1)

∑
x∈X

∑
x̂∈X :x̂ �=x

PX̂(x̂)−
∑
x∈X

∑
x̂∈X :x̂ �=x

PX,X̂(x, x̂)


+ log2(e)

[
(1− Pe)

∑
x∈X

PX̂(x)−
∑
x∈X

PX,X̂(x, x)

]

= log2(e)

[
Pe

(|X | − 1)
(|X | − 1)− Pe

]
+ log2(e) [(1− Pe)− (1− Pe)]

= 0

�
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Definition 2.29 (Divergence) Given two discrete random variables X and

X̂ defined over a common alphabet X , the divergence or the Kullback-Leibler

divergence or distance (other names are relative entropy and discrimination) is

denoted by D(X‖X̂) or D(PX‖PX̂) and defined by

D(X‖X̂) = D(PX‖PX̂) := EX

[
log2

PX(X)

PX̂(X)

]
=

∑
x∈X

PX(x) log2
PX(x)

PX̂(x)
.

Why name it relative entropy?

• D(X‖X̂) is also called relative entropy since it can be regarded as a measure

of the inefficiency of mistakenly assuming that the distribution of a source is

PX̂ when the true distribution is PX .

• Specifically, if we mistakenly thought that the “true” distribution is PX̂ and

employ the “best” code corresponding to PX̂ , then the resultant average code-

word length becomes ∑
x∈X

[−PX(x) · log2 PX̂(x)].

As a result, the relative difference between the resultant average codeword

length and H(X) is the relative entropy D(X‖X̂).
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• Computation conventions from continuity

0 · log 0
p
= 0 and p · log p

0
= ∞ for p > 0.
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Lemma 2.30 (Non-negativity of divergence)

D(X‖X̂) ≥ 0,

with equality iff PX(x) = PX̂(x) for all x ∈ X (i.e., the two distributions are

equal).

Proof:

D(X‖X̂) =
∑
x∈X

PX(x) log2
PX(x)

PX̂(x)

≥
(∑

x∈X
PX(x)

)
log2

∑
x∈X PX(x)∑
x∈X PX̂(x)

= 0,

where the second step follows from the log-sum inequality with equality holding iff

for every x ∈ X ,
PX(x)

PX̂(x)
=

∑
a∈X PX(a)∑
b∈X PX̂(b)

= 1,

or equivalently PX(x) = PX̂(x) for all x ∈ X . �
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Lemma 2.31 (Mutual information and divergence)

I(X ;Y ) = D(PX,Y ‖PX × PY ),

where PX,Y (·, ·) is the joint distribution of the random variables X and Y and

PX(·) and PY (·) are the respective marginals.

Definition 2.32 (Refinement of distribution) Given the distribution PX

on X , divide X into k mutually disjoint sets, U1,U2, . . . ,Uk, satisfying

X =
k⋃

i=1

Ui.

Define a new distribution PU on U = {1, 2, . . . , k} as

PU(i) =
∑
x∈Ui

PX(x).

Then PX is called a refinement (or more specifically, a k-refinement) of PU .
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Lemma 2.33 (Refinement cannot decrease divergence) Let PX and PX̂

be the refinements (k-refinements) of PU and PÛ respectively. Then

D(PX‖PX̂) ≥ D(PU‖PÛ).

Proof: By the log-sum inequality, we obtain that for any i ∈ {1, 2, . . . , k}
∑
x∈Ui

PX(x) log2
PX(x)

PX̂(x)
≥

∑
x∈Ui

PX(x)

 log2

∑
x∈Ui PX(x)∑
x∈Ui PX̂(x)

= PU(i) log2
PU(i)

PÛ(i)
, (2.6.1)

with equality iff
PX(x)

PX̂(x)
=

PU(i)

PÛ(i)

for all x ∈ U .
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Hence,

D(PX‖PX̂) =

k∑
i=1

∑
x∈Ui

PX(x) log2
PX(x)

PX̂(x)

≥
k∑

i=1

PU(i) log2
PU(i)

PÛ(i)

= D(PU‖PÛ),

with equality iff
PX(x)

PX̂(x)
=

PU(i)

PÛ(i)

for all i and x ∈ Ui. �

Source �U
Encoder �X

Channel �Y
Decoder �V

I(U ;V ) ≤ I(X ;Y )

“By processing, we can only reduce the (mutual) information,
but the processed information may be in a more useful form!”

Communication context of the data processing lemma.
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• Processing of information can be modeled as a (many-to-one) mapping, and

refinement is actually the reverse operation.

• Recall that the data processing lemma shows that mutual information can

never increase due to processing. Hence, if one wishes to increase mutual

information, he should “anti-process” (or refine) the involved statistics.

• From Lemma 2.31, the mutual information can be viewed as the divergence

of a joint distribution against the product distribution of the marginals. It

is therefore reasonable to expect that a similar effect due to processing (or

a reverse effect due to refinement) should also apply to divergence. This is

shown in the next lemma.

• Processing only decreases mutual information and divergence.

• Only by refinement can mutual information and divergence be increased.
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• Divergence is not a distance, a drawback in certain applications.

Given a non-empty set A, the function d : A×A → [0,∞) is called a distance

or metric if it satisfies the following properties.

1. Non-negativity: d(a, b) ≥ 0 for every a, b ∈ A with equality holding iff

a = b.

2. ����������������Symmetry: d(a, b) = d(b, a) for every a, b ∈ A.

3.
															















Triangular inequality: d(a, b) + d(b, c) ≥ d(a, c) for every a, b, c ∈ A.

Definition 2.35 (Variational distance) The variational distance (also

known as the L1-distance, the total variation distance, the statistical distance)

between two distributions PX and PX̂ with common alphabet X is defined by

‖PX − PX̂‖ :=
∑
x∈X

∣∣PX(x)− PX̂(x)
∣∣.

Lemma 2.36 The variational distance satisfies

‖PX −PX̂‖ = 2 ·
∑

x∈X : PX(x)>P
X̂
(x)

(
PX(x)−PX̂(x)

)
= 2 · sup

E⊂X

∣∣PX(E)− PX̂(E)
∣∣ .
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Lemma 2.37 (Variational distance vs divergence: Pinsker’s inequal-

ity)

D(X‖X̂) ≥ log2(e)

2
· ‖PX − PX̂‖2.

This result is referred to as Pinsker’s inequality.

Proof:

1. With A := {x ∈ X : PX(x) > PX̂(x)}, we have from the previous lemma that

‖PX − PX̂‖ = 2[PX(A)− PX̂(A)].
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2. Define two random variables U and Û as:

U =

{
1, if X ∈ A,

0, if X ∈ Ac,
and Û =

{
1, if X̂ ∈ A,

0, if X̂ ∈ Ac.

Then PX and PX̂ are refinements (2-refinements) of PU and PÛ , respectively.

From Lemma 2.33, we obtain that

D(PX‖PX̂) ≥ D(PU‖PÛ).

3. The proof is complete if we show that

D(PU‖PÛ) ≥ 2 log2(e)[PX(A)− PX̂(A)]2

= 2 log2(e)[PU(1)− PÛ(1)]
2.

For ease of notations, let p = PU(1) and q = PÛ(1). Then to prove the above

inequality is equivalent to show that

p · ln p
q
+ (1− p) · ln 1− p

1− q
≥ 2(p− q)2.

�
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Define

f(p, q) := p · ln p
q
+ (1− p) · ln 1− p

1− q
− 2(p− q)2,

and observe that

df(p, q)

dq
= (p− q)

(
4− 1

q(1− q)

)
≤ 0 for q ≤ p.

Thus, f(p, q) is non-increasing in q for q ≤ p. Also note that f(p, q) = 0 for

q = p. Therefore,

f(p, q) ≥ 0 for q ≤ p.

The proof is completed by noting that

f(p, q) ≥ 0 for q ≥ p,

since f(1− p, 1− q) = f(p, q).
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Lemma 2.39 If D(PX‖PX̂) < ∞, then

D(PX‖PX̂) ≤
log2(e)

min
{x : PX(x)>0}

min{PX(x), PX̂(x)}
· ‖PX − PX̂‖.

Definition 2.40 (Conditional divergence) Given three discrete random

variables, X , X̂ and Z, where X and X̂ have a common alphabet X , we de-

fine the conditional divergence between X and X̂ given Z by

D(X‖X̂|Z) = D(PX|Z‖PX̂|Z|PZ) :=
∑
z∈Z

PZ(z)
∑
x∈X

PX|Z(x|z) log
PX|Z(x|z)
PX̂|Z(x|z)

=
∑
z∈Z

∑
x∈X

PX,Z(x, z) log
PX|Z(x|z)
PX̂|Z(x|z)

.

Similarly, the conditional divergence between PX|Z and PX̂ given PZ is defined as

D(PX|Z‖PX̂|PZ):=
∑
z∈Z

PZ(z)
∑
x∈X

PX|Z(x|z) log
PX|Z(x|z)
PX̂(z)

.
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Lemma 2.41 (Conditional mutual information and conditional di-

vergence) Given three discrete random variables X , Y and Z with alphabets

X , Y and Z , respectively, and joint distribution PX,Y,Z , we have

I(X ;Y |Z) = D(PX,Y |Z‖PX|ZPY |Z|PZ)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

PX,Y,Z(x, y, z) log2
PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z),

where PX,Y |Z is the conditional joint distribution of X and Y given Z, and PX|Z
and PY |Z are the conditional distributions of X and Y , respectively, given Z.
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Lemma 2.42 (Chain rule for divergence) Let PXn and QXn be two joint

distributions on X n. We have that

D(PX1,X2‖QX1,X2) = D(PX1‖QX1) +D(PX2|X1
‖QX2|X1

|PX1),

and more generally,

D(PXn‖QXn) =
n∑

i=1

D(PXi|Xi−1‖QXi|Xi−1|PXi−1),

where D(PXi|Xi−1‖QXi|Xi−1|PXi−1):=D(PX1‖QX1) for i = 1.
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Lemma 2.43 (Conditioning never decreases divergence) For three

discrete random variables, X , X̂ and Z, where X and X̂ have a common alphabet

X , we have that

D(PX|Z‖PX̂|Z|PZ) ≥ D(PX‖PX̂).

Proof:

D(PX|Z‖PX̂|Z|PZ)−D(PX‖PX̂)

=
∑
z∈Z

∑
x∈X

PX,Z(x, z) · log2
PX|Z(x|z)
PX̂|Z(x|z)

−
∑
x∈X

PX(x) · log2
PX(x)

PX̂(x)

=
∑
z∈Z

∑
x∈X

PX,Z(x, z) · log2
PX|Z(x|z)
PX̂|Z(x|z)

−
∑
x∈X

(∑
z∈Z

PX,Z(x, z)

)
· log2

PX(x)

PX̂(x)

=
∑
z∈Z

∑
x∈X

PX,Z(x, z) · log2
PX|Z(x|z)PX̂(x)

PX̂|Z(x|z)PX(x)
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≥
∑
z∈Z

∑
x∈X

PX,Z(x, z) · log2(e)
(
1−

PX̂|Z(x|z)PX(x)

PX|Z(x|z)PX̂(x)

)
(by the FI Lemma)

= log2(e)

(
1−

∑
x∈X

PX(x)

PX̂(x)

∑
z∈Z

PZ(z)PX̂|Z(x|z)
)

= log2(e)

(
1−

∑
x∈X

PX(x)

PX̂(x)
PX̂(x)

)

= log2(e)

(
1−

∑
x∈X

PX(x)

)
= 0,

with equality holding iff for all x and z,

PX(x)

PX̂(x)
=

PX|Z(x|z)
PX̂|Z(x|z)

.

�
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Lemma 2.44 (Independent side information does not change diver-

gence) If X is independent of Z and X̂ is independent of Ẑ, where X and Z

share a common alphabet with X̂ and Ẑ , respectively, then

D(PX|Z‖PX̂|Ẑ|PZ) = D(PX‖PX̂).

Corollary 2.45 (Additivity of divergence under independence) If X

is independent of Z and X̂ is independent of Ẑ, where X and Z share a common

alphabet with X̂ and Ẑ, respectively, then

D(PX,Z‖PX̂,Ẑ) = D(PX‖PX̂) +D(PZ‖PẐ).
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Lemma 2.46

1. H(PX) is a concave function of PX , namely

H(λPX + (1− λ)PX̃) ≥ λH(PX) + (1− λ)H(PX̃)

for all λ ∈ [0, 1]. Equality holds iff PX(x) = PX̃(x) for all x.

2. Noting that I(X ;Y ) can be re-written as I(PX, PY |X), where

I(PX, PY |X):=
∑
x∈X

∑
y∈Y

PY |X(y|x)PX(x) log2
PY |X(y|x)∑

a∈X PY |X(y|a)PX(a)
,

then

• I(X ;Y ) is a concave function of PX (for fixed PY |X), i.e.,

I(λPX + (1− λ)PX̃, PY |X) ≥ λI(PX, PY |X) + (1− λ)I(PX̃, PY |X)

with equality holding iff

PY (y) =
∑
x∈X

PX(x)PY |X(y|x) =
∑
x∈X

PX̃(x)PY |X(y|x) = PỸ (y)

for all y ∈ Y , and
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• I(X ;Y ) is a convex function of PY |X (for fixed PX), i.e.,

λI(PX, PY |X) + (1− λ)I(PX, PỸ |X) ≥ I(PX, λPY |X + (1− λ)PỸ |X)

with equality holding iff

(∀ x ∈ X )
PY |X(y|x)
PỸ |X(y|x)

= L(y).

PY |X(y|x) = L(y)PỸ |X(y|x)
⇒

∑
x∈X

PX(x)PY |X(y|x) = L(y)
∑
x∈X

PX(x)PỸ |X(y|x)

⇒ PY (y) = L(y)PỸ (y)

⇒ L(y) =
PY (y)

PỸ (y)
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3. D(PX‖PX̂) is convex in the pair (PX, PX̂); i.e., if (PX, PX̂) and (QX,QX̂) are

two pairs of pmfs, then

D(λPX + (1− λ)QX‖λPX̂ + (1− λ)QX̂)

≤ λ ·D(PX‖PX̂) + (1− λ) ·D(QX‖QX̂), (2.7.1)

with equality holding iff

(∀ x ∈ X )
PX(x)

PX̂(x)
=

QX(x)

QX̂(x)
.

Thus, D(PX‖PX̂) is convex with respect to both the first argument PX and

the second argument PX̂ .
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• Simple hypothesis testing problem

– whether a coin is fair or not

– whether a product is successful or not

• Problem description: Let X1, . . . , Xn be a sequence of observations which

is drawn according to either a “null hypothesis” distribution PXn or an “al-

ternative hypothesis” distribution PX̂n. The hypotheses are usually denoted

by:

• H0 : PXn

• H1 : PX̂n.

• Decision mapping

φ(xn) =

{
0, if distribution of Xn is classified to be PXn;

1, if distribution of Xn is classified to be PX̂n.
.

• Acceptance regions

Acceptance region for H0 : {xn ∈ X n : φ(xn) = 0}
Acceptance region for H1 : {xn ∈ X n : φ(xn) = 1}.
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• Error types

Type I error : αn = αn(φ) = PXn ({xn ∈ X n : φ(xn) = 1})
Type II error : βn = βn(φ) = PX̂n ({xn ∈ X n : φ(xn) = 0}) .
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1. Bayesian hypothesis testing.

Here, φ(·) is chosen so that the Bayesian cost

π0αn + π1βn

is minimized, where π0 and π1 are the prior probabilities for the null and

alternative hypotheses, respectively. The mathematical expression for Bayesian

testing is:

min
{φ}

[π0αn(φ) + π1βn(φ)] .

2. Neyman-Pearson hypothesis testing subject to a fixed test level.

Here, φ(·) is chosen so that the type II error βn is minimized subject to a

constant bound on the type I error; i.e.,

αn ≤ ε

where ε > 0 is fixed. The mathematical expression for Neyman-Pearson testing

is:

min
{φ : αn(φ)≤ε}

βn(φ).
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Lemma 2.48 (Neyman-Pearson Lemma) For a simple hypothesis testing

problem, define an acceptance region for the null hypothesis through the likelihood

ratio as

An(τ ):=

{
xn ∈ X n :

PXn(xn)

PX̂n(xn)
> τ

}
,

and let

α∗
n:=PXn {Ac

n(τ )}
and

β∗
n:=PX̂n {An(τ )} .

Then for type I error αn and type II error βn associated with another choice of

acceptance region for the null hypothesis, we have

αn ≤ α∗
n =⇒ βn ≥ β∗

n.
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Proof: Let B be a choice of acceptance region for the null hypothesis. Then

αn + τβn =
∑
xn∈Bc

PXn(xn) + τ
∑
xn∈B

PX̂n(x
n)

=
∑
xn∈Bc

PXn(xn) + τ

[
1−

∑
xn∈Bc

PX̂n(x
n)

]
= τ +

∑
xn∈Bc

[
PXn(xn)− τPX̂n(x

n)
]
. (2.8.1)

Observe that (2.8.1) is minimized by choosing B = An(τ ). Hence,

αn + τβn ≥ α∗
n + τβ∗

n,

which immediately implies the desired result. �



2.8 Fundamentals of hypothesis testing I: 2-59

Lemma 2.49 (Chernoff-Stein lemma) For a sequence of i.i.d. observations

Xn which is possibly drawn from either the null hypothesis distribution PXn or

the alternative hypothesis distribution PX̂n, the best type II error satisfies

lim
n→∞−1

n
log2 β

∗
n(ε) = D(PX‖PX̂),

for any ε ∈ (0, 1), where β∗
n(ε) = minαn≤ε βn, and αn and βn are the type I and

type II errors, respectively.

Proof:

Forward Part: In this part, we prove that there exists an acceptance region for the

null hypothesis such that

lim inf
n→∞ −1

n
log2 βn(ε) ≥ D(PX‖PX̂).
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Step 1: Divergence typical set. For any δ > 0, define the divergence typical

set as

An(δ):=

{
xn ∈ X n :

∣∣∣∣1n log2
PXn(xn)

PX̂n(xn)
−D(PX‖PX̂)

∣∣∣∣ < δ

}
.

Note that any sequence xn in this set satisfies

PX̂n(x
n) ≤ PXn(xn)2−n(D(PX‖P

X̂
)−δ).

Step 2: Computation of type I error. The observations being i.i.d., we have

by the weak law of large numbers that

PXn(An(δ)) → 1 as n → ∞.

Hence,

αn = PXn(Ac
n(δ)) < ε

for sufficiently large n.
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Step 3: Computation of type II error.

βn(ε) = PX̂n(An(δ))

=
∑

xn∈An(δ)

PX̂n(x
n)

≤
∑

xn∈An(δ)

PXn(xn)2−n(D(PX‖P
X̂
)−δ)

= 2−n(D(PX‖P
X̂
)−δ)

∑
xn∈An(δ)

PXn(xn)

= 2−n(D(PX‖P
X̂
)−δ)(1− αn).

Hence,

−1

n
log2 βn(ε) ≥ D(PX‖PX̂)− δ +

1

n
log2(1− αn),

which implies that

lim inf
n→∞ −1

n
log2 βn(ε) ≥ D(PX‖PX̂)− δ.

The above inequality is true for any δ > 0; therefore,

lim inf
n→∞ −1

n
log2 βn(ε) ≥ D(PX‖PX̂).
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Converse Part: We next prove that for any acceptance region Bn for the null

hypothesis satisfying the type I error constraint, i.e.,

αn(Bn) = PXn(Bc
n) ≤ ε,

its type II error βn(Bn) satisfies

lim sup
n→∞

−1

n
log2 βn(Bn) ≤ D(PX‖PX̂).

We have

βn(Bn) = PX̂n(Bn) ≥ PX̂n(Bn ∩An(δ))

≥
∑

xn∈Bn∩An(δ)

PX̂n(x
n)

≥
∑

xn∈Bn∩An(δ)

PXn(xn)2−n(D(PX‖P
X̂
)+δ)

= 2−n(D(PX‖P
X̂
)+δ)PXn(Bn ∩ An(δ))

≥ 2−n(D(PX‖P
X̂
)+δ) [1− PXn(Bc

n)− PXn (Ac
n(δ))]

= 2−n(D(PX‖P
X̂
)+δ) [1− αn(Bn)− PXn (Ac

n(δ))]

≥ 2−n(D(PX‖P
X̂
)+δ) [1− ε− PXn (Ac

n(δ))] .
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Hence,

−1

n
log2 βn(Bn) ≤ D(PX‖PX̂) + δ +

1

n
log2 [1− ε− PXn (Ac

n(δ))] ,

which, upon noting that limn→∞ PXn (Ac
n(δ)) = 0 (by the weak law of large num-

bers), implies that

lim sup
n→∞

−1

n
log2 βn(Bn) ≤ D(PX‖PX̂) + δ.

The above inequality is true for any δ > 0; therefore,

lim sup
n→∞

−1

n
log2 βn(Bn) ≤ D(PX‖PX̂).

�
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Definition 2.50 (Rényi’s entropy) Given a parameter α > 0 with α �= 1,

and given a discrete random variable X with alphabet X and distribution PX , its

Rényi entropy of order α is given by

Hα(X) =
1

1− α
log

(∑
x∈X

PX(x)
α

)
. (2.9.1)

• As in case of the Shannon entropy, the base of the logarithm determines the

units.

• If the base is D, Rényi’s entropy is in D-ary units.

• Other notations for Hα(X) are H(X ;α), Hα(PX) and H(PX ;α).
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Definition 2.51 (Rényi’s divergence) Given a parameter 0 < α < 1, and

two discrete random variablesX and X̂ with common alphabet X and distribution

PX and PX̂ , respectively, then the Rényi divergence of order α between X and X̂

is given by

Dα(X‖X̂) =
1

α− 1
log

(∑
x∈X

[
Pα
X(x)P

1−α

X̂
(x)

])
. (2.9.2)

• This definition can be extended to α > 1 if PX̂(x) > 0 for all x ∈ X .

• Other notations forDα(X‖X̂) areD(X‖X̂;α),Dα(PX‖PX̂) andD(PX‖PX̂ ;α).

Lemma 2.52 When α → 1, we have the following:

lim
α→1

Hα(X) = H(X) (2.9.3)

and

lim
α→1

Dα(X‖X̂) = D(X‖X̂). (2.9.4)
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Observation 2.54 (α-mutual information)

• While Rényi did not propose a mutual information of order α that general-

izes Shannon’s mutual information, there are at least three different possible

definitions of such measure due to Sibson (1969), Arimoto (1975) and Csiszár

(1995), respectively.



Key Notes I: 2-67

• Conditions 1, 2 and 3 for self-information, and how these conditions correspond

to mathematical expressions

• Definition of entropy, joint entropy and mutual information. Also definitions

of their conditional counterparts.

• Physical interpretations of each property

– Subtraction proofs using fundamental inequality and log-sum inequality

• Venn diagram for entropy and mutual information

• Chain rules and independent bounds (Operational meaning)

• Data processing lemma (Operational meaning)

• Why divergence is also named “relative entropy”

• Representing mutual information in terms of divergence

• Refinement and Processing

• Variational distance and divergence

• Side information and divergence

• Convexity and concavity of information measures

• Extension of information measures such as Rényi’s information measures


