Appendix B

Overview in Probability and Random Processes

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

Definition B.1 (σ -**Fields)** Let F be a collection of subsets of a non-empty set Ω. Then F is called ^a ^σ*-field* (or ^σ*-algebra*) if the following hold:

1. $\Omega \in \mathcal{F}$.

2. F is closed under complementation: If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$, where $A^c =$ $\{\omega\in\Omega\colon\omega\not\in A\}.$

3. F is closed under countable unions: If $A_i \in \mathcal{F}$ for $i = 1, 2, 3, \ldots$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

• It directly follows that the empty set \emptyset is also an element of $\mathcal F$ (as $\Omega^c = \emptyset$) and that $\mathcal F$ is closed under countable intersection since

$$
\bigcap_{i=1}^{\infty} A_i^c = \left(\bigcup_{i=1}^{\infty} A_i\right)^c.
$$

- The largest σ -field of subsets of a given set Ω is the collection of all subsets of Ω (i.e., its powerset), while the smallest σ -field is given by $\{\Omega, \emptyset\}$.
- Also, if A is a proper (strict) non-empty subset of Ω , then the smallest σ -field containing A is given by $\{\Omega, \emptyset, A, A^c\}.$

Definition B.2 (Probability space) A *probability space* is ^a triple (Ω, \mathcal{F}, P) , where Ω is a given set called *sample space* containing all possible outcomes (usually observed from an experiment), $\mathcal F$ is a σ -field of subsets of $Ω$, and *P* is a probability measure $P: F → [0, 1]$ on the σ-field satisfying the following:

- 1. $0 \leq P(A) \leq 1$ for all $A \in \mathcal{F}$.
- 2. $P(\Omega) = 1$.
- 3. *Countable additivity:* If A_1, A_2, \ldots is a sequence of disjoint sets (i.e., $A_i \cap$ $A_j = \emptyset$ for all $i \neq j$ in F, then

$$
P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k).
$$

- It directly follows from Properties 1-3 of the above definition that $P(\emptyset) = 0$.
- Usually, the σ -field $\mathcal F$ is called the *event space* and its elements (which are subsets of Ω satisfying the properties of Definition B.1) are called *events*.

- The Borel σ -field of R, denoted by $\mathscr{B}(\mathbb{R})$, is the smallest σ -field of subsets of R containing all open intervals in R.
- The elements of $\mathscr{B}(\mathbb{R})$ are called Borel sets.
- For any random variable X, we use P_X to denote the probability distribution on $\mathscr{B}(\mathbb{R})$ induced by X, given by

 $P_X(B) := \Pr[X \in B] = P(w \in \Omega : X(w) \in B), \qquad B \in \mathscr{B}(\mathbb{R}).$

Note that the quantities $P_X(B)$, $B \in \mathscr{B}(\mathbb{R})$, fully characterize the random variable X as they determine the probabilities of all events that concern X .

B.2 Random variables and random processes I: b-5

• A random variable X defined over probability space (Ω, \mathcal{F}, P) is a real-valued function $X: \Omega \to \mathbb{R}$ that is *measurable* (or F-measurable), i.e., satisfying the property that

$$
X^{-1}((-\infty, t]) := \{\omega \in \Omega : X(\omega) \le t\} \in \mathcal{F}
$$

for each real t .

• A random process (or random source) is ^a collection of random variables that arise from the same probability space. It can be mathematically represented by the collection

 $\{X_t, t \in I\},\$

where X_t denotes the tth random variable in the process, and the index t runs over an index set I which is arbitrary.

B.2 Random variables and random processes I: b-6

- The index set I can be uncountably infinite (e.g., $I = \mathbb{R}$), in which case we are dealing with ^a continuous-time process.
- Except for ^a brief interlude with the continuous-time (waveform) Gaussian channel in Chapter 5, we will consider discrete-time communication systems throughout the lectures.

To be precise, we will only consider the following cases of index set I: *case a)* I consists of one index only. *case b)* I is finite. *case c)* I is countably infinite.

Why define random variables based on (Ω, \mathcal{F}, P) ? I: b-7

Answer 1: (Ω, \mathcal{F}, P) is what truly occurs internally,

but is possibly **non-observable**.

- **–** In order to infer which of the *non-observable* ^ω occurs, an experiment is performed resulting in an observable x that is a function of ω .
- **–** Such experiment yields the random variable X whose probability is defined over the probability space (Ω, \mathcal{F}, P) .

Answer 2: With the underlying probability space, any finite dimensional distribution of $\{X_t, t \in I\}$ is well-defined.

– For example,

$$
\Pr[X_1 \le x_1, X_5 \le x_5, X_9 \le x_9] \n= P\left(\{\omega \in \Omega : X_1(\omega) \le x_1, X_5(\omega) \le x_5, X_9(\omega) \le x_9\}\right)
$$

- In many applications, we are perhaps more interested in the distribution functions of random variables than the underlying probability space on which they are defined.
- It can be proved [Billingsley, Thm. 14.1] that ^given ^a real-valued non-negative function $F(\cdot)$ that is non-decreasing and right-continuous and satisfies

$$
\lim_{x \downarrow -\infty} F(x) = 0 \quad \text{and} \quad \lim_{x \uparrow \infty} F(x) = 1,
$$

there exist ^a random variable and an underlying probability space such that the cumulative distribution function (cdf) of the random variable, $Pr[X \le x]$ = $P_X ((-\infty, x])$, defined over the probability space is equal to $F(\cdot)$.

- This result releases us from the burden of referring to ^a probability space before defining the random variable. In other words, we can define ^a random variable X directly by its cdf, $F_X(x) = Pr[X \leq x]$, without bothering to refer to its underlying probability space.
- Nevertheless, it is important to keep in mind that, formally, random variables are defined over underlying probability spaces.

Generalization of random variables I: b-9

• The definition of a random variable X can be generalized by allowing it to take values that are not real numbers:

Definition A random variable over the probability space (Ω, \mathcal{F}, P) is a function $X: \Omega \to \mathcal{X}$ satisfying the property that for every $F \in \mathcal{F}_X$,

$$
X^{-1}(F) := \{ w \in \Omega : X(w) \in F \} \in \mathcal{F},
$$

where the alphabet X is a general set and \mathcal{F}_X is a σ -field of subsets of X [R. M. Gray 2010, P. C. Shields 1991].

• Contrary to the standard definition of a random variable (by taking $\mathcal{X} = \mathbb{R}$), the elements in $\mathcal X$ may not have a pre-defined ordering; thus, the cdf,

$$
\Pr[X \le x] = P(\{w \in \Omega : X(w) \le x\}),
$$

needs to be explicitly defined.

• Note that this extension definition of a random variable allows $\mathcal X$ to be an arbitrary (often finite) set so that ^a random source taking values from, e.g., English alphabet, can now be regarded as ^a random variable.

- Statistical evolution in time is an important factor for ^a random source.
- In particular, ^a "time-shift" property should be noted first.

Definition. An event E is said to be \mathbb{T} -invariant with respect to the left-shift (or shift transformation) $\mathbb{T} \colon \mathcal{X}^{\infty} \to \mathcal{X}^{\infty}$ if

$$
\mathbb{T} E \subseteq E,
$$

where

$$
\mathbb{T}E := \{ \mathbb{T}\boldsymbol{x} \colon \boldsymbol{x} \in E \} \quad \text{and} \quad \mathbb{T}\boldsymbol{x} := \mathbb{T}(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots).
$$

• In other words, $\mathbb T$ is equivalent to "chopping the first component."

Example. Applying T onto an event E defined below,

$$
E := \{(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, \ldots), (x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1, \ldots),
$$

\n
$$
(x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, \ldots)\},
$$

\n
$$
= \{\underbrace{1111 \ldots}_{all \text{ one}}\}, \underbrace{0111 \ldots}_{all \text{ one but the first}}\}
$$

\n(B.3.1)

yields

$$
\mathbb{T}E = \{(x_1 = 1, x_2 = 1, x_3 = 1, \ldots), (x_1 = 1, x_2 = 1, x_3 = 1 \ldots),
$$

\n
$$
(x_1 = 0, x_2 = 1, x_3 = 1, \ldots)\}
$$

\n
$$
= \{(x_1 = 1, x_2 = 1, x_3 = 1, \ldots), (x_1 = 0, x_2 = 1, x_3 = 1, \ldots)\}
$$

\n
$$
= \{\underbrace{1111 \ldots}_{all \text{ one}}\}, \underbrace{0111 \ldots}_{all \text{ one but the first}}\}
$$

We then have $\mathbb{T}E \subseteq E$, and hence E is T-invariant.

^E will ge^t smaller and smaller (more condensed) as time evolves.

 \Box

- It can be proved (cf. the textbook) that if $\mathbb{T}E \subseteq E$, then $\mathbb{T}^2E \subseteq \mathbb{T}E$.
- By induction, we can further obtain

$$
\cdots \subseteq \mathbb{T}^3 E \subseteq \mathbb{T}^2 E \subseteq \mathbb{T} E \subseteq E.
$$

- Thus, if an element say $(1,0,0,1,0,0,\ldots)$ is in a T-invariant set E, then all its left-shift counterparts (i.e., $(0, 0, 1, 0, 0, 1...)$ and $(0, 1, 0, 0, 1, 0, ...)$) should be contained in E.
- As a result, for a \mathbb{T} -invariant set E, an element and all its left-shift counterparts are either all in E or all outside E , but cannot be partially inside E .
- Hence, a "T-invariant group" such as one containing

 $(1, 0, 0, 1, 0, 0, \ldots), (0, 0, 1, 0, 0, 1, \ldots)$ and $(0, 1, 0, 0, 1, 0, \ldots)$

should be treated as an indecomposable group in T-invariant sets.

- Although we are in particular interested in these "T-invariant indecomposable groups" (especially when defining an ergodic random process), it is possible that some single "transient" element, such as $(0, 0, 1, 1, \ldots)$ in $(B.3.1)$, is included in ^a T-invariant set, and will be excluded after applying left-shift operation T.
- This however can be resolved by introducing the inverse operation \mathbb{T}^{-1} .
- Note that $\mathbb T$ is a many-to-one mapping, so its inverse operation does not exist in general.
- Similar to taking the closure of an open set, the definition adopted below [P. C. Shields 1991, p. 3] allows us to "enlarge" the T-invariant set such that all right-shift counterparts of the single "transient" element are included:

$$
\mathbb{T}^{-1}E:=\{\boldsymbol{x}\in\mathcal{X}^{\infty}\colon\mathbb{T}\boldsymbol{x}\in E\}\,.
$$

• We then notice from the above definition that if

$$
\mathbb{T}^{-1}E = E,\tag{B.3.2}
$$

then

$$
\mathbb{T} E = \mathbb{T} (\mathbb{T}^{-1} E) = E,
$$

and hence E is constituted only by the \mathbb{T} -invariant groups because

$$
\cdots = \mathbb{T}^{-2}E = \mathbb{T}^{-1}E = E = \mathbb{T}E = \mathbb{T}^2E = \cdots.
$$

• The sets that satisfy (B.3.2) are sometimes referred to as *ergodic sets* because as time goes by (the left-shift operator T can be regarded as ^a shift to ^a future time), the set always stays in the state that it has been before.

- As the textbook only deals with one-sided random processes, the discussion on T-invariance only focuses on sets of one-sided sequences.
- When a two-sided random process $\ldots, X_{-2}, X_{-1}, X_0, X_1, X_2, \ldots$ is considered, the left-shift operation T of ^a two-sided sequence actually has ^a unique inverse. Hence, $\mathbb{T}E \subseteq E$ implies $\mathbb{T}E = E$. Also, $\mathbb{T}E = E$ iff $\mathbb{T}^{-1}E = E$. Ergodicity for two-sided sequences can therefore be directly defined using $\mathbb{T}E = E$.

We now classify several useful statistical properties of (one-sided) random process

$$
\mathbf{X} = \{X_1, X_2, \ldots\}.
$$

- *Memoryless***:** A random process or ^a source *X* is said to be *memoryless* if the sequence of random variables X_i is *independent* and *identically distributed* $(i.i.d.).$
- *Stationary process***:** A process is said to be *stationary* (or *strictly stationary*) if the probability of every sequence or event is unchanged by ^a left (time) shift.
- *Ergodic process***:** A process is said to be *ergodic* if any ergodic set (satisfying $(B.3.2)$) in \mathcal{F}_X has probability either 1 or 0. This definition is not very intuitive, but some interpretations and examples may shed some light.
	- Observe that the definition has nothing to do with stationarity. It simply states that events that are unaffected by time-shifting (both left- and rightshifting) must have probability either zero or one.
	- Ergodicity implies that all convergen^t time averages converge to ^a constant (but not necessarily to the ensemble average or statistical expectation).

Below is an example that can be used to explain the idea.

Example. Suppose $X_1, X_2, \cdots, X_n, \cdots$ is an ergodic process, where each X_n takes values in $\{0,1\}$. Let Ω be the set of all one-sided zero-one sequences. Define for $\alpha \in [0,1],$

$$
\bar{E}_n(\alpha) := \left\{ \boldsymbol{x} \in \{0, 1\}^\infty \; : \; \alpha \le \limsup_{m \to \infty} \frac{x_1 + \dots + x_m}{m} < \alpha + \frac{1}{n} \right\}
$$

and

$$
\underline{E}_n(\alpha) := \left\{ \boldsymbol{x} \in \{0,1\}^\infty \; : \; \alpha \leq \liminf_{m \to \infty} \frac{x_1 + \dots + x_m}{m} < \alpha + \frac{1}{n} \right\}.
$$

Then it can be verified that both $\bar{E}_n(\alpha)$ and $\underline{E}_n(\alpha)$ are ergodic sets, i.e.,

$$
\bar{E}_n(\alpha) = \mathbb{T}^{-1} \bar{E}_n(\alpha)
$$
 and $\underline{E}_n(\alpha) = \mathbb{T}^{-1} \underline{E}_n(\alpha)$.

Observe that

$$
\Omega = \bigcup_{k=0}^{n} \bar{E}_n\left(\frac{k}{n}\right) = \bigcup_{k=0}^{n} \underline{E}_n\left(\frac{k}{n}\right)
$$

and

$$
\bar{E}_n\left(\frac{k}{n}\right)\bigcap \bar{E}_n\left(\frac{\ell}{n}\right)=\underline{E}_n\left(\frac{k}{n}\right)\bigcap \underline{E}_n\left(\frac{\ell}{n}\right)=\emptyset \text{ for } k\neq \ell.
$$

The definition of ergodicity implies the existence of k and ℓ such that

$$
\Pr\left[\boldsymbol{X} \in \bar{E}_n\left(\frac{k}{n}\right)\right] = \Pr\left[\boldsymbol{X} \in \underline{E}_n\left(\frac{\ell}{n}\right)\right] = 1.
$$

If $\frac{X_1 + \dots + X_n}{n}$ converges with probability one, then $k = \ell$.

In other words,

$$
\frac{k}{n} \le \limsup_{m \to \infty} \frac{X_1 + \dots + X_m}{m} < \frac{k+1}{n} \text{ with probability 1}
$$

and

$$
\frac{k}{n} \le \liminf_{m \to \infty} \frac{X_1 + \dots + X_m}{m} < \frac{k+1}{n} \text{ with probability 1.}
$$

As ^a result,

$$
\left|\limsup_{m\to\infty}\frac{X_1+\dots+X_m}{m}-\liminf_{m\to\infty}\frac{X_1+\dots+X_m}{m}\right|<\frac{1}{n}\text{ with probability 1.}
$$

Ergodicity implies that all convergen^t time averages converge to ^a constant.

- It needs to be pointed out that in the above example, ergodicity does not guarantee that the ensemble average lies in $\lfloor k/n, (k+1)/n \rfloor$.
- A quick example is that

$$
Pr{(x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, ...)} = 0.2
$$

and

$$
Pr{(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, \ldots)} = 0.8
$$

assure the validity of ergodicity, but

$$
\frac{X_1 + \dots + X_n}{n} \to \frac{1}{2}
$$
 with probability 1.

which is not equal to $E[X_i]$ for any i.

- In principle,
	- **–** ergodicity implies that all convergen^t sample averages converge to ^a constant (but not necessarily to the statistical expectation), and
	- **–** stationarity assures that the time average converges to ^a random variable;

hence, it is reasonable to expect that they jointly imply the ultimate time average equals the ensemble average. This is validated by the well-known *ergodic theorem* by Birkhoff and Khinchin.

Theorem B.4 (Pointwise ergodic theorem) Consider ^a discrete-time stationary random process, $\mathbf{X} = \{X_n\}_{n=1}^{\infty}$. For real-valued function $f(\cdot)$ on R with finite mean (i.e., $|E[f(X_n)]| < \infty$), there exists a random variable Y such that

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(X_k) = Y
$$
 with probability 1.

If, in addition to stationarity, the process is also ergodic, then

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(X_k) = E[f(X_1)] \text{ with probability 1.}
$$

Operational meaning of stationary ergodic assumption I: b-21

- Stationary ergodic random source
	- **–** One of the important consequences that the pointwise ergodic theorem indicates is that the time average can ultimately replace the statistical average, which is ^a useful result.
	- **–** Hence, with stationarity and ergodicity, one, who observes

$$
X_1^{30} = 154326543334225632425644234443
$$

from the experiment of rolling ^a dice, can draw the conclusion that the true distribution of rolling the dice can be well approximated by:

$$
\Pr{X_i = 1} \approx \frac{1}{30} \qquad \Pr{X_i = 2} \approx \frac{6}{30} \qquad \Pr{X_i = 3} \approx \frac{7}{30}
$$
\n
$$
\Pr{X_i = 4} \approx \frac{9}{30} \qquad \Pr{X_i = 5} \approx \frac{4}{30} \qquad \Pr{X_i = 6} \approx \frac{3}{30}
$$

- **–** Such result is also known by the *law of large numbers*. The relation between ergodicity and the law of large numbers will be further explored later.
- Non-stationary or non-ergodic source
	- **–** Empirical distribution (relative frequency) cannot necessarily be used to approximate the true distribution.

Operational meaning of stationary ergodic assumption I: b-22

- In communications theory, one may assume that *the source is stationary* or *the source is stationary ergodic*. But it is not common to see the assumption of *the source being ergodic but non-stationary*. Why?
	- **–** This is perhaps because an ergodic but non-stationary source in general does not facilitate the analytical study of communications problems.
- This, to some extent, justifies that the *ergodicity* assumption usually comes after *stationarity* assumption. A specific example is the pointwise ergodic theorem, where the random processes considered is presumed to be stationary.

We continue to classify useful statistical properties of (one-sided) random process

$$
\mathbf{X} = \{X_1, X_2, \ldots\}.
$$

 \Diamond Markov chain for three random variables:

Three random variables X, Y and Z are said to form a Markov chain if

$$
P_{X,Y,Z}(x,y,z) = P_X(x) \cdot P_{Y|X}(y|x) \cdot P_{Z|Y}(z|y); \tag{B.3.3}
$$

i.e.,

$$
P_{Z|X,Y}(z|x,y) = P_{Z|Y}(z|y).
$$

This is usually denoted by

$$
X \to Y \to Z.
$$

• " $X \to Y \to Z$ " is sometimes read as "X and Z are conditionally independent given Y " because it can be shown that $(B.3.3)$ is equivalent to

$$
P_{X,Z|Y}(x,z|y) = P_{X|Y}(x|y) \cdot P_{Z|Y}(z|y).
$$

• Therefore, " $X \to Y \to Z$ " is equivalent to " $Z \to Y \to X$ ". Accordingly, the Markovian notation is sometimes expressed as " $X \leftrightarrow Y \leftrightarrow Z$ ".

 \diamond *k*th-order Markov sources:

The sequence of random variables $\{X_n\}_{n=1}^{\infty} = X_1, X_2, X_3, \ldots$ with common finite-alphabet $\mathcal X$ is said to form a k-th order Markov chain (or k-th order Markov source or process) if for all $n > k$, $x_i \in \mathcal{X}$, $i = 1, \ldots, n$,

$$
\Pr[X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_1 = x_1] \\
= \Pr[X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_{n-k} = x_{n-k}].
$$
\n(B.3.4)

Each x^{n-1} $x_{n-k}^{n-1} := (x_{n-k}, x_{n-k+1}, \ldots, x_{n-1}) \in \mathcal{X}^k$ is called the *state* of the Markov chain at time n .

• **Irreducible:** A Markov chain is *irreducible* if with some (non-zero) probability, we can go from any state in \mathcal{X}^k to another state in a finite number of steps, i.e., for all $x^k, y^k \in \mathcal{X}^k$ there exists $j \geq 1$ such that

$$
\Pr\left\{X_j^{k+j-1} = x^k \middle| X_1^k = y^k \right\} > 0.
$$

• **Time-invariant:** A Markov chain is said to be *time-invariant* or *homogeneous*, if for every $n > k$,

$$
\Pr[X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_{n-k} = x_{n-k}]
$$

=
$$
\Pr[X_{k+1} = x_{k+1} | X_k = x_k, \dots, X_1 = x_1].
$$

– Therefore, ^a homogeneous first-order Markov chain can be defined through its transition probability:

$$
[Pr{X_2 = x_2 | X_1 = x_1}]_{|\mathcal{X}| \times |\mathcal{X}|},
$$

and its initial state distribution $P_{X_1}(x)$.

• **Aperiodic:**

 $-$ In a first-order Markov chain, the *period* $d(x)$ of state $x \in \mathcal{X}$ is defined by

$$
d(x) := \gcd\left\{n \in \{1, 2, 3, \ldots\} : \Pr\{X_{n+1} = x | X_1 = x\} > 0\right\},\
$$

where gcd denotes the greatest common divisor; in other words, if the Markov chain starts in state x, then the chain cannot return to state x at any time that is not a multiple of $d(x)$.

- $-$ If $Pr{X_{n+1} = x | X_1 = x} = 0$ for all n, we say that state x has an infinite period and write $d(x) = \infty$.
- $-$ We also say that *state* x *is aperiodic* if $d(x) = 1$ and *periodic* if $d(x) >$ 1.
- **–** The first-order Markov chain is called **aperiodic** if all its states are aperiodic. In other words, the first-order Markov chain is aperiodic if

$$
\gcd\{n \in \{1, 2, 3, \ldots\}: \Pr\{X_{n+1} = x | X_1 = x\} > 0\} = 1 \quad \forall x \in \mathcal{X}.
$$

Property. In an irreducible first-order Markov chain, all states have the same period. Hence, if one state in such ^a chain is aperiodic, then the entire Markov chain is aperiodic.

• Stationarity: A distribution $\pi(\cdot)$ on X is said to be a *stationary* distribution for ^a homogeneous (i.e., time-invariant) first-order Markov chain, if for every $y \in \mathcal{X},$

$$
\pi(y) = \sum_{x \in \mathcal{X}} \pi(x) \Pr\{X_2 = y | X_1 = x\}.
$$

Properties.

- 1. For a finite-alphabet homogeneous first-order Markov chain, $\pi(\cdot)$ always exists.
- 2. $\pi(\cdot)$ is unique if the Markov chain is irreducible.
- 3. For ^a finite-alphabet homogeneous first-order Markov chain that is both irreducible and aperiodic,

$$
\lim_{n \to \infty} \Pr\{X_{n+1} = y | X_1 = x\} = \pi(y)
$$

for all states x and y in \mathcal{X} .

If the initial state distribution is equal to ^a stationary distribution, then the homogeneous first-order Markov chain becomes ^a stationary process.

B.4 Convergence of sequences of random variables \qquad _{I: b-29}

• Relation of five modes of convergence

$$
X_n \xrightarrow{\text{p.w.}} X
$$
\n
$$
\downarrow
$$
\n
$$
X_n \xrightarrow{a.s.} X \xrightarrow{\text{Thm. B.10}} X_n \xrightarrow{L_r} X \ (r \ge 1)
$$
\n
$$
X_n \xrightarrow{p} X
$$
\n
$$
\downarrow
$$
\n
$$
X_n \xrightarrow{d} X
$$

B.4 Convergence of sequences of random variables \qquad _{I: b-30}

• Pointwise convergence and almost surely convergence

Example B.7 Give a probability space

 $(\Omega = \{0, 1, 2, 3\}, 2^{\Omega}, P(0) = P(1) = P(2) = 1/3).$

 $-$ A random variable X_n is a mapping from a probability space to \mathbb{R} . Let the mapping be

$$
X_n(\omega) = \frac{\omega}{n} \implies \Pr\{X_n = 0\} = \Pr\left\{X_n = \frac{1}{n}\right\} = \Pr\left\{X_n = \frac{2}{n}\right\} = \frac{1}{3}.
$$

– (*Pointwise convergence*) Observe that

$$
(\forall \omega \in \Omega) \; X_n(\omega) \to X(\omega),
$$

where $X(\omega) = 0$ for every $\omega \in \Omega$. So

$$
X_n \xrightarrow{p.w} X.
$$

 $-$ (*Almost surely convergence*) Let $\tilde{X}(\omega) = 0$ for $\omega = 0, 1, 2$ and $\tilde{X}(\omega) = 1$ for $\omega = 3$. Then both of the following statements are true:

$$
X_n \xrightarrow{a.s.} X \quad \text{and} \quad X_n \xrightarrow{a.s.} \tilde{X},
$$

(since

$$
\Pr\left\{\lim_{n\to\infty}X_n=\tilde{X}\right\}=\sum_{\omega=0}^3P(\omega)\cdot\mathbf{1}\left\{\lim_{n\to\infty}X_n(\omega)=\tilde{X}(\omega)\right\}=1.
$$

B.4 Convergence of sequences of random variables I: b-31

• Almost surely convergence (with probability 1) and convergence in probability

$$
X_n \xrightarrow{a.s.} X \equiv \Pr\left\{ \lim_{n \to \infty} X_n = X \right\} = 1
$$

$$
X_n \xrightarrow{p} X \equiv (\forall \gamma > 0) \lim_{n \to \infty} \Pr\left\{ |X_n - X| < \gamma \right\} = 1
$$

• Convergence in r th mean

$$
X_n \xrightarrow{L_r} X \equiv \lim_{n \to \infty} E\left[|X_n - X|^r \right] = 0
$$

• Convergence in distribution

$$
X_n \xrightarrow{d} X \equiv \lim_{n \to \infty} F_{X_n}(x) = F_X(x)
$$
 for every continuous point of $F_X(x)$

B.4 Convergence of sequences of random variables I: b-32

The next observation facilitates the finding of limiting random variable.

Observation B.8 (Uniqueness of convergence)

1. If $X_n \xrightarrow{p.w.} X$ and $X_n \xrightarrow{p.w.} Y$, then $X = Y$ pointwisely. I.e.,

$$
(\forall \omega \in \Omega) \quad X(\omega) = Y(\omega).
$$

2. If
$$
X_n \xrightarrow{a.s.} X
$$
 and $X_n \xrightarrow{a.s.} Y$
\n(or $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$)
\n(or $X_n \xrightarrow{L_r} X$ and $X_n \xrightarrow{L_r} Y$),
\nthen $X = Y$ with probability 1. I.e.,

$$
\Pr\{X = Y\} = 1.
$$

3.
$$
X_n \xrightarrow{d} X
$$
 and $X_n \xrightarrow{d} Y$,
then $F_X(x) = F_Y(x)$ for all x.

B.4 Convergence of sequences of random variables I: b-33

Theorem B.9 (Monotone convergence theorem)

(i)
$$
X_n \xrightarrow{a.s.} X
$$

\n(ii) $(\forall n) Y \le X_n \le X_{n+1}$ $\rightarrow X_n \xrightarrow{L_1} X \Rightarrow E[X_n] \rightarrow E[X].$
\n(iii) $E[|Y|] < \infty$

Theorem B.10 (Dominated convergence theorem)

(i)
$$
X_n \xrightarrow{a.s.} X
$$

\n(ii) $(\forall n) |X_n| \le Y$ $\Rightarrow X_n \xrightarrow{L_1} X \Rightarrow E[X_n] \rightarrow E[X].$
\n(iii) $E[|Y|] < \infty$

The implication of $X_n \stackrel{L_1}{\longrightarrow} X$ to $E[X_n] \to E[X]$ can be easily seen from

$$
|E[X_n] - E[X]| = |E[X_n - X]| \le E[|X_n - X|].
$$

Theorem B.13 (Weak law of large numbers) Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of uncorrelated random variables with common mean $E[X_i] = \mu$. If the variables also have common variance, or more generally,

$$
\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n \text{Var}[X_i] = 0, \quad \text{(equivalently, } \frac{X_1 + \dots + X_n}{n} \xrightarrow{L_2} \mu)
$$

then

$$
\frac{X_1 + \dots + X_n}{n} \xrightarrow{p} \mu.
$$

proof: By Chebyshev's inequality,

$$
\Pr\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \ge \varepsilon\right\} \le \frac{1}{n^2 \varepsilon^2} \sum_{i=1}^n \text{Var}[X_i].
$$

 \Box

Note: $X_n \stackrel{\mathcal{L}_2}{\longrightarrow} X$ implies $X_n \stackrel{p}{\longrightarrow} X$.

 $\bf{Theorem~B.14}$ $(\bf{Kolmogorov's\, strong\, law\, of\, large\, numbers})$ Let $\{X_n\}_{n=1}^\infty$ be an independent sequence of random variables with common mean $E[X_n] = \mu$. If either

- 1. X_n 's are identically distributed; or
- 2. X_n 's are square-integrable with

$$
\sum_{i=1}^{\infty} \frac{\text{Var}[X_i]}{i^2} < \infty,
$$

Then

$$
\frac{X_1 + \dots + X_n}{n} \xrightarrow{a.s.} \mu.
$$

Note: The difference of *weak* and *strong* laws of large number is that the former is convergence *in probability*, while the latter is *almost sure* convergence.

- After the introduction of Kolmogorov's strong law of large numbers, one may find that the pointwise ergodic theorem (Theorem B.4) actually indicates ^a similar result.
	- **–** In fact, the pointwise ergodic theorem can be viewed as another version of strong law of large numbers, which states that *for stationary and ergodic processes, time averages converge with probability* 1 *to the ensemble expectation.*
- The notion of ergodicity is often misinterpreted, since the definition is not very intuitive. Some engineering texts may provide ^a definition that ^a stationary process satisfying the ergodic theorem is also ergodic.

$B.5$ Ergodicity and law of large numbers $\qquad \qquad$

Let us try to clarify the notion of ergodicity by the following remarks.

- The concept of ergodicity does not require stationarity. In other words, ^a non-stationary process can be ergodic.
- Many perfectly good models of ^physical processes are not ergodic, ye^t they have ^a form of law of large numbers. In other words, non-ergodic processes can be perfectly good and useful models.
- There is no finite-dimensional equivalent definition of ergodicity as there is for stationarity. This fact makes it more difficult to describe and interpret ergodicity.
- I.i.d. processes are ergodic; hence, ergodicity can be thought of as ^a (kind of) generalization of i.i.d.
- As mentioned earlier, stationarity and ergodicity imply the time average converges with probability 1 to the ensemble mean. Now if ^a process is stationary but not ergodic, then the time average still converges, but possibly not to the ensemble mean.

$B.5$ Ergodicity and law of large numbers $\qquad \qquad$

Example. Let $\{A_n\}_{n=1}^{\infty}$ $\sum_{n=-\infty}^{\infty}$ and $\{B_n\}_{n=1}^{\infty}$ $\sum_{n=-\infty}^{\infty}$ be two i.i.d. binary 0-1 random variables with

$$
Pr{A_n = 0} = Pr{B_n = 1} = 1/4.
$$

Suppose that

$$
X_n = \begin{cases} A_n, & \text{if } U = 1 \\ B_n, & \text{if } U = 0, \end{cases}
$$

where U is equiprobable binary random variable, and $\{A_n\}_{n=1}^{\infty}$, $\{B_n\}_{n=1}^{\infty}$ and U are independent.

Then $\{X_n\}_{n=1}^{\infty}$ is stationary.

Is the process ergodic? The answer is negative.

If the stationary process were ergodic, then from the pointwise ergodic theorem (Theorem B.4), its relative frequency would converge to ^a constant!

$B.5$ Ergodicity and law of large numbers $\qquad \qquad$

However, one should observe that the outputs of (X_1,\ldots,X_n) form a Bernoulli process with relative frequency of 1's being either 3 /⁴ or ¹ /4, depending on the value of U. Therefore,

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_n \xrightarrow{a.s.} Y,
$$

where $Pr(Y = 1/4) = Pr(Y = 3/4) = 1/2$, which contradicts to the ergodic theorem. \Box

• *Ergodic decomposition theorem:* Under fairly genera^l assumptions, any (not necessarily ergodic) stationary process is ^a mixture of stationary ergodic processes, and hence one always observes ^a stationary ergodic outcome. As in the above example, one always observe either A_1, A_2, A_3, \ldots or $B_1, B_2, B_3, \ldots,$ depending on the value of U , for which both sequences are stationary ergodic (i.e., the time-stationary observation X_n satisfies

$$
X_n = U \cdot A_n + (1 - U) \cdot B_n.
$$

- The previous remark implies that ergodicity is not required for the strong law of large numbers to be useful.
- The next question is whether or not stationarity is required. Again the answer is negative !

- In fact, what is needed in this course is the **law of large numbers**, which results the convergence of sample averages to its ensemble expectation.
	- **–** It should be reasonable to expect that random processes could exhibit transient behavior that violates the stationarity definition, ye^t the sample average still converges. One can then introduce the notion of *asymptotically stationary* to achieve the law of large numbers.

B.6 Central limit theorem I: b-41

Theorem B.15 (Central limit theorem) If $\{X_n\}_{n=1}^{\infty}$ is a sequence of i.i.d. random variables with finite common marginal mean μ and variance σ^2 , then

$$
\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu)\stackrel{d}{\longrightarrow}Z\sim\mathcal{N}(0,\sigma^2),
$$

where the convergence is in distribution (as $n \to \infty$) and $Z \sim \mathcal{N}(0, \sigma^2)$ is a Gaussian distributed random variable with mean 0 and variance σ^2 .

B.7 Convexity, concavity and Jensen's inequality I: b-42

Definition B.16 (Convexity) Consider a convex set $\mathcal{O} \subset \mathbb{R}^m$, where m is a fixed positive integer. Then a function $f: \mathcal{O} \to \mathbb{R}$ is said to be *convex* over \mathcal{O} if for every <u>x</u>, y in \mathcal{O} and $0 \leq \lambda \leq 1$,

$$
f\left(\lambda \underline{x} + (1-\lambda)\underline{y}\right) \leq \lambda f(\underline{x}) + (1-\lambda)f(\underline{y}).
$$

Furthermore, a function f is said to be *strictly convex* if equality holds only when $\lambda = 0$ or $\lambda = 1$.

• A set $\mathcal{O} \subset \mathbb{R}^m$ is said to be *convex* if for every $\underline{x} = (x_1, x_2, \cdots, x_m)^T$ and $y = (y_1, y_2, \dots, y_m)^T$ in \mathcal{O} (where T denotes transposition), and every $0 \leq$ $\lambda \leq 1, \lambda \underline{x} + (1 - \lambda)y \in \mathcal{O}$; in other words, the "convex combination" of any two "points" \underline{x} and y in $\mathcal O$ also belongs to $\mathcal O$.

Definition B.17 (Concavity) A function f is *concave* if − f is convex.

Jensen's inequality I: b-43

Theorem B.18 (Jensen's inequality) If $f : \mathcal{O} \to \mathbb{R}$ is convex over a convex set $\mathcal{O} \subset \mathbb{R}^m$, and $\underline{X} = (X_1, X_2, \cdots, X_m)^T$ is an *m*-dimensional random vector with alphabet $\mathcal{X} \subset \mathcal{O}$, then

$$
E[f(\underline{X})] \ge f(E[\underline{X}]).
$$

Moreover, if f is strictly convex, then equality in the above inequality immediately implies $\underline{X} = E[\underline{X}]$ with probability 1.

Optimization of a function $f(\boldsymbol{x})$ over $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathcal{X} \subseteq \mathbb{R}^n$

subject to

$$
\begin{cases}\text{inequality constraints } g_i(\boldsymbol{x}) \leq 0 \text{ for } 1 \leq i \leq m, \text{ and} \\
\text{equality constraints } h_j(\boldsymbol{x}) = 0 \text{ for } 1 \leq j \leq \ell\n\end{cases}
$$

is ^a center technique to problems in information theory.

Mathematically, the problem can be formulated as:

$$
\min_{\boldsymbol{x}\in\mathcal{Q}}f(\boldsymbol{x}),\tag{B.8.1}
$$

where

$$
\mathcal{Q} := \{ \boldsymbol{x} \in \mathcal{X} : g_i(\boldsymbol{x}) \leq 0 \text{ for } 1 \leq i \leq m \text{ and } h_i(\boldsymbol{x}) = 0 \text{ for } 1 \leq j \leq \ell \}.
$$

B.8 Lagrange multipliers tech. $&$ KKT conditions \qquad _{I: b-45}

- In most cases, solving the constrained optimization problem defined in $(B.8.1)$ is hard due to the constraints.
- Instead, one may introduce ^a **dual** optimization problem without constraints:

$$
L(\lambda, \nu) := \min_{\mathbf{x} \in \mathcal{X}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{\ell} \nu_j h_j(\mathbf{x}) \right) = \min_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}; \lambda, \nu).
$$
\n(B.8.2)

- In the literature, $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_m)$ and $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_\ell)$ are usually referred to as **Lagrange multipliers**, and ^L(*λ*, *^ν*) is called the **Lagrange dual function**.
	- $-$ Note that $L(\lambda, \nu)$ is a concave function of λ and ν since it is the minimization of affine functions of *λ* and *ν*.

• It can be verified that when $\lambda_i \geq 0$ for $1 \leq i \leq m$,

$$
L(\lambda, \nu) \le \min_{\mathbf{x} \in \mathcal{Q}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{\ell} \nu_j h_j(\mathbf{x}) \right) \le \min_{\mathbf{x} \in \mathcal{Q}} f(\mathbf{x}). \quad (B.8.3)
$$

• We are however interested in when the above inequality becomes equality (i.e., when the so-called *strong duality* holds) because if there exist non-negative $\tilde{\lambda}$ and $\tilde{\nu}$ that equate (B.8.3), then

$$
f(\boldsymbol{x}^*) = \min_{\boldsymbol{x} \in \mathcal{Q}} f(\boldsymbol{x})
$$

\n
$$
= L(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) = \min_{\boldsymbol{x} \in \mathcal{X}} \left(f(\boldsymbol{x}) + \sum_{i=1}^m \tilde{\lambda}_i g_i(\boldsymbol{x}) + \sum_{j=1}^\ell \tilde{\nu}_j h_j(\boldsymbol{x}) \right)
$$

\n
$$
\leq f(\boldsymbol{x}^*) + \sum_{i=1}^m \tilde{\lambda}_i g_i(\boldsymbol{x}^*) + \sum_{j=1}^\ell \tilde{\nu}_j h_j(\boldsymbol{x}^*)
$$

\n
$$
\leq f(\boldsymbol{x}^*), \qquad (B.8.4)
$$

where (B.8.4) follows because the minimizer *^x*[∗] of (B.8.1) lies in Q.

B.8 Lagrange multipliers tech. $&$ KKT conditions \qquad _E: b-47

• Hence, if the strong duality holds, the same *^x*[∗] achieves both

$$
\min_{\bm{x}\in\mathcal{Q}}f(\bm{x})
$$

and

$$
L(\tilde{\boldsymbol{\lambda}},\tilde{\boldsymbol{\nu}}),
$$

and $\tilde{\lambda}_i g_i(\boldsymbol{x}^*) = 0$ for $1 \leq i \leq m$.¹

- The strong duality does not in general hold.
- A situation that guarantees the validity of the strong duality has been determined by William Karush [212] (1936), and separately Harold W. Kuhn and Albert W. Tucker [235] (1951).
- In particular, when $f(\cdot)$ and $\{g_i(\cdot)\}_{i=1}^m$ are both convex, and $\{h_j(\cdot)\}_{j=1}^{\ell}$ are affine, and these functions are all differentiable, they found that the strong duality holds if, and only if, the KKT condition is satisfied [56, p. 258].
	- **–** Again, we are free to choose *λ* and *^ν* that satisfy the KKT condition (cf. Definition B.19).

 1 Equating (B.8.4) implies $\sum_{i=1}^{m} \tilde{\lambda}_{i} g_{i}(x^{*}) = 0$. It can then be easily verified from $\tilde{\lambda}_{i} g_{i}(x^{*}) \leq 0$ for every $1 \leq i \leq m$ that $\tilde{\lambda}_i g_i(\boldsymbol{x}^*) = 0$ for $1 \leq i \leq m$.

B.8 Lagrange multipliers tech. $&$ KKT conditions \qquad _{I: b-48}

 $\bf{Definition~B.19}$ $(\bf{Karush-Kuhn-Tucker}$ (\bf{KKT}) $\bf{condition})$ \rm{Point} \boldsymbol{x} = $(x_1,$..., x_n) and multipliers $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_m)$ and $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_\ell)$ are said to satisfy the KKT condition if

$$
\begin{cases}\ng_i(\boldsymbol{x}) \leq 0, & \lambda_i \geq 0, & \lambda_i g_i(\boldsymbol{x}) = 0 & i = 1, \dots, m \\
h_j(\boldsymbol{x}) = 0 & j = 1, \dots, \ell \\
\frac{\partial L}{\partial x_k}(\boldsymbol{x}; \boldsymbol{\lambda}, \boldsymbol{\nu}) = \frac{\partial f}{\partial x_k}(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_k}(\boldsymbol{x}) + \sum_{j=1}^\ell \nu_j \frac{\partial h_j}{\partial x_k}(\boldsymbol{x}) = 0 & k = 1, \dots, n\n\end{cases}
$$

- Note that when $f(\cdot)$ and constraints $\{g_i(\cdot)\}_{i=1}^m$ and $\{h_j(\cdot)\}_{j=1}^{\ell}$ are arbitrary functions, the KKT condition is only ^a necessary condition for the validity of the strong duality.
- In other words, for ^a non-convex optimization, we can only claim that if the strong duality holds, then the KKT condition is satisfied but not vice versa.

- A case that is particularly useful in information theory is when x is restricted to be ^a probability distribution.
- In such case, apart from other problem-specific constraints, we have additionally

 $\begin{cases} n \text{ inequality constraints } g_{m+i}(\boldsymbol{x}) = -x_i \leq 0 \text{ for } 1 \leq i \leq n, \text{ and} \\ \text{one equality constraint } h_{\ell+1}(\boldsymbol{x}) = \sum_{k=1}^n x_k - 1 = 0. \end{cases}$ one equality constraint $h_{\ell+1}(\boldsymbol{x}) = \sum_{k=1}^{n} h_k(\boldsymbol{x})$ $\int_{k=1}^{n} x_k - 1 = 0.$

The above relation is the mostly seen form of the KKT condition when it is used in problems of information theory.

Example B.20 Suppose for non-negative $\{q_{i,j}\}_{1 \leq i \leq n, 1 \leq j \leq n'}$ with $\sum_{j=1}^{n'}$ $\sum_{j=1}^n q_{i,j} = 1,$

$$
\begin{cases}\nf(\boldsymbol{x}) = -\sum_{i=1}^{n} \sum_{j=1}^{n'} x_i q_{i,j} \log \frac{q_{i,j}}{\sum_{i'=1}^{n} x_{i'} q_{i',j}} \\
g_i(\boldsymbol{x}) = -x_i \leq 0 & i = 1, ..., n \\
h(\boldsymbol{x}) = \sum_{i=1}^{n} x_i - 1 = 0\n\end{cases}
$$

Then

$$
L(\boldsymbol{x}; \boldsymbol{\lambda}, \boldsymbol{\nu}) := \left(f(\boldsymbol{x}) + \sum_{i=1}^n \lambda_i g_i(\boldsymbol{x}) + \nu h(\boldsymbol{x})\right).
$$

Then the KKT condition implies

$$
\begin{cases}\nx_i \ge 0, & \lambda_i \ge 0, \quad \lambda_i x_i = 0 \\
\sum_{i=1}^n x_i = 1 \\
\frac{\partial L}{\partial x_k}(\boldsymbol{x}; \boldsymbol{\lambda}, \boldsymbol{\nu}) = \left(1 - \sum_{j=1}^{n'} q_{k,j} \log \frac{q_{k,j}}{\sum_{i'=1}^n x_{i'} q_{i',j}}\right) - \lambda_k + \nu = 0 \quad k = 1, \dots, n\n\end{cases}
$$

which further implies that (we can choose)

$$
\lambda_k = \begin{cases}\n1 - \sum_{j=1}^{n'} q_{k,j} \log \frac{q_{k,j}}{\sum_{i'=1}^{n} x_{i'} q_{i',j}} + \nu = 0 & x_k > 0 \\
1 - \sum_{j=1}^{n'} q_{k,j} \log \frac{q_{k,j}}{\sum_{i'=1}^{n} x_{i'} q_{i',j}} + \nu \ge 0 & x_k = 0\n\end{cases}
$$

By this, the input distributions that achieve the channel capacities of some channels such as BSC and BEC can be identified. \Box

Key Notes I: b-52

- Definitions of (weakly, strictly) stationarity, ergodicity and Markovian (irreducible, homogeneous)
- Mode of convergences (almost surely or with probability 1, in probability, in distribution, in L_r mean)
- Laws of large numbers
- Central limit theorem
- Jensen's inequality (convexity and concavity)
- KKT conditions