Chapter 2 Information Measures for Discrete Systems

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

- Self-information, denoted by $\mathcal{I}(E)$, is the information you gain by learning an event E has occurred.
- What properties should $\mathcal{I}(E)$ have?
	- 1. $\mathcal{I}(E)$ is a decreasing function of $p_E := \Pr(E)$, i.e., $\mathcal{I}(E) = I(p_E)$.
		- **–** The less likely event E is, the more information is gained when one learns it has occurred.
		- $-$ Here, $\mathcal{I}(\cdot)$ is a function defined over the event space, and $I(\cdot)$ is a function defined over [0, 1].
	- 2. $I(p_E)$ is continuous in p_E .
		- $-$ Intuitively, one should expect that a small change in p_E corresponds to ^a small change in the amount of information carried by E.
	- 3. If $E_1 \perp \!\!\!\perp E_2$, where $\perp \!\!\!\perp \equiv$ independence, then $\mathcal{I}(E_1 \cap E_2) = \mathcal{I}(E_1) + \mathcal{I}(E_2)$, or equivalently, $I(p_{E_1} \times p_{E_2}) = I(p_{E_1}) + I(p_{E_2})$.
		- **–** The amount of information one gains by learning that two independent events have jointly occurred should be equal to the sum of the amounts of information of each individual event.
	- 4. $\mathcal{I}(E) \geq 0$. (Optional but automatically satisfied for the one-and-only function that satisfies the previous three properties.)

Theorem 2.1 The *only* function defined over $p \in (0, 1]$ and satisfying

1. $I(p)$ is monotonically decreasing in p;

2. $I(p)$ is a continuous function of p for $0 < p \le 1$;

3. $I(p_1 \times p_2) = I(p_1) + I(p_2);$

is $I(p) = -c \cdot \log_b(p)$, where c is a positive constant and the base b of the logarithm is any number larger than one.

Proof: The proof is completed in three steps.

Step 1: $I(p) = -c \cdot \log_b(p)$ is true for $p = 1/n$ for any positive integer n.

Step 2: $I(p) = -c \cdot \log_b(p)$ is true for positive rational number p.

Step 3: $I(p) = -c \cdot \log_b(p)$ is true for real-valued p.

Step 1: Claim. For $n = 1, 2, 3, ...$,

$$
I\left(\frac{1}{n}\right) = -c \cdot \log_b\left(\frac{1}{n}\right).
$$

Proof:

$$
(n = 1) \text{ Condition } 3 \Rightarrow I(1) = I(1) + I(1) \Rightarrow I(1) = 0 = -c \cdot \log_b(1).
$$

 $(n > 1)$ For any positive integer r , \exists non-negative integer k such that

$$
n^k \le 2^r < n^{k+1} \Rightarrow I\left(\frac{1}{n^k}\right) \le I\left(\frac{1}{2^r}\right) < I\left(\frac{1}{n^{k+1}}\right) \text{ by Condition 1}
$$

 \Rightarrow By Condition 3,

$$
k \cdot I\left(\frac{1}{n}\right) \le r \cdot I\left(\frac{1}{2}\right) < (k+1) \cdot I\left(\frac{1}{n}\right).
$$

Hence, since $I(1/n) > I(1) = 0$,

$$
\frac{k}{r} \le \frac{I(1/2)}{I(1/n)} \le \frac{k+1}{r}.
$$

On the other hand, by the monotonity of the logarithm, we obtain

$$
\log_b n^k \le \log_b 2^r \le \log_b n^{k+1} \iff \frac{k}{r} \le \frac{\log_b(2)}{\log_b(n)} \le \frac{k+1}{r}.
$$

Therefore,

$$
\left| \frac{\log_b(2)}{\log_b(n)} - \frac{I(1/2)}{I(1/n)} \right| < \frac{1}{r}.
$$

Since $n > 1$ is fixed, and r can be made arbitrarily large, we can let $r \to \infty$ to get:

$$
I\left(\frac{1}{n}\right) = \frac{I(1/2)}{\log_b(2)} \cdot \log_b(n) = -c \cdot \log_b\left(\frac{1}{n}\right),
$$

where $c = I(1/2)/\log_b(2) > 0$. This completes the proof of the claim.

Step 2: Claim. $I(p) = -c \cdot \log_b(p)$ for positive rational number p.

Proof: A rational number p can be represented by $p = r/s$, where r and s are both positive integers. Then Condition 3 gives that

$$
I\left(\frac{1}{s}\right) = I\left(\frac{r1}{sr}\right) = I\left(\frac{r}{s}\right) + I\left(\frac{1}{r}\right),
$$

which, from Step 1, implies that

$$
I(p) = I\left(\frac{r}{s}\right) = I\left(\frac{1}{s}\right) - I\left(\frac{1}{r}\right) = c \cdot \log_b s - c \cdot \log_b r = -c \cdot \log_b p.
$$

Step 3: For any $p \in [0, 1]$, it follows by continuity (i.e., Condition 2) that

$$
I(p) = \lim_{a \uparrow p, a \text{ rational}} I(a) = \lim_{b \downarrow p, b \text{ rational}} I(b) = -c \cdot \log_b(p).
$$

Uncertainty and information I: 2-5

Summary:

- After observing event E with $Pr(E) = p$, you gain information $I(p)$.
- Equivalently, after observing event E with $Pr(E) = p$, you lose uncertainty $I(p).$
- The amount of information gained = The amount of uncertainty lost

$2.1.2$ Entropy I: 2-6

• Self-information for outcome x (or elementary event $\{X = x\}$)

$$
\mathcal{I}(x) := \log_b \frac{1}{P_X(x)},
$$

where the constant c in the previous theorem is chosen to be 1.

• Entropy = expected self-information

$$
H(X) := E[\mathcal{I}(X)] = \sum_{x \in \mathcal{X}} P_X(x) \log_b \frac{1}{P_X(x)}.
$$

– Units of entropy

 $\ast \log_2 = \text{bits}$ $* log = log_e = ln = n$ ats

– Example. Binary entropy function.

$$
H(X) = -p \cdot \log p - (1 - p) \log(1 - p) \text{ nats}
$$

= $-p \cdot \log_2 p - (1 - p) \log_2 (1 - p) \text{ bits}$

for $P_X(1) = 1 - P_X(0) = p$.

Definition 2.2 (Entropy) The entropy of ^a discrete random variable X with pmf $P_X(\cdot)$ is denoted by $H(X)$ or $H(P_X)$ and defined by

$$
H(X) := -\sum_{x \in \mathcal{X}} P_X(x) \cdot \log_2 P_X(x) \quad \text{(bits)}.
$$

Assumption. The alphabet $\mathcal X$ of the random variable X is finite.

Lemma 2.4 **(Fundamental inequality (FI))** For any $x > 0$ and $D > 1$, we have that

$$
\log_D(x) \le \log_D(e) \cdot (x - 1)
$$

with equality if and only if (iff) $x = 1$.

Lemma 2.5 (Non-negativity) $H(X) \geq 0$. Equality holds iff X is deterministic (when X is deterministic, the uncertainty of X is obviously zero).

Proof: $0 \leq P_X(x) \leq 1$ implies that $\log_2[1/P_X(x)] \geq 0$ for every $x \in \mathcal{X}$. Hence,

$$
H(X) = \sum_{x \in \mathcal{X}} P_X(x) \log_2 \frac{1}{P_X(x)} \ge 0,
$$

with equality holding iff $P_X(x) = 1$ for some $x \in \mathcal{X}$.

Comment: When X is deterministic, the uncertainty of X is obviously zero.

Lemma 2.6 (Upper bound on entropy) If ^a random variable X takes values from a finite set \mathcal{X} , then

$$
H(X) \le \log_2 |\mathcal{X}|,
$$

where $|\mathcal{X}|$ denotes the size of the set \mathcal{X} . Equality holds iff X is equiprobable or uniformly distributed over \mathcal{X} (i.e., $P_X(x) = \frac{1}{|\mathcal{X}|}$ for all $x \in \mathcal{X}$).

- *Interpretation:* Uniform distribution maximizes entropy.
- *Hint of proof*: Subtract one side of the inequality by the other side, and apply the *fundamental inequality* or *log-sum inequality*.

Proof:

$$
\log_2 |\mathcal{X}| - H(X) = \log_2 |\mathcal{X}| \times \left(\sum_{x \in \mathcal{X}} P_X(x) \right) - \left(- \sum_{x \in \mathcal{X}} P_X(x) \log_2 P_X(x) \right)
$$

\n
$$
= \sum_{x \in \mathcal{X}} P_X(x) \times \log_2 |\mathcal{X}| + \sum_{x \in \mathcal{X}} P_X(x) \log_2 P_X(x)
$$

\n
$$
= \sum_{x \in \mathcal{X}} P_X(x) \log_2 (|\mathcal{X}| \times P_X(x))
$$

\n
$$
\geq \sum_{x \in \mathcal{X}} P_X(x) \cdot \log_2(e) \left(1 - \frac{1}{|\mathcal{X}| \times P_X(x)} \right)
$$

\n
$$
= \log_2(e) \sum_{x \in \mathcal{X}} \left(P_X(x) - \frac{1}{|\mathcal{X}|} \right)
$$

\n
$$
= \log_2(e) \cdot (1 - 1) = 0
$$

where the inequality follows from the FI Lemma, with equality iff $(\forall x \in \mathcal{X}),$ $|\mathcal{X}| \times P_X(x) = 1$, which means $P_X(\cdot)$ is a uniform distribution on \mathcal{X} .

Lemma 2.7 (Log-sum inequality) For non-negative numbers, a_1, a_2, \ldots, a_n and $b_{1},\,b_{2},\,...,\,b_{n},$

$$
\sum_{i=1}^{n} \left(a_i \log_D \frac{a_i}{b_i} \right) \ge \left(\sum_{i=1}^{n} a_i \right) \log_D \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}
$$
 (2.1.1)

with equality holding iff $(\forall 1 \leq i \leq n)$ $(a_i/b_i) = (a_1/b_1)$, a constant independent of i .

(By convention, $0 \cdot \log_D(0) = 0$, $0 \cdot \log_D(0/0) = 0$ and $a \cdot \log_D(a/0) = \infty$ if $a > 0$. This can be justified by "continuity.")

- *Comment:* A tip for memorizing the log-sum inequality: log -first \ge sum-first.
- *Hint of proof*: Subtract one side of the inequality by the other side, and apply the *fundamental inequality*.

2.1.4 Joint entropy and conditional entropy I: 2-11

Definition 2.8 (Joint entropy) The joint entropy $H(X, Y)$ of random variables (X, Y) is defined by

$$
H(X,Y) := -\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \cdot \log_2 P_{X,Y}(x,y)
$$

$$
= E[-\log_2 P_{X,Y}(X,Y)].
$$

Definition 2.9 (Conditional entropy) Given two jointly distributed random variables X and Y, the conditional entropy $H(Y|X)$ of Y given X is defined by

$$
H(Y|X) := \sum_{x \in \mathcal{X}} P_X(x) \left(-\sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \cdot \log_2 P_{Y|X}(y|x) \right) \tag{2.1.5}
$$

where $P_{Y|X}(\cdot|\cdot)$ is the conditional pmf of Y given X.

$2.1.4$ Joint entropy and conditional entropy I: 2-12

Proof: Since

$$
P_{X,Y}(x,y) = P_X(x)P_{Y|X}(y|x),
$$

we directly obtain that

$$
H(X,Y) = E[-\log_2 P_{X,Y}(X,Y)]
$$

= $E[-\log_2 P_X(X)] + E[-\log_2 P_{Y|X}(Y|X)]$
= $H(X) + H(Y|X)$.

 \Box

Corollary 2.11 (Chain rule for conditional entropy)

$$
H(X,Y|Z) = H(X|Z) + H(Y|X,Z).
$$

2.1.5 Properties of joint and conditional entropy $I: 2-13$

Lemma 2.12 (Conditioning never increases entropy) Side information Y decreases the uncertainty about X:

$$
H(X|Y) \le H(X)
$$

with equality holding iff X and Y are independent. In other words, "conditioning" reduces entropy.

- *Interpretation*: Only when X is independent of Y , the pre-given Y will be of no help in determining X.
- *Hint of proof*: Subtract one side of the inequality by the other side, and apply the *fundamental inequality* or *log-sum inequality*.

2.1.5 Properties of joint and conditional entropy \blacksquare

Proof:

$$
H(X) - H(X|Y) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \cdot \log_2 \frac{P_{X|Y}(x|y)}{P_X(x)}
$$

\n
$$
= \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \cdot \log_2 \frac{P_{X|Y}(x|y)P_Y(y)}{P_X(x)P_Y(y)}
$$

\n
$$
= \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \cdot \log_2 \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}
$$

\n
$$
\geq \left(\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y)\right) \log_2 \frac{\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y)}{\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_X(x)P_Y(y)}
$$

where the inequality follows from the log-sum inequality, with equality holding iff

$$
\frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)} = \text{constant} \quad \forall (x,y) \in \mathcal{X} \times \mathcal{Y}.
$$

Since probability must sum to 1, the above constant equals 1, which is exactly the case of X being independent of Y . \Box

2.1.5 Properties of joint and conditional entropy $I: 2-15$

Lemma 2.13 Entropy is additive for independent random variables; i.e.,

 $H(X,Y) = H(X) + H(Y)$ for independent X and Y.

Proof: By the previous lemma, independence of X and Y implies $H(Y|X) =$ $H(Y)$. Hence

$$
H(X, Y) = H(X) + H(Y|X) = H(X) + H(Y).
$$

 \Box

2.1.5 Properties of joint and conditional entropy $\frac{1}{2}$. 1: 2-16

Lemma 2.14 Conditional entropy is lower additive; i.e.,

```
H(X_1, X_2 | Y_1, Y_2) \leq H(X_1 | Y_1) + H(X_2 | Y_2).
```
Equality holds iff

$$
P_{X_1, X_2|Y_1, Y_2}(x_1, x_2|y_1, y_2) = P_{X_1|Y_1}(x_1|y_1) P_{X_2|Y_2}(x_2|y_2)
$$

for all x_1, x_2, y_1 and y_2 .

2.2 Mutual information I: 2-17

• Definition of mutual information

$$
I(X;Y) := H(X) + H(Y) - H(X,Y)
$$

= H(Y) - H(Y|X)
= H(X) - H(X|Y)

Relation between entropy and mutual information.

2.2.1 Properties of mutual information I: 2-18

Lemma 2.15 1. $I(X;Y) = \sum$ ^x∈X \sum y∈Y $P_{X,Y}(x,y)\log_2$ $P_{X,Y}(x,y)$ $P_X(x)P_Y(y)$ 2. $I(X;Y) = I(Y;X)$. 3. $I(X;Y) = H(X) + H(Y) - H(X,Y)$. 4. $I(X;Y) \leq H(X)$ with equality holding iff X is a function of Y (i.e., X = $f(Y)$ for some function $f(\cdot)$. 5. $I(X;Y) \geq 0$ with equality holding iff X and Y are independent. 6. $I(X;Y) \leq \min\{\log_2 |\mathcal{X}|, \log_2 |\mathcal{Y}|\}.$

2.2.1 Properties of mutual information I: 2-19

Lemma 2.16 (Chain rule for mutual information)

$$
I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z).
$$

Proof: Without loss of generality, we only prove the second equality:

$$
I(X; Y, Z) = H(X) - H(X|Y, Z)
$$

= $H(X) - H(X|Z) + H(X|Z) - H(X|Y, Z)$
= $I(X; Z) + I(X; Y|Z)$.

 $I(X;Y|Z) = H(X|Z) + H(Y|Z) - H(X,Y|Z)$

 \Box

2.3 Properties of entropy and mutual information for multiple random variables $\frac{1}{2}$ i: 2-20

Theorem 2.17 (Chain rule for entropy) Let X_1, X_2, \ldots, X_n be drawn according to $P_{X^n}(x^n) := P_{X_1, \cdots, X_n}(x_1, \ldots, x_n)$, where we use the common superscript notation to denote an *n*-tuple: $X^n := (X_1, \ldots, X_n)$ and $x^n := (x_1, \ldots, x_n)$. Then

$$
H(X_1, X_2, \ldots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \ldots, X_1),
$$

where $H(X_i|X_{i-1},\ldots,X_1) := H(X_1)$ for $i = 1$. (The above chain rule can also be written as:

$$
H(X^n) = \sum_{i=1}^n H(X_i | X^{i-1}),
$$

where $X^i := (X_1, \ldots, X_i)$.

Theorem 2.18 (Chain rule for conditional entropy)

$$
H(X_1, X_2, \ldots, X_n | Y) = \sum_{i=1}^n H(X_i | X_{i-1}, \ldots, X_1, Y).
$$

2.3 Properties of entropy and mutual information for multiple random variables $\frac{1}{2}$.

Theorem 2.19 (Chain rule for mutual information)

$$
I(X_1, X_2, \ldots, X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_{i-1}, \ldots, X_1),
$$

where $I(X_i; Y | X_{i-1},..., X_1) := I(X_1; Y)$ for $i = 1$.

Theorem 2.20 (Independence bound on entropy)

$$
H(X_1, X_2, ..., X_n) \le \sum_{i=1}^n H(X_i).
$$

Equality holds iff all the X_i 's are independent from each other.

• This condition is equivalent to requiring that X_i be independent of (X_{i-1},\ldots,X_1) for all i . The equivalence can be directly proved using the chain rule for joint probabilities, i.e., $P_{X^n}(x^n) = \prod_{i=1}^n$ $\sum_{i=1}^n P_{X_i|X_1^{i-1}}(x_i|x_1^{i-1}).$

2.3 Properties of entropy and mutual information for multiple random variables $\frac{1}{2}$. I: 2-22

Theorem 2.21 (Bound on mutual information) If $\{(X_i, Y_i)\}_{i=1}^n$ is a process satisfying the conditional independence assumption $P_{Y^{n}|X^{n}} = \prod_{i=1}^{n} P_{Y^{n}|X^{n}}$ $\sum_{i=1}^{n} P_{Y_i|X_i}$ then

$$
I(X_1, ..., X_n; Y_1, ..., Y_n) \le \sum_{i=1}^n I(X_i; Y_i)
$$

with equality holding iff $\{X_i\}_{i=1}^n$ are independent.

2.4 Data processing inequality I: 2-23

Lemma 2.22 (Data processing inequality) (This is also called the *data* processing lemma.) If $X \to Y \to Z$, then $I(X;Y) \geq I(X;Z)$.

Proof: Since $X \to Y \to Z$, we directly have that $I(X;Z|Y) = 0$. By the chain rule for mutual information,

$$
I(X;Z) + I(X;Y|Z) = I(X;Y,Z)
$$
\n
$$
= I(X;Y) + I(X;Z|Y)
$$
\n
$$
= I(X;Y).
$$
\n(2.4.1)\n(2.4.2)

Since $I(X;Y|Z) \geq 0$, we obtain that $I(X;Y) \geq I(X;Z)$ with equality holding iff $I(X; Y|Z) = 0.$ \Box

Communication context of the data processing lemma.

2.4 Data processing inequality I: 2-24

Corollary 2.23 For jointly distributed random variables X and Y and any function $g(\cdot)$, we have $X \to Y \to g(Y)$ and

 $I(X;Y) \geq I(X;g(Y)).$

Corollary 2.24 If $X \to Y \to Z$, then

 $I(X;Y|Z)\leq I(X;Y).$

- *Interpretation*: For Z , all the information about X is obtained from Y ; hence, giving Z will not help increasing the "mutual information" between X and Y.
- Without the condition of $X \to Y \to Z$, both $I(X;Y|Z) \leq I(X;Y)$ and $I(X; Y|Z) > I(X; Y)$ could happen.

E.g. let X and Y be independent equiprobable binary zero-one random variables, and let $Z = X + Y$; hence, $Z \in \{0, 1, 2\}$. Then $I(X; Y) = 0$; but

$$
I(X; Y|Z)
$$

= $H(X|Z) - H(X|Y, Z) = H(X|Z)$
= $P_Z(0)H(X|Z = 0) + P_Z(1)H(X|Z = 1) + P_Z(2)H(X|Z = 2)$
= $0 + 0.5 + 0 = 0.5$ bit.

2.4 Data processing inequality I: 2-25

Corollary 2.25 If $X_1 \to X_2 \to \cdots \to X_n$, then for any i, j, k, l such that $1 \leq i \leq j \leq k \leq l \leq n$, we have that

 $I(X_i; X_l) \leq I(X_j; X_k).$

Lemma 2.26 (Fano's inequality) Let ^X and ^Y be two random variables, correlated in general, with alphabets $\mathcal X$ and $\mathcal Y$, respectively, where $\mathcal X$ is finite but $\mathcal Y$ can be countably infinite. Let $\hat X$ $X := g(Y)$ be an estimate of X from observing Y, where $g: \mathcal{Y} \to \mathcal{X}$ is a given estimation function. Define the probability of error as

$$
P_e := \Pr[\hat{X} \neq X].
$$

Then the following inequality holds

$$
H(X|Y) \le h_b(P_e) + P_e \cdot \log_2(|\mathcal{X}| - 1),\tag{2.5.1}
$$

where $h_{\text{b}}(x) := -x \log_2 x - (1-x) \log_2(1-x)$ for $0 \le x \le 1$ is the binary entropy function.

Observation 2.27

- If $P_e = 0$ for some estimator $g(\cdot)$, then $H(X|Y) = 0$.
- A weaker but simpler version of Fano's inequality can be directly obtained from $(2.5.1)$ by noting that $h_b(P_e) \leq 1$:

$$
H(X|Y) \le 1 + P_e \cdot \log_2(|\mathcal{X}| - 1),\tag{2.5.2}
$$

which in turn yields that

$$
P_e \ge \frac{H(X|Y) - 1}{\log_2(|\mathcal{X}| - 1)} \quad (\text{for } |\mathcal{X}| > 2).
$$

So, **Fano's inequality** provides a lower bound to P_e (for arbitrary **estimators).**

• In fact, Fano's inequality yields both upper and lower bounds on P_e in terms of $H(X|Y)$.

Permissible $(P_e, H(X|Y))$ region due to Fano's inequality.

(A quick) Proof of Lemma 2.26:

• Define ^a new random variable,

$$
E = \begin{cases} 1, & \text{if } g(Y) \neq X \\ 0, & \text{if } g(Y) = X \end{cases}.
$$

• Then using the chain rule for conditional entropy, we obtain

$$
H(E, X|Y) = H(X|Y) + H(E|X, Y) = H(E|Y) + H(X|E, Y).
$$

- Observe that E is a function of X and Y; hence, $H(E|X, Y) = 0$.
- Since conditioning never increases entropy, $H(E|Y) \leq H(E) = h_b(P_e)$.
- The remaining term, $H(X|E, Y)$, can be bounded as follows:

$$
H(X|E, Y) = \Pr[E = 0]H(X|Y, E = 0) + \Pr[E = 1]H(X|Y, E = 1)
$$

$$
\leq (1 - P_e) \cdot 0 + P_e \cdot \log_2(|\mathcal{X}| - 1),
$$

since $X = g(Y)$ for $E = 0$, and given $E = 1$, we can upper bound the conditional entropy by the logarithm of the number of remaining outcomes, i.e., $(|\mathcal{X}| - 1)$.

• Combining these results completes the proof. \Box

• Fano's inequality cannot be improved in the sense that the lower bound, $H(X|Y)$, can be achieved for some specific cases (See Example 2.28 in the text); so it is ^a sharp bound.

Definition. A bound is said to be *sharp* if the bound is achievable for *some specific* cases. A bound is said to be *tight* if the bound is achievable for *all* cases.

Alternative proof of Fano's inequality:

• Noting that $X \to Y \to \hat{X}$ form ^a Markov chain, we directly obtain via the data processing inequality that

$$
I(X;Y) \ge I(X; \hat{X}),
$$

which implies that

$$
H(X|Y) \le H(X|\hat{X}).
$$

• Thus, if we show that $H(X|\hat{X})$) is no larger than the right-hand side of (2.5.1), the proof of (2.5.1) is complete. I.e.,

> $H(X|\hat{X}$ $) \leq h_b(P_e) + P_e \cdot \log_2(|\mathcal{X}|-1),$

• Noting that

$$
P_e = \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X} : \hat{x} \neq x} P_{X, \hat{X}}(x, \hat{x})
$$

and

$$
1 - P_e = \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X} : \hat{x} = x} P_{X, \hat{X}}(x, \hat{x}) = \sum_{x \in \mathcal{X}} P_{X, \hat{X}}(x, x),
$$

we obtain that

$$
H(X|\hat{X}) - h_b(P_e) - P_e \log_2(|\mathcal{X}| - 1)
$$

=
$$
\sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X} : \hat{x} \neq x} P_{X,\hat{X}}(x, \hat{x}) \log_2 \frac{1}{P_{X|\hat{X}}(x|\hat{x})} + \sum_{x \in \mathcal{X}} P_{X,\hat{X}}(x, x) \log_2 \frac{1}{P_{X|\hat{X}}(x|x)}
$$

-
$$
\left[\sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X} : \hat{x} \neq x} P_{X,\hat{X}}(x, \hat{x}) \right] \log_2 \frac{(|\mathcal{X}| - 1)}{P_e} + \left[\sum_{x \in \mathcal{X}} P_{X,\hat{X}}(x, x) \right] \log_2(1 - P_e)
$$

$$
= \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X}: \hat{x} \neq x} P_{X, \hat{X}}(x, \hat{x}) \log_2 \frac{P_e}{P_{X | \hat{X}}(x | \hat{x}) (|\mathcal{X}| - 1)}
$$

+
$$
\sum_{x \in \mathcal{X}} P_{X, \hat{X}}(x, x) \log_2 \frac{1 - P_e}{P_{X | \hat{X}}(x | \hat{x})}
$$
(2.5.3)

$$
\leq \log_2(e) \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X}: \hat{x} \neq x} P_{X, \hat{X}}(x, \hat{x}) \left[\frac{P_e}{P_{X | \hat{X}}(x | \hat{x}) (|\mathcal{X}| - 1)} - 1 \right]
$$
(FI lemma)
+
$$
\log_2(e) \sum_{x \in \mathcal{X}} P_{X, \hat{X}}(x, x) \left[\frac{1 - P_e}{P_{X | \hat{X}}(x | \hat{x})} - 1 \right]
$$

=
$$
\log_2(e) \left[\frac{P_e}{(|\mathcal{X}| - 1)} \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X}: \hat{x} \neq x} P_{\hat{X}}(\hat{x}) - \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \mathcal{X}: \hat{x} \neq x} P_{X, \hat{X}}(x, \hat{x}) \right]
$$

+
$$
\log_2(e) \left[(1 - P_e) \sum_{x \in \mathcal{X}} P_{\hat{X}}(x) - \sum_{x \in \mathcal{X}} P_{X, \hat{X}}(x, x) \right]
$$

=
$$
\log_2(e) \left[\frac{P_e}{(|\mathcal{X}| - 1)}(|\mathcal{X}| - 1) - P_e \right] + \log_2(e) [(1 - P_e) - (1 - P_e)]
$$

= 0

 \Box

Definition 2.29 (Divergence) Given two discrete random variables X and \hat{X} defined over a common alphabet \mathcal{X} , the divergence or the *Kullback-Leibler divergence or distance* (other names are *relative entropy* and *discrimination*) is denoted by $D(X||\hat{X})$ or $D(P_X||P_{\hat{X}})$ and defined by

$$
D(X||\hat{X}) = D(P_X||P_{\hat{X}}) := E_X \left[\log_2 \frac{P_X(X)}{P_{\hat{X}}(X)} \right] = \sum_{x \in \mathcal{X}} P_X(x) \log_2 \frac{P_X(x)}{P_{\hat{X}}(x)}.
$$

Why name it relative entropy?

- $D(X||\hat{X})$ is also called *relative entropy* since it can be regarded as a measure of the inefficiency of mistakenly assuming that the distribution of ^a source is $P_{\hat{X}}$ when the true distribution is P_X .
- Specifically, if we mistakenly thought that the "true" distribution is $P_{\hat{X}}$ and employ the "best" code corresponding to $P_{\hat{X}}$, then the resultant average codeword length becomes

$$
\sum_{x \in \mathcal{X}} [-P_X(x) \cdot \log_2 P_{\hat{X}}(x)].
$$

As ^a result, the *relative* difference between the resultant average codeword length and $H(X)$ is the *relative* entropy $D(X||\hat{X})$.

• Computation conventions from continuity

$$
0 \cdot \log \frac{0}{p} = 0
$$
 and $p \cdot \log \frac{p}{0} = \infty$ for $p > 0$.

Lemma 2.30 (Non-negativity of divergence)

$$
D(X||\hat{X}) \ge 0,
$$

with equality iff $P_X(x) = P_{\hat{X}}(x)$ for all $x \in \mathcal{X}$ (i.e., the two distributions are equal).

Proof:

$$
D(X||\hat{X}) = \sum_{x \in \mathcal{X}} P_X(x) \log_2 \frac{P_X(x)}{P_{\hat{X}}(x)}
$$

\n
$$
\geq \left(\sum_{x \in \mathcal{X}} P_X(x)\right) \log_2 \frac{\sum_{x \in \mathcal{X}} P_X(x)}{\sum_{x \in \mathcal{X}} P_{\hat{X}}(x)}
$$

\n= 0,

where the second step follows from the log-sum inequality with equality holding iff for every $x \in \mathcal{X},$

$$
\frac{P_X(x)}{P_{\hat{X}}(x)} = \frac{\sum_{a \in \mathcal{X}} P_X(a)}{\sum_{b \in \mathcal{X}} P_{\hat{X}}(b)} = 1,
$$

or equivalently $P_X(x) = P_{\hat{X}}(x)$ for all $x \in \mathcal{X}$.

Lemma 2.31 (Mutual information and divergence)

$$
I(X;Y) = D(P_{X,Y} || P_X \times P_Y),
$$

where $P_{X,Y}(\cdot,\cdot)$ is the joint distribution of the random variables X and Y and $P_X(\cdot)$ and $P_Y(\cdot)$ are the respective marginals.

Definition 2.32 (Refinement of distribution) Given the distribution PX on X, divide X into k mutually disjoint sets, $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_k$, satisfying

$$
\mathcal{X} = \bigcup_{i=1}^k \mathcal{U}_i.
$$

Define a new distribution P_U on $\mathcal{U} = \{1, 2, \ldots, k\}$ as

$$
P_U(i) = \sum_{x \in \mathcal{U}_i} P_X(x).
$$

Then P_X is called a *refinement* (or more specifically, a k -*refinement*) of P_U .

 $\bf{Lemma 2.33}$ (Refinement cannot decrease divergence) Let P_X and $P_{\hat{X}}$ be the refinements (*k*-refinements) of P_U and $P_{\hat{U}}$ respectively. Then

$$
D(P_X \| P_{\hat{X}}) \ge D(P_U \| P_{\hat{U}}).
$$

Proof: By the **log-sum inequality**, we obtain that for any $i \in \{1, 2, \ldots, k\}$

$$
\sum_{x \in \mathcal{U}_i} P_X(x) \log_2 \frac{P_X(x)}{P_{\hat{X}}(x)} \ge \left(\sum_{x \in \mathcal{U}_i} P_X(x)\right) \log_2 \frac{\sum_{x \in \mathcal{U}_i} P_X(x)}{\sum_{x \in \mathcal{U}_i} P_{\hat{X}}(x)}
$$
\n
$$
= P_U(i) \log_2 \frac{P_U(i)}{P_{\hat{U}}(i)},
$$
\n(2.6.1)

with equality iff

$$
\frac{P_X(x)}{P_{\hat{X}}(x)} = \frac{P_U(i)}{P_{\hat{U}}(i)}
$$

for all $x \in \mathcal{U}$.

Hence,

$$
D(P_X \| P_{\hat{X}}) = \sum_{i=1}^k \sum_{x \in \mathcal{U}_i} P_X(x) \log_2 \frac{P_X(x)}{P_{\hat{X}}(x)}
$$

\n
$$
\geq \sum_{i=1}^k P_U(i) \log_2 \frac{P_U(i)}{P_{\hat{U}}(i)}
$$

\n
$$
= D(P_U \| P_{\hat{U}}),
$$

with equality iff

$$
\frac{P_X(x)}{P_{\hat{X}}(x)} = \frac{P_U(i)}{P_{\hat{U}}(i)}
$$

for all i and $x \in \mathcal{U}_i$.

Communication context of the data processing lemma.

- Processing of information can be modeled as ^a (many-to-one) mapping, and refinement is actually the reverse operation.
- Recall that the *data processing lemma* shows that mutual information can never increase due to *processing*. Hence, if one wishes to increase mutual information, he should "anti-process" (or refine) the involved statistics.
- From Lemma 2.31, the mutual information can be viewed as the divergence of ^a joint distribution against the product distribution of the marginals. It is therefore reasonable to expect that ^a similar effect due to *processing* (or ^a reverse effect due to *refinement*) should also apply to *divergence*. This is shown in the next lemma.
- Processing only decreases mutual information and divergence.
- Only by refinement can mutual information and divergence be increased.

• Divergence is not ^a *distance*, ^a drawback in certain applications.

Given a non-empty set A, the function $d: A \times A \rightarrow [0, \infty)$ is called a *distance* or *metric* if it satisfies the following properties.

1. Non-negativity: $d(a, b) \geq 0$ for every $a, b \in A$ with equality holding iff $a = b$.

2. Symmetry:
$$
d(a, b) = d(b, a)
$$
 for every $a, b \in A$.

3. Triangular inequality: $d(a, b) + d(b, c) \geq d(a, c)$ for every $a, b, c \in A$. — — ✭

Definition 2.35 (Variational distance) The *variational distance* (also known as the \mathcal{L}_1 -distance, the total variation distance, the statistical distance) between two distributions P_X and $P_{\hat{X}}$ with common alphabet $\mathcal X$ is defined by

$$
||P_X - P_{\hat{X}}|| := \sum_{x \in \mathcal{X}} |P_X(x) - P_{\hat{X}}(x)|.
$$

Lemma 2.36 The variational distance satisfies

$$
||P_X - P_{\hat{X}}|| = 2 \cdot \sum_{x \in \mathcal{X} \colon P_X(x) > P_{\hat{X}}(x)} \left(P_X(x) - P_{\hat{X}}(x) \right) = 2 \cdot \sup_{E \subset \mathcal{X}} \left| P_X(E) - P_{\hat{X}}(E) \right|.
$$

Lemma 2.37 (Variational distance vs divergence: Pinsker's inequality)

$$
D(X||\hat{X}) \ge \frac{\log_2(e)}{2} \cdot ||P_X - P_{\hat{X}}||^2.
$$

This result is referred to as Pinsker's inequality.

Proof:

1. With $\mathcal{A} := \{x \in \mathcal{X} : P_X(x) > P_{\hat{X}}(x)\}\,$, we have from the previous lemma that

$$
||P_X - P_{\hat{X}}|| = 2[P_X(\mathcal{A}) - P_{\hat{X}}(\mathcal{A})].
$$

2. Define two random variables U and \hat{U} as:

$$
U = \begin{cases} 1, & \text{if } X \in \mathcal{A}, \\ 0, & \text{if } X \in \mathcal{A}^c, \end{cases} \quad \text{and} \quad \hat{U} = \begin{cases} 1, & \text{if } \hat{X} \in \mathcal{A}, \\ 0, & \text{if } \hat{X} \in \mathcal{A}^c. \end{cases}
$$

Then P_X and $P_{\hat{X}}$ are refinements (2-refinements) of P_U and $P_{\hat{U}}$, respectively. From Lemma 2.33, we obtain that

$$
D(P_X \| P_{\hat{X}}) \ge D(P_U \| P_{\hat{U}}).
$$

3. The proof is complete if we show that

$$
D(P_U \| P_{\hat{U}}) \ge 2 \log_2(e) [P_X(\mathcal{A}) - P_{\hat{X}}(\mathcal{A})]^2
$$

= 2 \log_2(e) [P_U(1) - P_{\hat{U}}(1)]^2.

For ease of notations, let $p = P_U(1)$ and $q = P_{\hat{U}}(1)$. Then to prove the above inequality is equivalent to show that

$$
p \cdot \ln \frac{p}{q} + (1 - p) \cdot \ln \frac{1 - p}{1 - q} \ge 2(p - q)^2.
$$

 \Box

$$
f(p,q) := p \cdot \ln \frac{p}{q} + (1-p) \cdot \ln \frac{1-p}{1-q} - 2(p-q)^2,
$$

and observe that

Define

$$
\frac{df(p,q)}{dq} = (p-q)\left(4 - \frac{1}{q(1-q)}\right) \le 0 \quad \text{for } q \le p.
$$

Thus, $f(p,q)$ is non-increasing in q for $q \leq p$. Also note that $f(p,q) = 0$ for $q = p$. Therefore,

$$
f(p,q) \ge 0 \quad \text{for } q \le p.
$$

The proof is completed by noting that

$$
f(p,q) \ge 0 \quad \text{for } q \ge p,
$$

since $f(1-p, 1-q) = f(p, q)$.

Lemma 2.39 If $D(P_X \| P_{\hat{X}}) < \infty$, then

$$
D(P_X \| P_{\hat{X}}) \le \frac{\log_2(e)}{\min_{\{x \colon P_X(x) > 0\}} \min\{P_X(x), P_{\hat{X}}(x)\}} \cdot \|P_X - P_{\hat{X}}\|.
$$

Definition 2.40 (Conditional divergence) Given three discrete random variables, X, \hat{X} and Z, where X and \hat{X} have a common alphabet \mathcal{X} , we define the conditional divergence between X and \hat{X} given Z by

$$
D(X||\hat{X}|Z) = D(P_{X|Z}||P_{\hat{X}|Z}|P_Z) := \sum_{z \in \mathcal{Z}} P_Z(z) \sum_{x \in \mathcal{X}} P_{X|Z}(x|z) \log \frac{P_{X|Z}(x|z)}{P_{\hat{X}|Z}(x|z)}
$$

=
$$
\sum_{z \in \mathcal{Z}} \sum_{x \in \mathcal{X}} P_{X,Z}(x, z) \log \frac{P_{X|Z}(x|z)}{P_{\hat{X}|Z}(x|z)}
$$
.

Similarly, the conditional divergence between $P_{X|Z}$ and $P_{\hat{X}}$ given P_Z is defined as

$$
D(P_{X|Z}||P_{\hat{X}}|P_Z) := \sum_{z \in \mathcal{Z}} P_Z(z) \sum_{x \in \mathcal{X}} P_{X|Z}(x|z) \log \frac{P_{X|Z}(x|z)}{P_{\hat{X}}(z)}.
$$

Lemma 2.41 (Conditional mutual information and conditional divergence) Given three discrete random variables X, Y and Z with alphabets \mathcal{X}, \mathcal{Y} and $\mathcal{Z},$ respectively, and joint distribution $P_{X,Y,Z}$, we have

$$
I(X;Y|Z) = D(P_{X,Y|Z}||P_{X|Z}P_{Y|Z}|P_Z)
$$

=
$$
\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} P_{X,Y,Z}(x,y,z) \log_2 \frac{P_{X,Y|Z}(x,y|z)}{P_{X|Z}(x|z)P_{Y|Z}(y|z)},
$$

where $P_{X,Y|Z}$ is the conditional joint distribution of X and Y given Z, and $P_{X|Z}$ and $P_{Y|Z}$ are the conditional distributions of X and Y, respectively, given Z.

Lemma 2.42 (Chain rule for divergence) Let P_{X^n} and Q_{X^n} be two joint distributions on \mathcal{X}^n . We have that

$$
D(P_{X_1,X_2}||Q_{X_1,X_2}) = D(P_{X_1}||Q_{X_1}) + D(P_{X_2|X_1}||Q_{X_2|X_1}|P_{X_1}),
$$

and more generally,

$$
D(P_{X^n}||Q_{X^n}) = \sum_{i=1}^n D(P_{X_i|X^{i-1}}||Q_{X_i|X^{i-1}}|P_{X^{i-1}}),
$$

where $D(P_{X_i|X^{i-1}}\|Q_{X_i|X^{i-1}}|P_{X^{i-1}})$:= $D(P_{X_1}\|Q_{X_1})$ for $i=1$.

Lemma 2.43 (Conditioning never decreases divergence) For three discrete random variables, X, \hat{X} and Z , where X and \hat{X} have a common alphabet \mathcal{X} , we have that

$$
D(P_{X|Z} \| P_{\hat{X}|Z} | P_Z) \ge D(P_X \| P_{\hat{X}}).
$$

Proof:

$$
D(P_{X|Z}||P_{\hat{X}|Z}|P_Z) - D(P_X||P_{\hat{X}})
$$

=
$$
\sum_{z \in \mathcal{Z}} \sum_{x \in \mathcal{X}} P_{X,Z}(x, z) \cdot \log_2 \frac{P_{X|Z}(x|z)}{P_{\hat{X}|Z}(x|z)} - \sum_{x \in \mathcal{X}} P_{X}(x) \cdot \log_2 \frac{P_{X}(x)}{P_{\hat{X}}(x)}
$$

=
$$
\sum_{z \in \mathcal{Z}} \sum_{x \in \mathcal{X}} P_{X,Z}(x, z) \cdot \log_2 \frac{P_{X|Z}(x|z)}{P_{\hat{X}|Z}(x|z)} - \sum_{x \in \mathcal{X}} \left(\sum_{z \in \mathcal{Z}} P_{X,Z}(x, z) \right) \cdot \log_2 \frac{P_{X}(x)}{P_{\hat{X}}(x)}
$$

=
$$
\sum_{z \in \mathcal{Z}} \sum_{x \in \mathcal{X}} P_{X,Z}(x, z) \cdot \log_2 \frac{P_{X|Z}(x|z)P_{\hat{X}}(x)}{P_{\hat{X}|Z}(x|z)P_{X}(x)}
$$

$$
\geq \sum_{z \in \mathcal{Z}} \sum_{x \in \mathcal{X}} P_{X,Z}(x, z) \cdot \log_2(e) \left(1 - \frac{P_{\hat{X}|Z}(x|z)P_X(x)}{P_{X|Z}(x|z)P_{\hat{X}}(x)} \right) \quad \text{(by the FI Lemma)}
$$
\n
$$
= \log_2(e) \left(1 - \sum_{x \in \mathcal{X}} \frac{P_X(x)}{P_{\hat{X}}(x)} \sum_{z \in \mathcal{Z}} P_Z(z)P_{\hat{X}|Z}(x|z) \right)
$$
\n
$$
= \log_2(e) \left(1 - \sum_{x \in \mathcal{X}} \frac{P_X(x)}{P_{\hat{X}}(x)} P_{\hat{X}}(x) \right)
$$
\n
$$
= \log_2(e) \left(1 - \sum_{x \in \mathcal{X}} P_X(x) \right) = 0,
$$

with equality holding iff for all x and z ,

$$
\frac{P_X(x)}{P_{\hat{X}}(x)} = \frac{P_{X|Z}(x|z)}{P_{\hat{X}|Z}(x|z)}.
$$

 \Box

Lemma 2.44 (Independent side information does not change divergence) If X is independent of Z and \hat{X} is independent of \hat{Z} , where X and Z share a common alphabet with \hat{X} and \hat{Z} , respectively, then

$$
D(P_{X|Z} || P_{\hat{X}|\hat{Z}} | P_Z) = D(P_X || P_{\hat{X}}).
$$

Corollary 2.45 (Additivity of divergence under independence) If X is independent of Z and \hat{X} is independent of \hat{Z} , where X and Z share a common alphabet with \hat{X} and \hat{Z} , respectively, then

 $D(P_{X,Z}||P_{\hat{X}, \hat{Z}}) = D(P_X||P_{\hat{X}}) + D(P_Z||P_{\hat{Z}}).$

2.7 Convexity/concavity of information measures \blacksquare

Lemma 2.46

1. $H(P_X)$ is a concave function of P_X , namely

$$
H(\lambda P_X + (1 - \lambda)P_{\widetilde{X}}) \ge \lambda H(P_X) + (1 - \lambda)H(P_{\widetilde{X}})
$$

for all $\lambda \in [0,1]$. Equality holds iff $P_X(x) = P_{\widetilde{X}}(x)$ for all x.

2. Noting that $I(X; Y)$ can be re-written as $I(P_X, P_{Y|X})$, where

$$
I(P_X, P_{Y|X}) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) P_X(x) \log_2 \frac{P_{Y|X}(y|x)}{\sum_{a \in \mathcal{X}} P_{Y|X}(y|a) P_X(a)},
$$

then

• $I(X; Y)$ is a concave function of P_X (for fixed $P_{Y|X}$), i.e.,

 $I(\lambda P_X + (1-\lambda)P_{\widetilde{X}}, P_{Y|X}) \geq \lambda I(P_X, P_{Y|X}) + (1-\lambda)P_{\widetilde{X}}$ $-\lambda$) $I(P_{\widetilde{X}}, P_{Y|X})$

with equality holding iff

$$
P_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) P_{Y|X}(y|x) = \sum_{x \in \mathcal{X}} P_{\widetilde{X}}(x) P_{Y|X}(y|x) = P_{\widetilde{Y}}(y)
$$

for all $y \in \mathcal{Y}$, and

2.7 Convexity/concavity of information measures \qquad I: 2-52

• $I(X; Y)$ is a convex function of $P_{Y|X}$ (for fixed P_X), i.e.,

$$
\lambda I(P_X, P_{Y|X}) + (1 - \lambda)I(P_X, P_{\widetilde{Y}|X}) \ge I(P_X, \lambda P_{Y|X} + (1 - \lambda)P_{\widetilde{Y}|X})
$$

with equality holding iff

$$
(\forall x \in \mathcal{X}) \frac{P_{Y|X}(y|x)}{P_{\widetilde{Y}|X}(y|x)} = L(y).
$$

$$
P_{Y|X}(y|x) = L(y)P_{\widetilde{Y}|X}(y|x)
$$

\n
$$
\Rightarrow \sum_{x \in \mathcal{X}} P_X(x)P_{Y|X}(y|x) = L(y) \sum_{x \in \mathcal{X}} P_X(x)P_{\widetilde{Y}|X}(y|x)
$$

\n
$$
\Rightarrow P_Y(y) = L(y)P_{\widetilde{Y}}(y)
$$

\n
$$
\Rightarrow L(y) = \frac{P_Y(y)}{P_{\widetilde{Y}}(y)}
$$

2.7 Convexity/concavity of information measures $\frac{1}{1}$: 2-53

3. $D(P_X \| P_{\hat{X}})$ is convex in the pair $(P_X, P_{\hat{X}})$; i.e., if $(P_X, P_{\hat{X}})$ and $(Q_X, Q_{\hat{X}})$ are two pairs of pmfs, then

$$
D(\lambda P_X + (1 - \lambda)Q_X \|\lambda P_{\hat{X}} + (1 - \lambda)Q_{\hat{X}})
$$

\n
$$
\leq \lambda \cdot D(P_X \| P_{\hat{X}}) + (1 - \lambda) \cdot D(Q_X \| Q_{\hat{X}}),
$$
\n(2.7.1)

with equality holding iff

$$
(\forall x \in \mathcal{X}) \frac{P_X(x)}{P_{\hat{X}}(x)} = \frac{Q_X(x)}{Q_{\hat{X}}(x)}.
$$

Thus, $D(P_X||P_{\hat{X}})$ is convex with respect to both the first argument P_X and the second argument $P_{\hat{X}}$.

- Simple hypothesis testing problem
	- **–** whether ^a coin is fair or not
	- **–** whether ^a product is successful or not
- **Problem description:** Let X_1, \ldots, X_n be a sequence of observations which is drawn according to either a "null hypothesis" distribution P_{X^n} or an "alternative hypothesis" distribution $P_{\hat{X}^n}$. The hypotheses are usually denoted by:

$$
\bullet \ H_0 : P_{X^n}
$$

$$
\bullet \ H_1 : P_{\hat{X}^n}.
$$

• Decision mapping

$$
\phi(x^n) = \begin{cases} 0, & \text{if distribution of } X^n \text{ is classified to be } P_{X^n}; \\ 1, & \text{if distribution of } X^n \text{ is classified to be } P_{\hat{X}^n}. \end{cases}
$$

• Acceptance regions

Acceptance region for
$$
H_0
$$
 : $\{x^n \in \mathcal{X}^n : \phi(x^n) = 0\}$
Acceptance region for H_1 : $\{x^n \in \mathcal{X}^n : \phi(x^n) = 1\}$.

• Error types

Type I error :
$$
\alpha_n = \alpha_n(\phi) = P_{X^n} (\{x^n \in \mathcal{X}^n : \phi(x^n) = 1\})
$$

Type II error : $\beta_n = \beta_n(\phi) = P_{\hat{X}^n} (\{x^n \in \mathcal{X}^n : \phi(x^n) = 0\})$.

1. Bayesian hypothesis testing.

Here, $\phi(\cdot)$ is chosen so that the Bayesian cost

$$
\pi_0\alpha_n+\pi_1\beta_n
$$

is minimized, where π_0 and π_1 are the prior probabilities for the null and alternative hypotheses, respectively. The mathematical expression for Bayesian testing is:

$$
\min_{\{\phi\}} [\pi_0 \alpha_n(\phi) + \pi_1 \beta_n(\phi)].
$$

2. Neyman-Pearson hypothesis testing subject to ^a fixed test level.

Here, $\phi(\cdot)$ is chosen so that the type II error β_n is minimized subject to a constant bound on the type I error; i.e.,

 $\alpha_n \leq \varepsilon$

where $\varepsilon > 0$ is fixed. The mathematical expression for Neyman-Pearson testing is:

$$
\min_{\{\phi \colon \alpha_n(\phi) \leq \varepsilon\}} \beta_n(\phi).
$$

Lemma 2.48 (Neyman-Pearson Lemma) For ^a simple hypothesis testing problem, define an acceptance region for the null hypothesis through the *likelihood ratio* as

$$
\mathcal{A}_n(\tau) := \left\{ x^n \in \mathcal{X}^n \colon \frac{P_{X^n}(x^n)}{P_{\hat{X}^n}(x^n)} > \tau \right\}
$$

,

and let

$$
\alpha_n^*{:=}P_{X^n}\left\{{\mathcal A}_n^c(\tau)\right\}
$$

and

$$
\beta_n^*:=P_{\hat{X}^n}\left\{\mathcal{A}_n(\tau)\right\}.
$$

Then for type I error α_n and type II error β_n associated with another choice of acceptance region for the null hypothesis, we have

$$
\alpha_n \leq \alpha_n^* \implies \beta_n \geq \beta_n^*.
$$

Proof: Let \mathcal{B} be a choice of acceptance region for the null hypothesis. Then

$$
\alpha_n + \tau \beta_n = \sum_{x^n \in \mathcal{B}^c} P_{X^n}(x^n) + \tau \sum_{x^n \in \mathcal{B}} P_{\hat{X}^n}(x^n)
$$

=
$$
\sum_{x^n \in \mathcal{B}^c} P_{X^n}(x^n) + \tau \left[1 - \sum_{x^n \in \mathcal{B}^c} P_{\hat{X}^n}(x^n)\right]
$$

=
$$
\tau + \sum_{x^n \in \mathcal{B}^c} \left[P_{X^n}(x^n) - \tau P_{\hat{X}^n}(x^n)\right].
$$
 (2.8.1)

Observe that $(2.8.1)$ is minimized by choosing $\mathcal{B} = \mathcal{A}_n(\tau)$. Hence,

$$
\alpha_n + \tau \beta_n \ge \alpha_n^* + \tau \beta_n^*,
$$

which immediately implies the desired result.

 \Box

Lemma 2.49 (Chernoff-Stein lemma) For ^a sequence of i.i.d. observations X^n which is possibly drawn from either the null hypothesis distribution P_{X^n} or the alternative hypothesis distribution $P_{\hat{X}^n}$, the best type II error satisfies

$$
\lim_{n \to \infty} -\frac{1}{n} \log_2 \beta_n^*(\varepsilon) = D(P_X \| P_{\hat{X}}),
$$

for any $\varepsilon \in (0,1)$, where $\beta_n^*(\varepsilon) = \min_{\alpha_n \leq \varepsilon} \beta_n$, and α_n and β_n are the type I and type II errors, respectively.

Proof:

Forward Part: In this part, we prove that there exists an acceptance region for the null hypothesis such that

$$
\liminf_{n \to \infty} -\frac{1}{n} \log_2 \beta_n(\varepsilon) \ge D(P_X \| P_{\hat{X}}).
$$

Step 1: Divergence typical set. For any $\delta > 0$, define the divergence typical set as

$$
\mathcal{A}_n(\delta) := \left\{ x^n \in \mathcal{X}^n : \left| \frac{1}{n} \log_2 \frac{P_{X^n}(x^n)}{P_{\hat{X}^n}(x^n)} - D(P_X \| P_{\hat{X}}) \right| < \delta \right\}.
$$

Note that any sequence x^n in this set satisfies

$$
P_{\hat{X}^n}(x^n) \le P_{X^n}(x^n) 2^{-n(D(P_X \| P_{\hat{X}}) - \delta)}.
$$

Step 2: Computation of type I error. The observations being i.i.d., we have by the weak law of large numbers that

$$
P_{X^n}(\mathcal{A}_n(\delta)) \to 1 \quad \text{as } n \to \infty.
$$

Hence,

$$
\alpha_n = P_{X^n}(\mathcal{A}_n^c(\delta)) < \varepsilon
$$

for sufficiently large n .

Step 3: Computation of type II error.

$$
\beta_n(\varepsilon) = P_{\hat{X}^n}(\mathcal{A}_n(\delta))
$$

\n
$$
= \sum_{x^n \in \mathcal{A}_n(\delta)} P_{\hat{X}^n}(x^n)
$$

\n
$$
\leq \sum_{x^n \in \mathcal{A}_n(\delta)} P_{X^n}(x^n) 2^{-n(D(P_X || P_{\hat{X}}) - \delta)}
$$

\n
$$
= 2^{-n(D(P_X || P_{\hat{X}}) - \delta)} \sum_{x^n \in \mathcal{A}_n(\delta)} P_{X^n}(x^n)
$$

\n
$$
= 2^{-n(D(P_X || P_{\hat{X}}) - \delta)} (1 - \alpha_n).
$$

Hence,

$$
-\frac{1}{n}\log_2\beta_n(\varepsilon) \ge D(P_X \| P_{\hat{X}}) - \delta + \frac{1}{n}\log_2(1 - \alpha_n),
$$

which implies that

$$
\liminf_{n \to \infty} -\frac{1}{n} \log_2 \beta_n(\varepsilon) \ge D(P_X || P_{\hat{X}}) - \delta.
$$

The above inequality is true for any $\delta > 0$; therefore,

$$
\liminf_{n \to \infty} -\frac{1}{n} \log_2 \beta_n(\varepsilon) \ge D(P_X \| P_{\hat{X}}).
$$

Converse Part: We next prove that for any acceptance region \mathcal{B}_n for the null hypothesis satisfying the type I error constraint, i.e.,

$$
\alpha_n(\mathcal{B}_n)=P_{X^n}(\mathcal{B}_n^c)\leq\varepsilon,
$$

its type II error $\beta_n(\mathcal{B}_n)$ satisfies

$$
\limsup_{n\to\infty}-\frac{1}{n}\log_2\beta_n(\mathcal{B}_n)\leq D(P_X\|P_{\hat{X}}).
$$

We have

$$
\beta_n(\mathcal{B}_n) = P_{\hat{X}^n}(\mathcal{B}_n) \ge P_{\hat{X}^n}(\mathcal{B}_n \cap \mathcal{A}_n(\delta))
$$

\n
$$
\ge \sum_{x^n \in \mathcal{B}_n \cap \mathcal{A}_n(\delta)} P_{\hat{X}^n}(x^n)
$$

\n
$$
\ge \sum_{x^n \in \mathcal{B}_n \cap \mathcal{A}_n(\delta)} P_{X^n}(x^n) 2^{-n(D(P_X || P_{\hat{X}}) + \delta)}
$$

\n
$$
= 2^{-n(D(P_X || P_{\hat{X}}) + \delta)} P_{X^n}(\mathcal{B}_n \cap \mathcal{A}_n(\delta))
$$

\n
$$
\ge 2^{-n(D(P_X || P_{\hat{X}}) + \delta)} [1 - P_{X^n}(\mathcal{B}_n^c) - P_{X^n}(\mathcal{A}_n^c(\delta))]
$$

\n
$$
= 2^{-n(D(P_X || P_{\hat{X}}) + \delta)} [1 - \alpha_n(\mathcal{B}_n) - P_{X^n}(\mathcal{A}_n^c(\delta))]
$$

\n
$$
\ge 2^{-n(D(P_X || P_{\hat{X}}) + \delta)} [1 - \varepsilon - P_{X^n}(\mathcal{A}_n^c(\delta))].
$$

Hence,

$$
-\frac{1}{n}\log_2\beta_n(\mathcal{B}_n)\leq D(P_X\|P_{\hat{X}})+\delta+\frac{1}{n}\log_2\left[1-\varepsilon-P_{X^n}\left(\mathcal{A}_n^c(\delta)\right)\right],
$$

which, upon noting that $\lim_{n\to\infty} P_{X^n}(\mathcal{A}_n^c(\delta)) = 0$ (by the weak law of large numbers), implies that

$$
\limsup_{n\to\infty}-\frac{1}{n}\log_2\beta_n(\mathcal{B}_n)\leq D(P_X\|P_{\hat{X}})+\delta.
$$

The above inequality is true for any $\delta > 0$; therefore,

$$
\limsup_{n\to\infty}-\frac{1}{n}\log_2\beta_n(\mathcal{B}_n)\leq D(P_X\|P_{\hat{X}}).
$$

2.9 Rényi's information measures I: 2-64

Definition 2.50 (Rényi's entropy) Given a parameter $\alpha > 0$ with $\alpha \neq 1$, and given a discrete random variable X with alphabet $\mathcal X$ and distribution P_X , its Rényi entropy of order α is given by

$$
H_{\alpha}(X) = \frac{1}{1 - \alpha} \log \left(\sum_{x \in \mathcal{X}} P_X(x)^{\alpha} \right).
$$
 (2.9.1)

- As in case of the Shannon entropy, the base of the logarithm determines the units.
- If the base is D , Rényi's entropy is in D -ary units.
- Other notations for $H_{\alpha}(X)$ are $H(X; \alpha)$, $H_{\alpha}(P_X)$ and $H(P_X; \alpha)$.

2.9 Rényi's information measures I: 2-65

Definition 2.51 (Rényi's divergence) Given a parameter $0 < \alpha < 1$, and two discrete random variables X and \hat{X} with common alphabet $\mathcal X$ and distribution P_X and $P_{\hat{X}}$, respectively, then the Rényi divergence of order α between X and \hat{X} is given by

$$
D_{\alpha}(X||\hat{X}) = \frac{1}{\alpha - 1} \log \left(\sum_{x \in \mathcal{X}} \left[P_X^{\alpha}(x) P_{\hat{X}}^{1 - \alpha}(x) \right] \right). \tag{2.9.2}
$$

- This definition can be extended to $\alpha > 1$ if $P_{\hat{X}}(x) > 0$ for all $x \in \mathcal{X}$.
- Other notations for $D_{\alpha}(X||\hat{X})$ are $D(X||\hat{X};\alpha)$, $D_{\alpha}(P_X||P_{\hat{X}})$ and $D(P_X||P_{\hat{X}};\alpha)$.

Lemma 2.52 When $\alpha \to 1$, we have the following:

$$
\lim_{\alpha \to 1} H_{\alpha}(X) = H(X) \tag{2.9.3}
$$

and

$$
\lim_{\alpha \to 1} D_{\alpha}(X \| \hat{X}) = D(X \| \hat{X}).
$$
\n(2.9.4)

2.9 Rényi's information measures I: 2-66

$\bm{\mathrm{Observation\ 2.54\ (\alpha\text{-}mutual\ information)}}$

• While Rényi did not propose a mutual information of order α that generalizes Shannon's mutual information, there are at least three different possible definitions of such measure due to Sibson (1969) , Arimoto (1975) and Csiszár (1995), respectively.

$Key Notes$ I: 2-67

- Conditions 1, 2 and 3 for self-information, and how these conditions correspond to mathematical expressions
- Definition of entropy, joint entropy and mutual information. Also definitions of their conditional counterparts.
- Physical interpretations of each property
	- **–** Subtraction proofs using fundamental inequality and log-sum inequality
- Venn diagram for entropy and mutual information
- Chain rules and independent bounds (Operational meaning)
- Data processing lemma (Operational meaning)
- Why divergence is also named "relative entropy"
- Representing mutual information in terms of divergence
- Refinement and Processing
- Variational distance and divergence
- Side information and divergence
- Convexity and concavity of information measures
- Extension of information measures such as Rényi's information measures