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Motivations II: 4-1

• Shannon’s channel capacity [2] is usually derived under the assumption that

the channel is memoryless.

• With moderate modification of the proof, this result was extended to stationary-

ergodic channels for which the capacity formula becomes the maximization of

the mutual information rate:

lim
n→∞

sup
Xn

1

n
I(Xn;Y n).

• Yet, for more general channels, such as non-stationary or non-ergodic channels,

a more general expression for channel capacity needs to be derived.



General models for channels II: 4-2

• The channel transition probability in its most general form is denoted by

{Wn = PY n|Xn}∞n=1, which is abbreviated by W for convenience.

• Similarly, the input and output random processes are respectively denoted by

X and Y .

• Throughout the text, we denote for convenience

PXn,Y n = PXnWn,

where Y n is the output of channel Wn = PY n|Xn under input Xn.

• Please refer also to Section 1.3 for the description of general channels.



Notations II: 4-3

• The sup- and inf- (mutual-)information rates are respectively defined by

Ī(X ;Y ):= sup{θ : i(θ) < 1}
and

I(X ;Y ):= sup{θ : ī(θ) ≤ 0},
where

i(θ):= lim inf
n→∞

Pr

{
1

n
iXnWn(Xn;Y n) ≤ θ

}
is the inf-spectrum of the normalized information density,

ī(θ):= lim sup
n→∞

Pr

{
1

n
iXnWn(Xn;Y n) ≤ θ

}
is the sup-spectrum of the normalized information density, and

iXnWn(xn; yn):= log
PY n|Xn(yn|xn)

PY n(yn)

is the information density.



Historical background II: 4-4

• In 1994, Verdú and Han have shown that the channel capacity in its most

general form is

C:= sup
X

I(X ;Y ).

• In their proof, they showed the achievability part via Feinstein’s lemma for the

channel coding average error probability.

• More importantly, they provided a new converse based on an error lower bound

for multihypothesis testing.

• In this chapter, we do not present the original proof of Verdú and Han in the

converse theorem. Instead, we will first derive and illustrate in Section 4.3

a general lower bound on the minimum error probability of multihypothesis

testing [Chen & Alajaji 2012].

• We then use a special case of the bound, which results the so-called Poor-Verdú

bound [Poor & Verdú 1995], to complete the proof of the converse theorem.



Notations and definitions II: 4-5

Definition 4.1 (fixed-length data transmission code) An (n,M) fixed-

length data transmission code for channel input alphabet X n and output alphabet

Yn consists of

1. M messages intended for transmission;

2. an encoding function

f : {1, 2, . . . ,M} → X n;

3. a decoding function

g : Yn → {1, 2, . . . ,M},
which is (usually) a deterministic rule that assigns a guess to each possible

received vector.

The channel inputs in {xn ∈ X n : xn = f(m) for some 1 ≤ m ≤ M} are the

codewords of the data transmission code.



Notations and definitions II: 4-6

Definition 4.2 (average probability of error) The average probability of

error for a C∼n = (n,M) code with encoder f(·) and decoder g(·) transmitted over

channel Wn = PY n|Xn is defined as

Pe( C∼n) =
1

M

M∑
i=1

λi,

where

λi:=
∑{

yn∈Yn : g(yn) �=i
}PY n|Xn(yn|f(i)).

We assume that the message set (of size M) is governed by a uniform distribution.

Thus, under the average probability of error criterion, all codewords are treated

equally (having a uniform prior distribution).

Definition 4.3 (channel capacity C) The channel capacity C is the supre-

mum of all the rates R for which there exists a sequence of C∼n = (n,Mn) channel

block codes such that

lim inf
n→∞

1

n
logMn ≥ R,

and

lim sup
n→∞

Pe( C∼n) = 0.



Feinstein’s Lemma II: 4-7

Lemma 4.4 (Feinstein’s Lemma) Fix a positive n. For every γ > 0 and

input distribution PXn on X n, there exists an (n,M) block code for the transition

probability PWn = PY n|Xn that its average error probability Pe( C∼n) satisfies

Pe( C∼n) < Pr

[
1

n
iXnWn(Xn;Y n) <

1

n
logM + γ

]
+ e−nγ.

Proof:

Step 1: Notations. Define

G:=
{
(xn, yn) ∈ X n × Yn :

1

n
iXnWn(xn; yn) ≥ 1

n
logM + γ

}
.

Let ν:=e−nγ + PXnWn(Gc).

Feinstein’s Lemma obviously holds if ν ≥ 1, because then

Pe( C∼n) ≤ 1 ≤ ν:= Pr

[
1

n
iXnWn(Xn;Y n) <

1

n
logM + γ

]
+ e−nγ.

So we assume ν < 1, which immediately results in

PXnWn(Gc) < ν < 1,

or equivalently,

PXnWn(G) > 1− ν > 0. (4.2.1)



Feinstein’s Lemma II: 4-8

Therefore, denoting

A:={xn ∈ X n : PY n|Xn(Gxn|xn) > 1− ν}
with Gxn:={yn ∈ Yn : (xn, yn) ∈ G}, we have

PXn(A) > 0,

because if PXn(A) = 0,

(∀ xn with PXn(xn) > 0) PY n|Xn(Gxn|xn) ≤ 1− ν

⇒
∑

xn∈X n

PXn(xn)PY n|Xn(Gxn|xn) = PXnWn(G) ≤ 1− ν,

and a contradiction to (4.2.1) is obtained.



Feinstein’s Lemma II: 4-9

Step 2: Encoder. Choose an xn1 in A (Recall that PXn(A) > 0.) Define Γ1 =

Gxn1
. (Then PY n|Xn(Γ1|xn1) > 1− ν.)

Next choose, if possible, a point xn2 ∈ X n without replacement (i.e., xn2 cannot

be identical to xn1) for which

PY n|Xn

(Gxn2
− Γ1

∣∣ xn2) > 1− ν,

and define Γ2:=Gxn2
− Γ1.

Continue in the following way as for codeword i: choose xni to satisfy

PY n|Xn

Gxni
−

i−1⋃
j=1

Γj

∣∣∣∣∣∣ xni
 > 1− ν,

and define Γi:=Gxni
−⋃i−1

j=1 Γj.

Repeat the above codeword selecting procedure until either M codewords are

selected or all the points in A are exhausted.
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Step 3: Decoder. Define the decoding rule as

φ(yn) =

{
i, if yn ∈ Γi

arbitrary, otherwise.

Step 4: Probability of error. For all selected codewords, the error probability

given codeword i is transmitted, λe|i, satisfies

λe|i ≤ PY n|Xn(Γc
i|xni ) < ν.

(Note that (∀ i) PXn|Xn(Γi|xni ) ≥ 1− ν by Step 2.) Therefore, if we can show

that the above codeword selecting procedures will not terminate before M ,

then

Pe( C∼n) =
1

M

M∑
i=1

λe|i < ν.
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Step 5: Claim. The codeword selecting procedure in Step 2 will not terminate

before M .

Proof: We will prove it by contradiction.

Suppose the above procedure terminates before M , say at N < M . Define the

set

F :=
N⋃
i=1

Γi ∈ Yn.

Consider the probability

PXnWn(G) = PXnWn[G ∩ (X n ×F)] + PXnWn[G ∩ (X n ×F c)]. (4.2.2)

Since for any yn ∈ Gxni
,

PY n(yn) ≤ PY n|Xn(yn|xni )
M · enγ ,

we have

PY n(Γi) ≤ PY n(Gxni
)

≤ 1

M
e−nγPY n|Xn(Gxni

)

≤ 1

M
e−nγ.
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So the 1st term of the right hand side in (4.2.2) can be upper bounded by

PXnWn[G ∩ (X n ×F)] ≤ PXnWn(X n × F)

= PY n(F) =
N∑
i=1

PY n(Γi) ≤ N × 1

M
e−nγ =

N

M
e−nγ.

As for the 2nd term of the right hand side in (4.2.2), we can upper bound it by

PXnWn[G ∩ (X n ×F c)] =
∑

xn∈X n

PXn(xn)PY n|Xn(Gxn ∩ F c|xn)

=
∑

xn∈X n

PXn(xn)PY n|Xn

(
Gxn −

N⋃
i=1

Γi

∣∣∣∣∣ xn
)

≤
∑

xn∈X n

PXn(xn)(1− ν)≤ 1− ν,

where the last step follows since for all xn ∈ X n,

PY n|Xn

(
Gxn −

N⋃
i=1

Γi

∣∣∣∣∣ xn
)

≤ 1− ν.

(Because otherwise we could find the (N + 1)-th codeword.)
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Consequently,

PXnWn(G) ≤ N

M
e−nγ + 1− ν.

By definition of G,

PXnWn(G) = 1− ν + e−nγ ≤ N

M
e−nγ + 1− ν,

which implies N ≥ M , resulting in a contradiction.



Error bounds for multihypothesis testing II: 4-14

We next introduce the generalized Poor-Verdú bound parameterized by θ ≥ 1.

Note that when θ = 1, this bound reduces to the original Poor-Verdú bound in

[Poor & Verdú 1995].

Lemma 4.5 (generalized Poor-Verdú bound [Chen & Alajaji 2012]) Sup-

pose X and Y are random variables, where X takes values on a discrete (i.e., finite

or coutably infinite) alphabet X = {x1, x2, x3, . . .} and Y takes on values in an

arbitrary alphabet Y . The minimum probability of error Pe in estimating X from

Y satisfies

Pe ≥ (1− α) · PX,Y

{
(x, y) ∈ X × Y : P

(θ)
X|Y (x|y) ≤ α

}
(4.3.1)

for each α ∈ [0, 1] and θ ≥ 1, where for each y ∈ Y ,

P
(θ)
X|Y (x|y):=

(PX|Y (x|y))θ∑
x′∈X (PX|Y (x′|y))θ , x ∈ X , (4.3.2)

is the tilted distribution of PX|Y (·|y) with parameter θ.
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Proof: Fix θ ≥ 1. We only provide the proof for 0 < α < 1 since the lower

bound trivially holds when α = 0 and α = 1.

• It is known that the estimate e(Y ) of X from observing Y that minimizes the

error probability is the maximum a posteriori (MAP) estimate given by

e(Y ) = arg max
x∈X

PX|Y (x|Y ). (4.3.3)

Therefore, the error probability incurred in testing among the values of X is

given by

1− Pe = Pr{X = e(Y )}
=

∫
Y

[ ∑
{x : x=e(y)}

PX|Y (x|y)
]
dPY (y)

=

∫
Y

(
max
x∈X

PX|Y (x|y)
)
dPY (y)

=

∫
Y

(
max
x∈X

fx(y)

)
dPY (y) = E

[
max
x∈X

fx(Y )

]
,

where fx(y):=PX|Y (x|y).
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• For a fixed y ∈ Y , let hj(y) be the j-th element in the set

{fx1(y), fx2(y), fx3(y), . . .}
such that its elements are listed in non-increasing order; i.e.,

h1(y) ≥ h2(y) ≥ h3(y) ≥ · · ·
and {h1(y), h2(y), h3(y), . . .} = {fx1(y), fx2(y), fx3(y), . . .}. Then

1− Pe = E[h1(Y )]. (4.3.4)

• For each hj(y) above, define h
(θ)
j (y) such that h

(θ)
j (y) is the respective element

for hj(y), satisfying

hj(y) = fxj(y) = PX|Y (xj|y) ⇔ h
(θ)
j (y) = P

(θ)
X|Y (xj|y).

Since h1(y) is the largest among {hj(y)}j≥1, we note that

h
(θ)
1 (y) =

hθ
1(y)∑

j≥1 h
θ
j(y)

=
1

1 +
∑

j≥2[hj(y)/h1(y)]θ

is non-decreasing in θ for each y; this implies that

h
(θ)
1 (y) ≥ h1(y) for θ ≥ 1 and y ∈ Y . (4.3.5)
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• For any α ∈ (0, 1), we can write

PX,Y

{
(x, y) ∈ X × Y : P

(θ)
X|Y (x|y) > α

}
=

∫
Y
PX|Y

{
x ∈ X : P

(θ)
X|Y (x|y) > α

}
dPY (y)

=

∫
Y

 ∞∑
j=1

hj(y) · 1
(
h
(θ)
j (y) > α

) dPY (y)

≥
∫
Y
h1(y) · 1

(
h
(θ)
1 (y) > α

)
dPY (y)

≥
∫
Y
h1(y) · 1(h1(y) > α)dPY (y)

= E[h1(Y ) · 1(h1(Y ) > α)], (4.3.6)

where 1(·) is the indicator function and the second inequality follows from

(4.3.5).



Error bounds for multihypothesis testing II: 4-18

• To complete the proof, we next relate E[h1(Y ) ·1(h1(Y ) > α)] with E[h1(Y )],

which is exactly 1− Pe.

For any α ∈ (0, 1) and any random variable U with Pr{0 ≤ U ≤ 1} = 1, the

following inequality holds with probability one:

U ≤ α + (1− α) · U · 1(U > α).

This can be easily proved by upper-bounding U in terms of α when 0 ≤ U ≤ α,

and α + (1− α)U , otherwise. Thus

E[U ] ≤ α + (1− α)E[U · 1(U > α)].

• Applying the above inequality to (4.3.6) by setting U = h1(Y ), we obtain

(1− α)PX,Y

{
(x, y) ∈ X × Y : P

(θ)
X|Y (x|y) > α

}
≥ E[h1(Y )]− α

= (1− Pe)− α

= (1− α)− Pe,

where the first equality follows from (4.3.4). This completes the proof.



Error bounds for multihypothesis testing II: 4-19

• There are examples demonstrating that the generalized Poor-Verdú bound is

tight when θ → ∞ (See the lecture note).

• For the verification of the general Shannon capacity, however, taking θ = 1 is

adequate.

Corollary 4.9 Every C∼n = (n,M) code satisfies

Pe( C∼n) ≥
(
1− e−nγ

)
Pr

[
1

n
iXnWn(Xn;Y n) ≤ 1

n
logM − γ

]
for every γ > 0, where Xn places probability mass 1/M on each codeword, and

Pe( C∼n) denotes the error probability of the code.



Error bounds for multihypothesis testing II: 4-20

Proof: Taking α = e−nγ and θ = 1 in Lemma 4.5, and replacing X and Y in

Lemma 4.5 by its n-fold counterparts, i.e., Xn and Y n, we obtain

Pe( C∼n) ≥ (
1− e−nγ

)
PXnWn

[
(xn, yn) ∈ X n × Yn : PXn|Y n(xn|yn) ≤ e−nγ

]
=
(
1− e−nγ

)
PXnWn

[
(xn, yn) ∈ X n × Yn :

PXn|Y n(xn|yn)
1/M

≤ e−nγ

1/M

]
=
(
1− e−nγ

)
PXnWn

[
(xn, yn) ∈ X n × Yn :

PXn|Y n(xn|yn)
PXn(xn)

≤ e−nγ

1/M

]
=
(
1− e−nγ

)
PXnWn [(xn, yn) ∈ X n × Yn :

1

n
log

PXn|Y n(xn|yn)
PXn(xn)

≤ 1

n
logM − γ

]
=
(
1− e−nγ

)
Pr

[
1

n
iXnWn(Xn;Y n) ≤ 1

n
logM − γ

]
.



Capacity formulas for general channels II: 4-21

Definition 4.10 (ε-achievable rate) Fix ε ∈ [0, 1]. R ≥ 0 is an ε-achievable

rate if there exists a sequence of C∼n = (n,Mn) channel block codes such that

lim inf
n→∞

1

n
logMn ≥ R

and

lim sup
n→∞

Pe( C∼n) ≤ ε.

Definition 4.11 (ε-capacity Cε) Fix ε ∈ [0, 1]. The supremum of ε-achievable

rates is called the ε-capacity, Cε.

• It is straightforward for the definition that Cε is non-decreasing in ε, and

C1 = log |X |.



Capacity formulas for general channels II: 4-22

Observation 4.12 (capacity C) Note that channel capacity C is equal to the

supremum of the rates that are ε-achievable for all ε ∈ [0, 1]:

C = inf
0≤ε≤1

Cε = lim
ε↓0

Cε = C0.

Definition 4.13 (strong capacity CSC) Define the strong converse capacity

(or strong capacity) CSC as the infimum of the rates R such that for all C∼n =

(n,Mn) channel block codes with

lim inf
n→∞

1

n
logMn ≥ R,

we have

lim inf
n→∞ Pe( C∼n) = 1.



ε-capacity II: 4-23

Theorem 4.14 (ε-capacity) For 0 < ε < 1, the ε-capacity Cε for arbitrary

channels satisfies

Cε = sup
X

Iε(X ;Y ).

Proof:

1. Cε ≥ supX Iε(X ;Y ).

Fix input X . It suffices to show the existence of C∼n = (n,Mn) data transmis-

sion code with rate

Iε(X ;Y )− γ <
1

n
logMn < Iε(X ;Y )− γ

2

and probability of decoding error satisfying

lim sup
n→∞

Pe( C∼n) ≤ ε

for every γ > 0. (Because if such code exists, then lim infn→∞(1/n) logMn ≥
Iε(X ;Y )− γ, which implies Cε ≥ Iε(X ;Y )− γ for arbitrarily small γ.)
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From Lemma 4.4, there exists an C∼n = (n,Mn) code whose error probability

satisfies

Pe( C∼n) < Pr

[
1

n
iXnWn(Xn;Y n) <

1

n
logMn +

γ

4

]
+ e−nγ/4

≤ Pr

[
1

n
iXnWn(Xn;Y n) <

(
Iε(X ;Y )− γ

2

)
+

γ

4

]
+ e−nγ/4

≤ Pr

[
1

n
iXnWn(Xn;Y n) < Iε(X ;Y )− γ

4

]
+ e−nγ/4.

Since

Iε(X ;Y ):= sup

{
R : lim sup

n→∞
Pr

[
1

n
iWnWn(Xn;Y n) ≤ R

]
≤ ε

}
,

we obtain

lim sup
n→∞

Pr

[
1

n
iXnWn(Xn;Y n) < Iε(X ;Y )− γ

4

]
≤ ε.

Hence, the proof of the direct part is completed by noting that

lim sup
n→∞

Pe( C∼n) ≤ lim sup
n→∞

Pr

[
1

n
iXnWn(Xn;Y n) < Iε(X ;Y )− γ

4

]
+ lim sup

n→∞
e−nγ/4 = ε.
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2. Cε ≤ supX Iε(X ;Y ).

• Suppose that there exists a sequence of C∼n = (n,Mn) codes with rate

strictly larger than supX Iε(X;Y ) and lim supn→∞ Pe( C∼n) ≤ ε. Let the

ultimate code rate for this code be supX Iε(X ;Y ) + 3ρ for some ρ > 0.

Then for sufficiently large n,

1

n
logMn > sup

X
Iε(X ;Y ) + 2ρ.

• Since the above inequality holds for every X , it certainly holds if taking

input X̂n which places probability mass 1/Mn on each codeword, i.e.,

1

n
logMn > Iε(X̂ ; Ŷ ) + 2ρ, (4.4.1)

where Ŷ is the channel output due to channel input X̂ .
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• Then from Corollary 4.9, the error probability of the code satisfies

Pe( C∼n) ≥ (
1− e−nρ

)
Pr

[
1

n
iX̂nWn(X̂

n; Ŷ n) ≤ 1

n
logMn − ρ

]
≥ (

1− e−nρ
)
Pr

[
1

n
iX̂nWn(X̂

n; Ŷ n) ≤ Iε(X̂ ; Ŷ ) + ρ

]
,

where the last inequality follows from (4.4.1), which by taking the limsup

of both sides, we have

ε ≥ lim sup
n→∞

Pe( C∼n) ≥ lim sup
n→∞

Pr

[
1

n
iX̂nWn(X̂

n; Ŷ n) ≤ Iε(X̂ ; Ŷ ) + ρ

]
> ε,

and a desired contradiction is obtained.
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Theorem 4.15 (general channel capacity) The channel capacity C for ar-

bitrary channel satisfies

C = sup
X

I(X ;Y ).

Theorem 4.16 (general strong capacity)

CSC := sup
X

Ī(X ;Y ).

• Note that in the general formula for strong capacity, sup-information rate is

used as contrary to the inf-information rate formula for Shannon capacity.
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Example 4.17 (capacity) Let the input and output alphabets be {0, 1}, and
let every output Yi be given by:

Yi = Xi ⊕Ni.

Assume the input process X and the noise process N are independent.

Then

H(Y )− H̄(Y |X) ≤ I(X ;Y ) ≤ H̄(Y )− H̄(Y |X)

or equivalently,

H(Y )− H̄(N ) ≤ I(X ;Y ) ≤ H̄(Y )− H̄(N ).

By the channel symmetry, we obtain:

C = log(2)− H̄(N ) nats.
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Case A) If N is a non-stationary binary independent sequence with

Pr{Ni = 1} = pi,

then

C = log(2)− lim sup
n→∞

1

n

n∑
i=1

hb(pi) nats/channel usage.

�

· · ·

H(N ) H̄(N )cluster points

The ultimate CDFs of −(1/n) logPNn(Nn).

Case B) If N has the same distribution as the source process in Example 4.23,

then H̄(N ) = log(2) nats, which yields a zero channel capacity.
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Example 4.18 (strong capacity)

Case A)

CSC = 1− lim inf
n→∞

1

n

n∑
i=1

hb(pi).

Case B)

CSC = log(2) nats/channel usage.

�
0 log(2) nats

1

The ultimate CDF i(θ) of the normalized information density

for Example 4.18-Case B).
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Example 4.19 (ε-capacity) Consider the channel in Case B of Example 4.17.

Cε = i−1(θ).
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• The channel capacity for discrete memoryless channel is shown to be:

C:=max
PX

I(PX,QY |X).

• Let PX be the optimizer of the above maximization operation. Then

C:=max
PX

I(PX,QY |X) = I(PX,QY |X).

• Here, the performance of the code is assumed to be the average error probability,

namely

Pe( C∼n) =
1

M

M∑
i=1

Pe( C∼n|xni ),

if the code book is C∼n:={xn1 , xn2 , . . . , xnM}.
• Due to the random coding argument, a deterministic good code with arbitrarily

small error probability and rate less than channel capacity must exist.

• One can ask: What is the relationship between a good code and the optimizer

PX? It is widely believed that if the code is good (with rate close to capacity

and low error probability), then the output statistics PỸ n – due to the equally-

likely code – must approximate the output distribution, denoted by PY
n, due

to the input distribution achieving the channel capacity.
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Theorem 4.20 (Han & Verdú 1993) For any channel Wn = (Y n|Xn) with

finite input alphabet and capacity C that satisfies the strong converse (i.e., C =

CSC), the following statement holds.

Fix any γ > 0 and any sequence of { C∼n = (n,Mn)}∞n=1 block codes with

1

n
logMn ≥ C − γ/2,

and vanishing error probability. Then

1

n
‖Ỹ n − Y

n‖ ≤ γ for all sufficiently large n,

where Ỹ n is the output due to the block code and Y
n
is the output due the X

n

that satisfies

I(X
n
;Y

n
) = max

Xn
I(Xn;Y n).

To be specific,

PỸ n(y
n) =

∑
xn∈ C∼n

PX̃n(x
n)PWn(yn|xn) =

∑
xn∈ C∼n

1

M
PWn(yn|xn)

and

PY
n(yn) =

∑
xn∈X n

PX
n(xn)PWn(yn|xn).
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• Note that the above theorem holds for arbitrary channels, not restricted to only

discrete memoryless channels.

• One can wonder whether a result in the spirit of the above theorem can be

proved for the input statistics rather than the output statistics.

• The answer is negative.

• Hence, the statement that the statistics of any good code must approximate

those that maximize the mutual information is erroneously taken for granted.

– However, we do not rule out the possibility of the existence of good codes

that approximate those that maximize the mutual information.



Capacity and resolvability for channels II: 4-35

• To see this, simply consider the normalized entropy of X
n
versus that of X̃n

(which is uniformly distributed over the codewords) for discrete memoryless

channels:
1

n
H(X

n
)− 1

n
H(X̃n) =

[
1

n
H(X

n|Y n
) +

1

n
I(X

n
;Y

n
)

]
− 1

n
log(Mn)

=
[
H(X|Y ) + I(X ;Y )

]− 1

n
log(Mn)

=
[
H(X|Y ) + C

]− 1

n
log(Mn).

A good code with vanishing error probability exists for (1/n) log(Mn) arbitrar-

ily close to C; hence, we can find a good code sequence to satisfy

lim
n→∞

[
1

n
H(X

n
)− 1

n
H(X̃n)

]
= H(X|Y ).

Since the term H(X|Y ) is in general positive, where a quick example is the

BSC with crossover probability p, which yields

H(X|Y ) = H(X)− I(X ;Y )

= H(X)−H(Y ) +H(Y |X)

= H(Y |X) = −p log(p)− (1− p) log(1− p),

the two input distributions can by no means resemble to each other.



Resolvability for channels II: 4-36

• The previous discussion motivates the necessity to find an equally-distributed

(over a subset of input alphabet) input distribution that generates the output

statistics, which is close to the output due to the input that maximizes the

mutual information.

• Since such approximations are usually performed by computers, it may be

natural to connect approximations of the input and output statistics with the

concept of resolvability.
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• In a data transmission system as shown in Figure 4.3, suppose that the source,

channel and output are respectively denoted by

Xn:=(X1, . . . , Xn), Wn:=(W1, . . . ,Wn), and Y n:=(Y1, . . . , Yn),

where Wi has distribution PYi|Xi
.

�
. . . , X3, X2, X1

true source

PY n|Xn

true channel
�

. . . , Y3, Y2, Y1

true output

Figure 4.3: The communication system.

• To simulate the behavior of the channel, a computer-generated input may be

necessary as shown in Figure 4.4.

�
. . . , X̃3, X̃2, X̃1

computer-generated
source

PY n|Xn

true channel
�

. . . , Ỹ3, Ỹ2, Ỹ1

corresponding
output

Figure 4.4: The simulated communication system.
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• As stated in Chapter 3, such computer-generated input is based on an algorithm

formed by a few basic uniform random experiments, which has finite resolution.

• Our goal is to find a good computer-generated input X̃n such that the corre-

sponding output Ỹ n is very close to the true output Y n.

Definition 4.21 (ε-resolvability for input X and channel W ) Fix ε

> 0, and suppose that the (true) input random variable and (true) channel statistics

are X and W = (Y |X), respectively.

Then the ε-resolvability Sε(X,W ) for input X and channel W is defined by:

Sε(X,W ):=min
{
R : (∀ γ > 0)(∃ X̃ and N)(∀ n > N)

1

n
R(X̃n) < R + γ and ‖Y n − Ỹ n‖ < ε

}
,

where PỸ n = PX̃nPWn.

• Note that if we take the channel Wn to be an identity channel for all n, namely

X n = Yn and PY n|Xn(yn|xn) is either 1 or 0, then the ε-resolvability for input

X and channel W is reduced to source ε-resolvability for source X only:

Sε(X,W Identity) = Sε(X).

Similar reductions can be applied to all the following definitions.
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Definition 4.22 (ε-mean-resolvability for input X and channel W )

Fix ε > 0, and suppose that the (true) input random variable and (true) channel

statistics are respectively X and W .

Then the ε-mean-resolvability S̄ε(X,W ) for inputX and channelW is defined

by:

S̄ε(X,W ):=min
{
R : (∀ γ > 0)(∃ X̃ and N)(∀ n > N)

1

n
H(X̃n) < R + γ and ‖Y n, Ỹ n‖1 < ε

}
,

where PỸ n = PX̃nPWn and PY n = PXnPWn.

Definition 4.23 (resolvability and mean resolvability for input X and

channel W ) The resolvability and mean-resolvability for input X and W are

defined respectively as:

S(X,W ):= sup
ε>0

Sε(X,W ) and S̄(X,W ):= sup
ε>0

S̄ε(X,W ).
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Definition 4.24 (resolvability and mean resolvability for channel W )

The resolvability and mean-resolvability for channel W are defined respectively

as:

S(W ):= sup
X

S(X,W ), and S̄(W ):= sup
X

S̄(X,W ).

Theorem 4.25 (Han & Verdú 1993)

S(W ) = CSC = sup
X

Ī(X ;Y ) and S̄(W ) = C = sup
X

I(X ;Y ).

• It is somewhat a reasonable inference that if no computer algorithms can pro-

duce a desired good output statistics under the number of random nats speci-

fied, then all codes should be bad codes for this rate.


