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Motivations I 41

e Shannon’s channel capacity [2] is usually derived under the assumption that
the channel is memoryless.

e With moderate modification of the proof, this result was extended to stationary-
ergodic channels for which the capacity formula becomes the maximization of
the mutual information rate:

1
lim sup —I(X"; Y™").
n—oo xn T

e Yet, for more general channels, such as non-stationary or non-ergodic channels,
a more general expression for channel capacity needs to be derived.
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e The channel transition probability in its most general form is denoted by
{W" = Pynjxn}p2,, which is abbreviated by W for convenience.

n=1»

e Similarly, the input and output random processes are respectively denoted by
X and Y.

e Throughout the text, we denote for convenience
PXn’Yn — PX’HW’H,
where Y is the output of channel W" = Py xn under input X".

e Please refer also to Section 1.3 for the description of general channels.
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e The sup- and inf- (mutual-)information rates are respectively defined by

I(X;Y ):=sup{f : 1(0) < 1}

and
I(X;Y):=sup{f : i(0) <0},

where

1
i(0):=liminf Pr {—z’Xan(X”; Y") < 8}
n

n—oo

is the inf-spectrum of the normalized information density,

_ 1
i(0):=limsup Pr {—z'Xan(X”; Y") < «9}
n—00 n
is the sup-spectrum of the normalized information density, and
Pyn‘Xn (yn‘xn)
Pyn (yn)

Zann(LEn, yn): 10g

is the information density.
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e In 1994, Verdi and Han have shown that the channel capacity in its most
general form is

C:=sup I(X:;Y).
b'¢

e In their proof, they showed the achievability part via Feinstein’s lemma for the
channel coding average error probability.

e More importantly, they provided a new converse based on an error lower bound
for multihypothesis testing.

e [n this chapter, we do not present the original proof of Verdi and Han in the
converse theorem. Instead, we will first derive and illustrate in Section 4.3
a general lower bound on the minimum error probability of multihypothesis

testing [Chen & Alajaji 2012].

e We then use a special case of the bound, which results the so-called Poor-Verdu
bound [Poor & Verdu 1995], to complete the proof of the converse theorem.
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Definition 4.1 (fixed-length data transmission code) An (n, M) fixed-
length data transmission code for channel input alphabet X and output alphabet
Y" consists of

1. M messages intended for transmission;

2. an encoding function
fA{L2,..., M} — X"

3. a decoding function
g:Y"'—={1,2,..., M},

which is (usually) a deterministic rule that assigns a guess to each possible

received vector.

The channel inputs in {z" € X" : 2" = f(m) for some 1 < m < M} are the
codewords of the data transmission code.
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Definition 4.2 (average probability of error) The average probability of
error for a G, = (n, M) code with encoder f(-) and decoder g(-) transmitted over
channel W" = Pyn xn is defined as

where
Aii= Z Py xn(y"| f(2))-
{yney” : g(y”)#i}
We assume that the message set (of size M) is governed by a uniform distribution.

Thus, under the average probability of error criterion, all codewords are treated
equally (having a uniform prior distribution).

Definition 4.3 (channel capacity C') The channel capacity C' is the supre-
mum of all the rates R for which there exists a sequence of -G, = (n, M,,) channel
block codes such that

1
liminf —log M,, > R,
n—oo 1
and
limsup P.(€,) = 0.

n—oo
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Lemma 4.4 (Feinstein’s Lemma) Fix a positive n. For every v > 0 and
input distribution Py» on X", there exists an (n, M) block code for the transition
probability Pyn = Pyn xn that its average error probability P.(~€,) satisfies

1 1
P.(«€,) < Pr [—z’Xan(X”; Y") < —log M + 7] +e .
n n

Proof:
Step 1: Notations. Define

. o

Let sze—m —+ Pann(gc)
Feinstein’s Lemma obviously holds if # > 1, because then

1 1
P.(€,) <1<wv=PFPr [—z’Xan(X”;Y”) < —log M + 7] +e .
n n

So we assume v < 1, which immediately results in
Pann(gc) U< 1,

or equivalently,
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Therefore, denoting
A={z" € X" © Pyunjxn(Gn|z") > 1 — v}
with Gon:={y" € Y" : (2", y") € G}, we have
Pxn(A) >0,
because if Pxn(A) =0,
(V 2" with Pxn(2") > 0) Pynjxn(Gen|2") <1 —v

= Y Pon(a")Pyojxa(Gurlz") = Pyonin(G) < 1— v,

and a contradiction to (4.2.1) is obtained.
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Step 2: Encoder. Choose an 2 in A (Recall that Pxn(A) > 0.) Define I'y =
Gen. (Then Pynpxn(I'y|2}) > 1 —v.)

Next choose, if possible, a point 2§ € X" without replacement (i.e., 8 cannot
be identical to z1) for which

Pyn‘Xn (gxg — Fl’ ZUS) > 1 — v,
and define FQ::gxg — Iy

Continue in the following way as for codeword i: choose x}' to satisty

and define [';:=G,n — J1 I';.

j=1
Repeat the above codeword selecting procedure until either M codewords are
selected or all the points in A are exhausted.
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Step 3: Decoder. Define the decoding rule as

o(y") = {

i, if yn c Fz
arbitrary, otherwise.

Step 4: Probability of error. For all selected codewords, the error probability
given codeword 4 is transmitted, A.;, satisfies

)‘e\i S Pyn’Xn(FZC‘CU?) < V.

(Note that (Vi) Pxnjxn(I;]2}) > 1 — v by Step 2.) Therefore, if we can show
that the above codeword selecting procedures will not terminate before M,
then

1 M
Pe(ﬁgn) = M Z )\e\i < V.
=1
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Step 5: Claim. The codeword selecting procedure in Step 2 will not terminate
before M.

Proof: We will prove it by contradiction.

Suppose the above procedure terminates before M, say at N < M. Define the
set

F= LNJ I, e Y.
Consider the probability o
Pxnyyn(G) = Pxnyn|G N (X" X F)] + Pxnpn|G N (X" X FO)]. (4.2.2)
Since for any y" € G,n,

Pyn|Xn<yn‘x?>

PYﬂ<y>§ M.en,y ’

we have

Pyn(T))

IA

1
Me_n’ypyn’Xn (gx;l)

L _
_6 77/7.

M

IA

IA
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So the 1st term of the right hand side in (4.2.2) can be upper bounded by
Pxnyn|G N (X" X F)] < Pxnppn(X" X F)

As for the 2nd term of the right hand side in (4.2.2), we can upper bound it by

Pyoyn[G (X" x T =) Pxn(x") Pynjxn(Gon N F¥l2")

xnexn
N
neXxmn =1
< ) Pxfa)(1-v)<1-v,
xnexn

where the last step follows since for all 2™ € X",

N

i=1
(Because otherwise we could find the (N 4 1)-th codeword.)
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Consequently,

PX”W”(Q) S e " +1—v.

==

By definition of G,

N
Pxnwn(g) =1 —v + e_m S Me_m + 1 — U,

which implies N > M, resulting in a contradiction. O
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We next introduce the generalized Poor-Verdu bound parameterized by 6 > 1.
Note that when # = 1, this bound reduces to the original Poor-Verdu bound in
[Poor & Verdu 1995].

Lemma 4.5 (generalized Poor-Verdi bound [Chen & Alajaji 2012]) Sup-
pose X and Y are random variables, where X takes values on a discrete (i.e., finite
or coutably infinite) alphabet X = {x1,x9,x3,...} and Y takes on values in an
arbitrary alphabet ). The minimum probability of error P. in estimating X from
Y satisfies

P.>(1—a)-Pxy {(az,y) cX x): P)(g)y(x]y) < oz} (4.3.1)
for each av € [0, 1] and 6 > 1, where for each y € Y,

O (ol LxV(@]9)’
Pl = Py @)

is the tilted distribution of Py (-|y) with parameter 6.

r e X, (4.3.2)
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Proof: Fix # > 1. We only provide the proof for 0 < a < 1 since the lower
bound trivially holds when oo = 0 and o = 1.

e It is known that the estimate e(Y) of X from observing Y that minimizes the
error probability is the maximum a posteriori (MAP) estimate given by

e(Y) = arg ax Pxy(z]Y). (4.3.3)

Therefore, the error probability incurred in testing among the values of X is
given by

1—P, = Pr{X =e(Y)}

AR

{z : a=e(y)}

_ /y (%p”(xyy)) dPy(y)
= /y (maxfx(y)) dPy(y) = E [maxfw(y)] )

zeX reX

where f.(y):=Pxy(z|y).
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e For a fixed y € Y, let hj(y) be the j-th element in the set
{fm(y)a fxz(y)a fx3(y)a . }

such that its elements are listed in non-increasing order; i.e.,
hi(y) = ha(y) = hs(y) = - -

and {hl(y)7 hQ(y)v h3(y)7 ax } - {fl’l(y)v fl’Q(y)) faﬁg(y)v ax } Then
1= P = E[h(Y)]. (4.3.4)

e Lor each hj(y) above, define hge)(y) such that hgm (y) is the respective element
for h;(y), satistying
o 0
hily) = fu,(y) = Pxy(zily) & B (y) = PYy(a;ly).
Since hi(y) is the largest among {h;(y)},;>1, we note that

Mly) 1
Zj21 h?(y) 14+ ijz[hj(y)/hl(y)]e

is non-decreasing in € for each y; this implies that

hge)(y) > hi(y) forf@>1landye ). (4.3.5)

0
W (y) =
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e For any o € (0,1), we can write
Pxy {(az y) € X x Y X’Y(a:\y) > a}

= [ Par{zex: Pl > o ar

= /y (]zo? hyy) -1 (h§9>(y) > 04)) dPy (y)

> /y hi(y) - 1 (h§9>(y) > a) dPy(y)
> /y Pa(y) - 1k (y) > a)dPy(y)
= E[n(Y)-1(h(Y) > a)], (4.3.6)

where 1(-) is the indicator function and the second inequality follows from
(4.3.5).
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e To complete the proof, we next relate E[hi(Y)-1(h(Y) > «)] with Elh(Y)],
which is exactly 1 — P..

For any o € (0, 1) and any random variable U with Pr{0 < U < 1} = 1, the
following inequality holds with probability one:
U<a+(l—a)-U-1(U > «a).

This can be easily proved by upper-bounding U in terms of & when 0 < U < a,
and a + (1 — a)U, otherwise. Thus

ElUl<a+(1—-a)E[U-1(U > a)].
e Applying the above inequality to (4.3.6) by setting U = h1(Y"), we obtain

(1—a)Pey {(.y) € X x Y« PO aly) > o)
> E[hl(Y)]—a

(1-P)-

= (1—a)—

€

where the first equality follows from (4.3.4). This completes the proof. .
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e There are examples demonstrating that the generalized Poor-Verdd bound is
tight when 8 — oo (See the lecture note).

e For the verification of the general Shannon capacity, however, taking 8 = 1 is
adequate.

Corollary 4.9 Every G, = (n, M) code satisfies

1 1
P.(€,) > (1—e™) Pr|—ixnyn(X™"Y") < —log M — ~
n n

for every v > 0, where X" places probability mass 1/M on each codeword, and
P.(-€,) denotes the error probability of the code.
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Proof: Taking a« = ¢ and 6 = 1 in Lemma 4.5, and replacing X and Y in
Lemma 4.5 by its n-fold counterparts, i.e., X™ and Y, we obtain

Pe(”gn)

>

(1 —e™) Pxnpn [(2",y") € X" x V" 0 Pxnpyn(a"|y") < e
- i PXn|yn($n‘yn) 6_717_
1 —e ") Pxnyn | (2", y") € X" " <
( € ) XW_(xvy)E Xy 1/M _1/M_
_ i PXn|yn(CUn‘yn) e~ "]
1 —e ") Pxnyn | (2", 9y") € X" " <
(=€) Pxnw _(x yeatxy Pen(z")  — 1/M|
(1 —e™™) Pxnyn [(2" )e?(”xy”:
1 Pxn "
Z log X |Y n(@ \y ) logM ]
n o (a”)

1 1
(1—e™) Pr|—ixmm(X™Y") < —logM — 7] :
n n
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Definition 4.10 (e-achievable rate) Fix ¢ € [0,1]. R > 0 is an e-achievable
rate if there exists a sequence of A, = (n, M,) channel block codes such that

1
liminf —log M,, > R

n—oo n

and
limsup P.(€,) < e.

n—oo

Definition 4.11 (e-capacity C.) Fix e € [0, 1]. The supremum of e-achievable
rates is called the e-capacity, C-.

e [t is straightforward for the definition that C. is non-decreasing in e, and

C = log|X]|.
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Observation 4.12 (capacity C') Note that channel capacity C'is equal to the
supremum of the rates that are e-achievable for all € € [0, 1]:
C'= inf C.=1limC.=C,.
0<e<1 £l0
Definition 4.13 (strong capacity Cys¢) Define the strong converse capacity

(or strong capacity) Csc as the infimum of the rates R such that for all G, =
(n, M,) channel block codes with

1
liminf —log M,, > R,

n—oo 1

we have

liminf P.(-€,) = 1.

n—oo
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Theorem 4.14 (e-capacity) For 0 < ¢ < 1, the e-capacity C. for arbitrary

channels satisfies
C.=sup I.(X,;Y).
X

Proof:
1. C. >supx 1.(X;Y).

Fix input X. It suffices to show the existence of €, = (n, M,,) data transmis-

sion code with rate

1
LIX)Y)—v<—logM, < I.(X:Y) _%
n

and probability of decoding error satisfying

limsup P.(€,) < ¢

n—oo

for every v > 0. (Because if such code exists, then liminf,, . (1/n)log M,, >
1.(X;Y) —~, which implies C. > I.(X;Y) — v for arbitrarily small v.)
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From Lemma 4.4, there exists an &, = (n, M,,) code whose error probability

satisfies
1 . n n 1 Y —ny/4
P.(€C,) < Pr|—ixayn(X"Y") < —=logM, + | +e ™
n n 4
1
< Pr | iy (XY < (_Ig(X;Y) - 1) + 2| e
n 2 1
1
S Pr —Zann(Xn, Yn) < _[E(X; Y) - %] + €_n7/4.
n
Since

1
I.(X;Y)=sup {R - lim sup Pr [—z'Wan(X”; Y") < R] < 5} :
n

n—oo

we obtain

1
lim sup Pr [—anWn(X”; Y < I.(X;Y) — %] <e.
n

n—o0

Hence, the proof of the direct part is completed by noting that

1
limsup P.(€,) < limsupPr [—anWn(X"; Y" < I.(X;Y) — 1]
n

n—oo n—o0 4

+limsupe ™/ =&,
n—00
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2. C. <supyx I.(X;Y).

e Suppose that there exists a sequence of G, = (n, M,) codes with rate
strictly larger than supx 1.(X;Y') and limsup,_, ., P.(€,) < €. Let the
ultimate code rate for this code be supx I.(X;Y') + 3p for some p > 0.
Then for sufficiently large n,

1
—log M,, > sup I.(X;Y) + 2p.
n X

e Since the above inequality holds for every X, it certainly holds if taking
input X" which places probability mass 1/M,, on each codeword, i.e.,

1 .
—log M, > I.(X;Y) + 2p, (4.4.1)
n

where Y is the channel output due to channel input X.
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e Then from Corollary 4.9, the error probability of the code satisfies

1 SN 1
P.(€,) > (1 =€) Pr | =iy (X" Y") < —log M, — p]
n n

:1 - o
> (1—€e) Pr|—igup (X" Y") < I(X;Y) + ,0] :
n

where the last inequality follows from (4.4.1), which by taking the limsup
of both sides, we have

1 A PPN
e > limsup P.(€,) > limsup Pr | =i gnym( X Y") < (X Y) + p] > €,
n—00 n—00 n

and a desired contradiction is obtained. O
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Theorem 4.15 (general channel capacity) The channel capacity C' for ar-

bitrary channel satisfies
C=supl(X;Y).
X

Theorem 4.16 (general strong capacity)
Csci=supI(X:;Y).
X

e Note that in the general formula for strong capacity, sup-information rate is
used as contrary to the inf-information rate formula for Shannon capacity.
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Example 4.17 (capacity) Let the input and output alphabets be {0,1}, and
let every output Y; be given by:

Y, = X, & N,

Assume the input process X and the noise process IN are independent.

Then
H(Y)— H(Y|X) < I(X;Y) < H(Y) - H(Y|X)

or equivalently,

H(Y) - H(N) < I(X;Y) < H(Y) - H(N),

By the channel symmetry, we obtain:

C =log(2) — H(N) nats.



Examples

Case A) If N is a non-stationary binary independent sequence with

then

C' = log(2) — limsup

PI”{N@ = 1} = Pi,

n—oo

1 n
- Z hy(p;) nats/channel usage.
n

1=1

H(N)

The ultimate CDFs of —(1/n)log Pyn(N™).

cluster points

A(N)

IT: 4-29

Case B) If N has the same distribution as the source process in Example 4.23,

then H(IN) = log(2) nats, which yields a zero channel capacity.



Examples

Example 4.18 (strong capacity)
Case A)
1 n
Csc =1—liminf — Z hi(pi)-

n—oo 1 4
1=1

Case B)
Csc = log(2) nats/channel usage.

0 log(2) nats
The ultimate CDF ¢(6) of the normalized information density

for Example 4.18-Case B).

IT: 4-30
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Example 4.19 (e-capacity) Consider the channel in Case B of Example 4.17.
C. =i *(0).
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e The channel capacity for discrete memoryless channel is shown to be:

C’::maX[(PX, QY|X)'
Px

e Let Py be the optimizer of the above maximization operation. Then

C:= max I(Px,Qy|x) = I(Pg, Qy|x)-

e Here, the performance of the code is assumed to be the average error probability,

namely
| M
Pu(€,) = Vi Z Po(Gylz}),
i=1
if the code book is G,:={z}, 2}, ..., 2" }.

e Due to the random coding argument, a deterministic good code with arbitrarily
small error probability and rate less than channel capacity must exist.

e One can ask: What is the relationship between a good code and the optimizer
P57 1t is widely believed that if the code is good (with rate close to capacity
and low error probability), then the output statistics Ps, — due to the equally-
likely code — must approximate the output distribution, denoted by P, due
to the input distribution achieving the channel capacity.
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Theorem 4.20 (Han & Verdu 1993) For any channel W" = (Y"|X") with
finite input alphabet and capacity C' that satisfies the strong converse (i.e., C' =
C's¢), the following statement holds.

Fix any v > 0 and any sequence of {8, = (n, M,,)}>°; block codes with

1
—log M, > C' — /2,
n

and vanishing error probability. Then
l =, on :
—|[Y" =Y || <~ for all sufficiently large n,
n

where Y™ is the output due to the block code and Y is the output due the X
that satisfies

(XY = mex /(X" Y™").

To be specific,

and
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e Note that the above theorem holds for arbitrary channels, not restricted to only
discrete memoryless channels.

e One can wonder whether a result in the spirit of the above theorem can be
proved for the input statistics rather than the output statistics.

e The answer is negative.

e Hence, the statement that the statistics of any good code must approximate
those that maximaize the mutual information is erroneously taken for granted.

— However, we do not rule out the possibility of the existence of good codes
that approximate those that maximize the mutual information.
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e To see this, simply consider the normalized entropy of X versus that of Xn
(which is uniformly distributed over the codewords) for discrete memoryless

channels:
Lpxy = Ly = Lax )+ x| = Liogn,)
—_ [ — f— —_ —_ . _— O n
n n n n ’ n o
—— — 1
= [H(XIY) + I(X )] — - loa(M,)
R—— 1
= [HX|Y)+C] - - log(M,,).

A good code with vanishing error probability exists for (1/n)log(M,,) arbitrar-
ily close to C'; hence, we can find a good code sequence to satisty

lim |2HE) - La(xn)| = HET).

n—oo | n n

Since the term H(X|Y) is in general positive, where a quick example is the
BSC with crossover probability p, which yields

H(X|Y) = HX)—-1(X;Y)
— HX)—HY)+HY|X)
= H(Y|X) = —plog(p) — (1 —p)log(1 — p),

the two input distributions can by no means resemble to each other.
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e The previous discussion motivates the necessity to find an equally-distributed
(over a subset of input alphabet) input distribution that generates the output
statistics, which is close to the output due to the input that maximizes the
mutual information.

e Since such approximations are usually performed by computers, it may be
natural to connect approximations of the input and output statistics with the
concept of resolvability.
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e In a data transmission system as shown in Figure 4.3, suppose that the source,
channel and output are respectively denoted by

XnZ:(Xl,. --;Xn)a Wn::(Wla- <. 7Wn)7 &Dd Yn:(yi7 '7Yn)7

where W has distribution Py ;.

"‘7X37X27X1 "'7}/37}/275/1

Pyn|Xn
true channel

true source true output

Figure 4.3: The communication system.

e To simulate the behavior of the channel, a computer-generated input may be
necessary as shown in Figure 4.4.

"'7X37X27X1 PY”]X" "'7YE’)7Y27}/1
computer-generated true channel corresponding
source output

Figure 4.4: The simulated communication system.
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e Asstated in Chapter 3, such computer-generated input is based on an algorithm
formed by a few basic uniform random experiments, which has finite resolution.

e Our goal is to find a good computer-generated input X" such that the corre-
sponding output Y is very close to the true output Y.

Definition 4.21 (e-resolvability for input X and channel W) Fix ¢
> (0, and suppose that the (true) input random variable and (true) channel statistics
are X and W = (Y| X)), respectively.

Then the e-resolvability S-(X, W) for input X and channel W is defined by:

SA(X,W)=min{R : (Vv >0)(3 X and N)(Vn > N)

n

1~ -
—R(X") < R+~vand ||[Y"=Y"]| < 8} :
where Py, = Py, Pyn.

e Note that if we take the channel W™ to be an identity channel for all n, namely
X" = Y" and Pynjxn(y"|x") is either 1 or 0, then the e-resolvability for input
X and channel W is reduced to source e-resolvability for source X only:

st(Xa WIdentity) — Se(X)

Similar reductions can be applied to all the following definitions.
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Definition 4.22 (s-mean-resolvability for input X and channel W)
Fix e > 0, and suppose that the (true) input random variable and (true) channel
statistics are respectively X and W.
Then the e-mean-resolvability S.(X , W) for input X and channel W is defined
by:
Se(X, W)=min{R : (Vv >0)(3 X and N)(V n > N)

1 ~ ~
—H(X") < R+~ and ||Y",Y"||; < 5} :
n

where Pf/n = P)'ZWPWTL and Pyn = Panwn

Definition 4.23 (resolvability and mean resolvability for input X and
channel W) The resolvability and mean-resolvability for input X and W are
defined respectively as:

S(X,W)=sup S-(X,W) and S(X,W):=supS.(X,W).

e>0 e>0
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Definition 4.24 (resolvability and mean resolvability for channel W)
The resolvability and mean-resolvability for channel W are defined respectively
as:

S(W)=supS(X,W), and S(W):=supS(X,W).
b'¢ b'¢

Theorem 4.25 (Han & Verdu 1993)
SW)=Csc=suplI(X;Y) and S(W)=C=sup l(X;Y).
b'e b'e

e [t is somewhat a reasonable inference that if no computer algorithms can pro-
duce a desired good output statistics under the number of random nats speci-
fied, then all codes should be bad codes for this rate.



