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B.1 Probability space I: b-1

Definition B.1 (σ-Fields) Let F be a collection of subsets of a non-empty set

Ω. Then F is called a σ-field (or σ-algebra) if the following hold:

1. Ω ∈ F .

2. F is closed under complementation: If A ∈ F , then Ac ∈ F , where Ac =

{ω ∈ Ω: ω �∈ A}.
3. F is closed under countable unions: If Ai ∈ F for i = 1, 2, 3, . . ., then⋃∞

i=1Ai ∈ F .
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• It directly follows that the empty set ∅ is also an element of F (as Ωc = ∅) and
that F is closed under countable intersection since

∞⋂
i=1

Ac
i =

( ∞⋃
i=1

Ai

)c

.

• The largest σ-field of subsets of a given set Ω is the collection of all subsets of

Ω (i.e., its powerset), while the smallest σ-field is given by {Ω, ∅}.
• Also, if A is a proper (strict) non-empty subset of Ω, then the smallest σ-field

containing A is given by {Ω, ∅, A,Ac}.
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Definition B.2 (Probability space) A probability space is a triple

(Ω,F , P ), where Ω is a given set called sample space containing all possi-

ble outcomes (usually observed from an experiment), F is a σ-field of subsets of

Ω, and P is a probability measure P : F → [0, 1] on the σ-field satisfying the

following:

1. 0 ≤ P (A) ≤ 1 for all A ∈ F .

2. P (Ω) = 1.

3. Countable additivity: If A1, A2, . . . is a sequence of disjoint sets (i.e., Ai ∩
Aj = ∅ for all i �= j) in F , then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P (Ak).

• It directly follows from Properties 1-3 of the above definition that P (∅) = 0.

• Usually, the σ-field F is called the event space and its elements (which are

subsets of Ω satisfying the properties of Definition B.1) are called events.
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• The Borel σ-field of R, denoted by B(R), is the smallest σ-field of subsets of

R containing all open intervals in R.

• The elements of B(R) are called Borel sets.

• For any random variable X , we use PX to denote the probability distribution

on B(R) induced by X , given by

PX(B) := Pr[X ∈ B] = P (w ∈ Ω : X(w) ∈ B) , B ∈ B(R).

Note that the quantities PX(B), B ∈ B(R), fully characterize the random

variable X as they determine the probabilities of all events that concern X .
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• A random variable X defined over probability space (Ω,F , P ) is a real-valued

function X : Ω → R that is measurable (or F-measurable), i.e., satisfying the

property that

X−1((−∞, t]) := {ω ∈ Ω : X(ω) ≤ t} ∈ F
for each real t.

• A random process (or random source) is a collection of random variables that

arise from the same probability space. It can be mathematically represented

by the collection

{Xt, t ∈ I},
where Xt denotes the t

th random variable in the process, and the index t runs

over an index set I which is arbitrary.
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• The index set I can be uncountably infinite (e.g., I = R), in which case we are

dealing with a continuous-time process.

• Except for a brief interlude with the continuous-time (waveform) Gaussian

channel in Chapter 5, we will consider discrete-time communication systems

throughout the lectures.

To be precise, we will only consider the following cases of index set I :

case a) I consists of one index only.

case b) I is finite.

case c) I is countably infinite.



Why define random variables based on (Ω,F , P )? I: b-7

Answer 1: (Ω,F , P ) is what truly occurs internally,

but is possibly non-observable.

– In order to infer which of the non-observable ω occurs, an experiment is

performed resulting in an observable x that is a function of ω.

– Such experiment yields the random variable X whose probability is defined

over the probability space (Ω,F , P ).

Answer 2: With the underlying probability space, any finite dimensional dis-

tribution of {Xt, t ∈ I} is well-defined.

– For example,

Pr[X1 ≤ x1, X5 ≤ x5, X9 ≤ x9]

= P ({ω ∈ Ω : X1(ω) ≤ x1, X5(ω) ≤ x5, X9(ω) ≤ x9})
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• In many applications, we are perhaps more interested in the distribution func-

tions of random variables than the underlying probability space on which they

are defined.

• It can be proved [Billingsley, Thm. 14.1] that given a real-valued non-negative

function F (·) that is non-decreasing and right-continuous and satisfies

lim
x↓−∞

F (x) = 0 and lim
x↑∞

F (x) = 1,

there exist a random variable and an underlying probability space such that the

cumulative distribution function (cdf) of the random variable, Pr[X ≤ x] =

PX ((−∞, x]), defined over the probability space is equal to F (·).
• This result releases us from the burden of referring to a probability space before

defining the random variable. In other words, we can define a random variable

X directly by its cdf, FX(x) = Pr[X ≤ x], without bothering to refer to its

underlying probability space.

• Nevertheless, it is important to keep in mind that, formally, random variables

are defined over underlying probability spaces.
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• The definition of a random variableX can be generalized by allowing it to take

values that are not real numbers:

Definition A random variable over the probability space (Ω,F , P ) is a func-

tion X : Ω → X satisfying the property that for every F ∈ FX ,

X−1(F ) := {w ∈ Ω : X(w) ∈ F} ∈ F ,

where the alphabet X is a general set and FX is a σ-field of subsets of X
[R. M. Gray 2010, P. C. Shields 1991].

• Contrary to the standard definition of a random variable (by taking X = R),

the elements in X may not have a pre-defined ordering; thus, the cdf,

Pr[X ≤ x] = P ({w ∈ Ω : X(w) ≤ x}),
needs to be explicitly defined.

• Note that this extension definition of a random variable allows X to be an

arbitrary (often finite) set so that a random source taking values from, e.g.,

English alphabet, can now be regarded as a random variable.
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• Statistical evolution in time is an important factor for a random source.

• In particular, a “time-shift” property should be noted first.

Definition. An event E is said to be T-invariant with respect to the left-shift

(or shift transformation) T : X∞ → X∞ if

TE ⊆ E,

where

TE := {Tx : x ∈ E} and Tx := T(x1, x2, x3, . . .) = (x2, x3, . . .).

• In other words, T is equivalent to “chopping the first component.”
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Example. Applying T onto an event E defined below,

E := {(x1 = 1, x2 = 1, x3 = 1, x4 = 1, . . .), (x1 = 0, x2 = 1, x3 = 1, x4 = 1, . . .),

(x1 = 0, x2 = 0, x3 = 1, x4 = 1, . . .)} , (B.3.1)

=
{

1111 . . .︸ ︷︷ ︸
all one

, 0111 . . .︸ ︷︷ ︸
all one but the first

, 0011 . . .︸ ︷︷ ︸
all one but the first two

}
yields

TE = {(x1 = 1, x2 = 1, x3 = 1, . . .), (x1 = 1, x2 = 1, x3 = 1 . . .),

(x1 = 0, x2 = 1, x3 = 1, . . .)}
= {(x1 = 1, x2 = 1, x3 = 1, . . .), (x1 = 0, x2 = 1, x3 = 1, . . .)}
=
{

1111 . . .︸ ︷︷ ︸
all one

, 0111 . . .︸ ︷︷ ︸
all one but the first

}
We then have TE ⊆ E, and hence E is T-invariant. �

E will get smaller and smaller (more condensed) as time evolves.
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• It can be proved (cf. the textbook) that if TE ⊆ E, then T
2E ⊆ TE.

• By induction, we can further obtain

· · · ⊆ T
3E ⊆ T

2E ⊆ TE ⊆ E.

• Thus, if an element say (1, 0, 0, 1, 0, 0, . . .) is in a T-invariant set E, then all its

left-shift counterparts (i.e., (0, 0, 1, 0, 0, 1 . . .) and (0, 1, 0, 0, 1, 0, . . .)) should

be contained in E.

• As a result, for a T-invariant set E, an element and all its left-shift counterparts

are either all in E or all outside E, but cannot be partially inside E.

• Hence, a “T-invariant group” such as one containing

(1, 0, 0, 1, 0, 0, . . .), (0, 0, 1, 0, 0, 1 . . .) and (0, 1, 0, 0, 1, 0, . . .)

should be treated as an indecomposable group in T-invariant sets.
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• Although we are in particular interested in these “T-invariant indecomposable

groups” (especially when defining an ergodic random process), it is possible that

some single “transient” element, such as (0, 0, 1, 1, . . .) in (B.3.1), is included

in a T-invariant set, and will be excluded after applying left-shift operation T.

• This however can be resolved by introducing the inverse operation T
−1.

• Note that T is a many-to-one mapping, so its inverse operation does not exist

in general.

• Similar to taking the closure of an open set, the definition adopted below

[P. C. Shields 1991, p. 3] allows us to “enlarge” the T-invariant set such that

all right-shift counterparts of the single “transient” element are included:

T
−1E := {x ∈ X∞ : Tx ∈ E} .
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• We then notice from the above definition that if

T
−1E = E, (B.3.2)

then

TE = T(T−1E) = E,

and hence E is constituted only by the T-invariant groups because

· · · = T
−2E = T

−1E = E = TE = T
2E = · · · .

• The sets that satisfy (B.3.2) are sometimes referred to as ergodic sets because

as time goes by (the left-shift operator T can be regarded as a shift to a future

time), the set always stays in the state that it has been before.
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• As the textbook only deals with one-sided random processes, the discussion on

T-invariance only focuses on sets of one-sided sequences.

• When a two-sided random process . . . , X−2, X−1, X0, X1, X2, . . . is considered,

the left-shift operation T of a two-sided sequence actually has a unique inverse.

Hence, TE ⊆ E implies TE = E. Also, TE = E iff T
−1E = E. Ergodicity

for two-sided sequences can therefore be directly defined using TE = E.
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We now classify several useful statistical properties of (one-sided) random process

X = {X1, X2, . . .}.

� Memoryless: A random process or a source X is said to be memoryless if the

sequence of random variables Xi is independent and identically distributed

(i.i.d.).

� Stationary process: A process is said to be stationary (or strictly stationary)

if the probability of every sequence or event is unchanged by a left (time) shift.

� Ergodic process: A process is said to be ergodic if any ergodic set (satisfying

(B.3.2)) inFX has probability either 1 or 0. This definition is not very intuitive,

but some interpretations and examples may shed some light.

• Observe that the definition has nothing to do with stationarity. It simply

states that events that are unaffected by time-shifting (both left- and right-

shifting) must have probability either zero or one.

• Ergodicity implies that all convergent time averages converge to a constant

(but not necessarily to the ensemble average or statistical expectation).
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Below is an example that can be used to explain the idea.

Example. Suppose X1, X2, · · · , Xn, · · · is an ergodic process, where each

Xn takes values in {0, 1}. Let Ω be the set of all one-sided zero-one sequences.

Define for α ∈ [0, 1],

Ēn(α) :=

{
x ∈ {0, 1}∞ : α ≤ lim sup

m→∞
x1 + · · · + xm

m
< α +

1

n

}
and

En(α) :=

{
x ∈ {0, 1}∞ : α ≤ lim inf

m→∞
x1 + · · · + xm

m
< α +

1

n

}
.

Then it can be verified that both Ēn(α) and En(α) are ergodic sets, i.e.,

Ēn(α) = T
−1Ēn(α) and En(α) = T

−1En(α).

Observe that

Ω =

n⋃
k=0

Ēn

(
k
n

)
=

n⋃
k=0

En

(
k
n

)
and

Ēn

(
k
n

)⋂
Ēn

(
�
n

)
= En

(
k
n

)⋂
En

(
�
n

)
= ∅ for k �= �.
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The definition of ergodicity implies the existence of k and � such that

Pr
[
X ∈ Ēn

(
k
n

)]
= Pr

[
X ∈ En

(
�
n

)]
= 1.

If X1+···+Xn
n

converges with probability one, then k = �.

In other words,

k

n
≤ lim sup

m→∞
X1 + · · · +Xm

m
<

k + 1

n
with probability 1

and
k

n
≤ lim inf

m→∞
X1 + · · · +Xm

m
<

k + 1

n
with probability 1.

As a result,∣∣∣∣lim sup
m→∞

X1 + · · · +Xm

m
− lim inf

m→∞
X1 + · · · +Xm

m

∣∣∣∣ < 1

n
with probability 1.

�

Ergodicity implies that all convergent time averages converge to a constant.
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• It needs to be pointed out that in the above example, ergodicity does not

guarantee that the ensemble average lies in [k/n, (k + 1)/n).

• A quick example is that

Pr{(x1 = 0, x2 = 1, x3 = 0, x4 = 1, . . .)} = 0.2

and

Pr{(x1 = 1, x2 = 0, x3 = 1, x4 = 0, . . .)} = 0.8

assure the validity of ergodicity, but

X1 + · · · +Xn

n
→ 1

2
with probability 1.

which is not equal to E[Xi] for any i.

• In principle,

– ergodicity implies that all convergent sample averages converge to a

constant (but not necessarily to the statistical expectation), and

– stationarity assures that the time average converges to a random vari-

able;

hence, it is reasonable to expect that they jointly imply the ultimate time

average equals the ensemble average. This is validated by the well-known

ergodic theorem by Birkhoff and Khinchin.
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Theorem B.4 (Pointwise ergodic theorem) Consider a discrete-time

stationary random process, X = {Xn}∞n=1. For real-valued function f(·) on
R with finite mean (i.e., |E[f(Xn)]| < ∞), there exists a random variable Y

such that

lim
n→∞

1

n

n∑
k=1

f(Xk) = Y with probability 1.

If, in addition to stationarity, the process is also ergodic, then

lim
n→∞

1

n

n∑
k=1

f(Xk) = E[f(X1)] with probability 1.
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• Stationary ergodic random source

– One of the important consequences that the pointwise ergodic theorem

indicates is that the time average can ultimately replace the statistical

average, which is a useful result.

– Hence, with stationarity and ergodicity, one, who observes

X30
1 = 154326543334225632425644234443

from the experiment of rolling a dice, can draw the conclusion that the

true distribution of rolling the dice can be well approximated by:

Pr{Xi = 1} ≈ 1

30
Pr{Xi = 2} ≈ 6

30
Pr{Xi = 3} ≈ 7

30

Pr{Xi = 4} ≈ 9

30
Pr{Xi = 5} ≈ 4

30
Pr{Xi = 6} ≈ 3

30

– Such result is also known by the law of large numbers. The relation

between ergodicity and the law of large numbers will be further explored

later.

• Non-stationary or non-ergodic source

– Empirical distribution (relative frequency) cannot necessarily be used to

approximate the true distribution.
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• In communications theory, one may assume that the source is stationary

or the source is stationary ergodic. But it is not common to see the

assumption of the source being ergodic but non-stationary. Why?

– This is perhaps because an ergodic but non-stationary source in general

does not facilitate the analytical study of communications problems.

• This, to some extent, justifies that the ergodicity assumption usually comes

after stationarity assumption. A specific example is the pointwise ergodic

theorem, where the random processes considered is presumed to be station-

ary.
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We continue to classify useful statistical properties of (one-sided) random process

X = {X1, X2, . . .}.
� Markov chain for three random variables:

Three random variables X , Y and Z are said to form a Markov chain if

PX,Y,Z(x, y, z) = PX(x) · PY |X(y|x) · PZ|Y (z|y); (B.3.3)

i.e.,

PZ|X,Y (z|x, y) = PZ|Y (z|y).
This is usually denoted by

X → Y → Z.

• “X → Y → Z” is sometimes read as “X and Z are conditionally indepen-

dent given Y ” because it can be shown that (B.3.3) is equivalent to

PX,Z|Y (x, z|y) = PX|Y (x|y) · PZ|Y (z|y).
• Therefore, “X → Y → Z” is equivalent to “Z → Y → X”. Accordingly,

the Markovian notation is sometimes expressed as “X ↔ Y ↔ Z”.
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� kth-order Markov sources:

The sequence of random variables {Xn}∞n=1 = X1, X2, X3, . . . with common

finite-alphabet X is said to form a k-th order Markov chain (or k-th order

Markov source or process) if for all n > k, xi ∈ X , i = 1, . . . , n,

Pr[Xn = xn|Xn−1 = xn−1, . . . , X1 = x1]

= Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k]. (B.3.4)

Each xn−1
n−k := (xn−k, xn−k+1, . . . , xn−1) ∈ X k is called the state of the Markov

chain at time n.

• Irreducible: A Markov chain is irreducible if with some (non-zero) proba-

bility, we can go from any state in X k to another state in a finite number

of steps, i.e., for all xk, yk ∈ X k there exists j ≥ 1 such that

Pr
{
Xk+j−1

j = xk
∣∣∣Xk

1 = yk
}
> 0.
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• Time-invariant: A Markov chain is said to be time-invariant or homo-

geneous, if for every n > k,

Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−k = xn−k]

= Pr[Xk+1 = xk+1|Xk = xk, . . . , X1 = x1].

– Therefore, a homogeneous first-order Markov chain can be defined thr-

ough its transition probability:[
Pr{X2 = x2|X1 = x1}

]
|X |×|X |,

and its initial state distribution PX1(x).
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• Aperiodic:

– In a first-order Markov chain, the period d(x) of state x ∈ X is defined

by

d(x):=gcd {n ∈ {1, 2, 3, . . .} : Pr{Xn+1 = x|X1 = x} > 0} ,
where gcd denotes the greatest common divisor; in other words, if the

Markov chain starts in state x, then the chain cannot return to state x

at any time that is not a multiple of d(x).

– If Pr{Xn+1 = x|X1 = x} = 0 for all n, we say that state x has an

infinite period and write d(x) = ∞.

– We also say that state x is aperiodic if d(x) = 1 and periodic if d(x) >

1.

– The first-order Markov chain is called aperiodic if all its states are

aperiodic. In other words, the first-order Markov chain is aperiodic if

gcd {n ∈ {1, 2, 3, . . .} : Pr{Xn+1 = x|X1 = x} > 0} = 1 ∀x ∈ X .

Property. In an irreducible first-order Markov chain, all states have the

same period. Hence, if one state in such a chain is aperiodic, then the entire

Markov chain is aperiodic.
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• Stationarity: A distribution π(·) on X is said to be a stationary distri-

bution for a homogeneous (i.e., time-invariant) first-order Markov chain, if

for every y ∈ X ,

π(y) =
∑
x∈X

π(x) Pr{X2 = y|X1 = x}.

Properties.

1. For a finite-alphabet homogeneous first-order Markov chain, π(·) always
exists.

2. π(·) is unique if the Markov chain is irreducible.

3. For a finite-alphabet homogeneous first-order Markov chain that is both

irreducible and aperiodic,

lim
n→∞Pr{Xn+1 = y|X1 = x} = π(y)

for all states x and y in X .

If the initial state distribution is equal to a stationary distribution, then

the homogeneous first-order Markov chain becomes a stationary process.
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Markov

i.i.d. Stationary

Ergodic
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• Relation of five modes of convergence

�
Thm. B.10

Thm. B.11

Xn
p.w.−→ X
⇓

Xn
a.s.−→ X
��
��

Xn
Lr−→ X (r ≥ 1)

����

Xn
p−→ X
⇓

Xn
d−→ X
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• Pointwise convergence and almost surely convergence

Example B.7 Give a probability space

(Ω = {0, 1, 2, 3}, 2Ω, P (0) = P (1) = P (2) = 1/3).

– A random variable Xn is a mapping from a probability space to R. Let the

mapping be

Xn(ω) =
ω

n
⇒ Pr{Xn = 0} = Pr

{
Xn =

1

n

}
= Pr

{
Xn =

2

n

}
=

1

3
.

– (Pointwise convergence) Observe that

(∀ ω ∈ Ω) Xn(ω) → X(ω),

where X(ω) = 0 for every ω ∈ Ω. So

Xn
p.w.−→ X.

– (Almost surely convergence) Let X̃(ω) = 0 for ω = 0, 1, 2 and X̃(ω) = 1

for ω = 3. Then both of the following statements are true:

Xn
a.s.−→ X and Xn

a.s.−→ X̃,

(since

Pr
{
lim
n→∞Xn = X̃

}
=

3∑
ω=0

P (ω) · 1
{
lim
n→∞Xn(ω) = X̃(ω)

}
= 1.)
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• Almost surely convergence (with probability 1) and convergence in probability

Xn
a.s.−→ X ≡ Pr

{
lim
n→∞Xn = X

}
= 1

Xn
p−→ X ≡ (∀ γ > 0) lim

n→∞Pr {|Xn −X| < γ} = 1

• Convergence in rth mean

Xn
Lr−→ X ≡ lim

n→∞E [|Xn −X|r] = 0

• Convergence in distribution

Xn
d−→ X ≡ lim

n→∞FXn(x) = FX(x) for every continuous point of FX(x)
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The next observation facilitates the finding of limiting random variable.

Observation B.8 (Uniqueness of convergence)

1. If Xn
p.w.−→ X and Xn

p.w.−→ Y ,

then X = Y pointwisely. I.e.,

(∀ ω ∈ Ω) X(ω) = Y (ω).

2. If Xn
a.s.−→ X and Xn

a.s.−→ Y

(or Xn
p−→ X and Xn

p−→ Y )

(or Xn
Lr−→ X and Xn

Lr−→ Y ),

then X = Y with probability 1. I.e.,

Pr{X = Y } = 1.

3. Xn
d−→ X and Xn

d−→ Y ,

then FX(x) = FY (x) for all x.
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Theorem B.9 (Monotone convergence theorem)

(i) Xn
a.s.−→ X

(ii) (∀ n) Y ≤ Xn ≤ Xn+1

(iii) E[|Y |] < ∞


 ⇒ Xn

L1−→ X ⇒ E[Xn] → E[X ].

Theorem B.10 (Dominated convergence theorem)

(i) Xn
a.s.−→ X

(ii) (∀ n) |Xn| ≤ Y

(iii) E[|Y |] < ∞


 ⇒ Xn

L1−→ X ⇒ E[Xn] → E[X ].

The implication of Xn
L1−→ X to E[Xn] → E[X ] can be easily seen from

|E[Xn]− E[X ]| = |E[Xn −X ]| ≤ E[|Xn −X|].
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Theorem B.13 (Weak law of large numbers) Let {Xn}∞n=1 be a sequence

of uncorrelated random variables with common mean E[Xi] = µ. If the variables

also have common variance, or more generally,

lim
n→∞

1

n2

n∑
i=1

Var[Xi] = 0, (equivalently,
X1 + · · · +Xn

n

L2−→ µ)

then
X1 + · · · +Xn

n

p−→ µ.

proof: By Chebyshev’s inequality,

Pr

{∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ε

}
≤ 1

n2ε2

n∑
i=1

Var[Xi].

�

Note: Xn
L2−→ X implies Xn

p−→ X .
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Theorem B.14 (Kolmogorov’s strong law of large numbers) Let {Xn}∞n=1

be an independent sequence of random variables with common mean E[Xn] = µ.

If either

1. Xn’s are identically distributed; or

2. Xn’s are square-integrable with

∞∑
i=1

Var[Xi]

i2
< ∞,

Then
X1 + · · · +Xn

n

a.s.−→ µ.

Note: The difference of weak and strong laws of large number is that the former

is convergence in probability, while the latter is almost sure convergence.
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• After the introduction of Kolmogorov’s strong law of large numbers, one may

find that the pointwise ergodic theorem (Theorem B.4) actually indicates a

similar result.

– In fact, the pointwise ergodic theorem can be viewed as another version of

strong law of large numbers, which states that for stationary and ergodic

processes, time averages converge with probability 1 to the ensemble

expectation.

• The notion of ergodicity is often misinterpreted, since the definition is not very

intuitive. Some engineering texts may provide a definition that a stationary

process satisfying the ergodic theorem is also ergodic.
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Let us try to clarify the notion of ergodicity by the following remarks.

• The concept of ergodicity does not require stationarity. In other words, a

non-stationary process can be ergodic.

• Many perfectly good models of physical processes are not ergodic, yet they

have a form of law of large numbers. In other words, non-ergodic processes can

be perfectly good and useful models.

• There is no finite-dimensional equivalent definition of ergodicity as there is

for stationarity. This fact makes it more difficult to describe and interpret

ergodicity.

• I.i.d. processes are ergodic; hence, ergodicity can be thought of as a (kind of)

generalization of i.i.d.

• As mentioned earlier, stationarity and ergodicity imply the time average con-

verges with probability 1 to the ensemble mean. Now if a process is stationary

but not ergodic, then the time average still converges, but possibly not to the

ensemble mean.
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Example. Let {An}∞n=−∞ and {Bn}∞n=−∞ be two i.i.d. binary 0-1 random

variables with

Pr{An = 0} = Pr{Bn = 1} = 1/4.

Suppose that

Xn =

{
An, if U = 1

Bn, if U = 0,

where U is equiprobable binary random variable, and {An}∞n=1, {Bn}∞n=1 and

U are independent.

Then {Xn}∞n=1 is stationary.

Is the process ergodic? The answer is negative.

If the stationary process were ergodic, then from the pointwise ergodic theorem

(Theorem B.4), its relative frequency would converge to a constant!
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However, one should observe that the outputs of (X1, . . . , Xn) form a Bernoulli

process with relative frequency of 1’s being either 3/4 or 1/4, depending on the

value of U . Therefore,

lim
n→∞

1

n

n∑
i=1

Xn
a.s.−→ Y,

where Pr(Y = 1/4) = Pr(Y = 3/4) = 1/2, which contradicts to the ergodic

theorem. �

• Ergodic decomposition theorem: Under fairly general assumptions, any (not

necessarily ergodic) stationary process is a mixture of stationary ergodic pro-

cesses, and hence one always observes a stationary ergodic outcome. As in the

above example, one always observe either A1, A2, A3, . . . or B1, B2, B3, . . ., de-

pending on the value of U , for which both sequences are stationary ergodic

(i.e., the time-stationary observation Xn satisfies

Xn = U · An + (1− U) · Bn.

• The previous remark implies that ergodicity is not required for the strong law

of large numbers to be useful.

• The next question is whether or not stationarity is required. Again the answer

is negative !
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• In fact, what is needed in this course is the law of large numbers, which

results the convergence of sample averages to its ensemble expectation.

– It should be reasonable to expect that random processes could exhibit tran-

sient behavior that violates the stationarity definition, yet the sample av-

erage still converges. One can then introduce the notion of asymptotically

stationary to achieve the law of large numbers.
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Theorem B.15 (Central limit theorem) If {Xn}∞n=1 is a sequence of i.i.d. ran-

dom variables with finite common marginal mean µ and variance σ2, then

1√
n

n∑
i=1

(Xi − µ)
d−→ Z ∼ N (0, σ2),

where the convergence is in distribution (as n → ∞) and Z ∼ N (0, σ2) is a

Gaussian distributed random variable with mean 0 and variance σ2.
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Definition B.16 (Convexity) Consider a convex set O ⊂ R
m, where m is a

fixed positive integer. Then a function f : O → R is said to be convex over O if

for every x, y in O and 0 ≤ λ ≤ 1,

f
(
λx + (1− λ)y

) ≤ λf(x) + (1− λ)f(y).

Furthermore, a function f is said to be strictly convex if equality holds only when

λ = 0 or λ = 1.

• A set O ⊂ R
m is said to be convex if for every x = (x1, x2, · · · , xm)T and

y = (y1, y2, · · · , ym)T in O (where T denotes transposition), and every 0 ≤
λ ≤ 1, λx + (1 − λ)y ∈ O; in other words, the “convex combination” of any

two “points” x and y in O also belongs to O.

Definition B.17 (Concavity) A function f is concave if −f is convex.
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Theorem B.18 (Jensen’s inequality) If f : O → R is convex over a convex

set O ⊂ R
m, and X = (X1, X2, · · · , Xm)

T is an m-dimensional random vector

with alphabet X ⊂ O, then

E[f(X)] ≥ f(E[X ]).

Moreover, if f is strictly convex, then equality in the above inequality immediately

implies X = E[X ] with probability 1.
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Optimization of a function f(x) over x = (x1, . . . , xn) ∈ X ⊆ R
n

subject to {
inequality constraints gi(x) ≤ 0 for 1 ≤ i ≤ m, and

equality constraints hj(x) = 0 for 1 ≤ j ≤ �

is a center technique to problems in information theory.

Mathematically, the problem can be formulated as:

min
x∈Q

f(x), (B.8.1)

where

Q := {x ∈ X : gi(x) ≤ 0 for 1 ≤ i ≤ m and hi(x) = 0 for 1 ≤ j ≤ �} .
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• In most cases, solving the constrained optimization problem defined in (B.8.1)

is hard due to the constraints.

• Instead, one may introduce a dual optimization problem without constraints:

L(λ,ν) := min
x∈X


f(x) + m∑

i=1

λigi(x) +

�∑
j=1

νjhj(x)


 = min

x∈X
L(x;λ,ν).

(B.8.2)

• In the literature, λ = (λ1, . . . , λm) and ν = (ν1, . . . , ν�) are usually referred

to as Lagrange multipliers, and L(λ,ν) is called the Lagrange dual

function.

– Note that L(λ,ν) is a concave function of λ and ν since it is the mini-

mization of affine functions of λ and ν.
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• It can be verified that when λi ≥ 0 for 1 ≤ i ≤ m,

L(λ,ν) ≤ min
x∈Q


f(x) + m∑

i=1

λigi(x) +
�∑

j=1

νjhj(x)


 ≤ min

x∈Q
f(x). (B.8.3)

• We are however interested in when the above inequality becomes equality (i.e.,

when the so-called strong duality holds) because if there exist non-negative λ̃

and ν̃ that equate (B.8.3), then

f(x∗) = min
x∈Q

f(x)

= L(λ̃, ν̃) = min
x∈X


f(x) + m∑

i=1

λ̃igi(x) +

�∑
j=1

ν̃jhj(x)




≤ f(x∗) +
m∑
i=1

λ̃igi(x
∗) +

�∑
j=1

ν̃jhj(x
∗)

≤ f(x∗), (B.8.4)

where (B.8.4) follows because the minimizer x∗ of (B.8.1) lies in Q.
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• Hence, if the strong duality holds, the same x∗ achieves both

min
x∈Q

f(x)

and

L(λ̃, ν̃),

and λ̃igi(x
∗) = 0 for 1 ≤ i ≤ m.1

• The strong duality does not in general hold.

• A situation that guarantees the validity of the strong duality has been deter-

mined by William Karush [212] (1936), and separately Harold W. Kuhn and

Albert W. Tucker [235] (1951).

• In particular, when f(·) and {gi(·)}mi=1 are both convex, and {hj(·)}�j=1 are

affine, and these functions are all differentiable, they found that the strong

duality holds if, and only if, the KKT condition is satisfied [56, p. 258].

– Again, we are free to choose λ and ν that satisfy the KKT condition

(cf. Definition B.19).

1Equating (B.8.4) implies
∑m

i=1 λ̃igi(x
∗) = 0. It can then be easily verified from λ̃igi(x

∗) ≤ 0 for every 1 ≤ i ≤ m that

λ̃igi(x
∗) = 0 for 1 ≤ i ≤ m.
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Definition B.19 (Karush-Kuhn-Tucker (KKT) condition) Point x= (x1,

. . ., xn) and multipliers λ = (λ1, . . . , λm) and ν = (ν1, . . . , ν�) are said to satisfy

the KKT condition if

gi(x) ≤ 0, λi ≥ 0, λigi(x) = 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , �

∂L
∂xk

(x;λ,ν) = ∂f
∂xk

(x) +
∑m

i=1 λi
∂gi
∂xk

(x) +
∑�

j=1 νj
∂hj
∂xk

(x) = 0 k = 1, . . . , n

• Note that when f(·) and constraints {gi(·)}mi=1 and {hj(·)}�j=1 are arbitrary

functions, the KKT condition is only a necessary condition for the validity of

the strong duality.

• In other words, for a non-convex optimization, we can only claim that if the

strong duality holds, then the KKT condition is satisfied but not vice versa.
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• A case that is particularly useful in information theory is when x is restricted

to be a probability distribution.

• In such case, apart from other problem-specific constraints, we have additionally{
n inequality constraints gm+i(x) = −xi ≤ 0 for 1 ≤ i ≤ n, and

one equality constraint h�+1(x) =
∑n

k=1 xk − 1 = 0.

The above relation is the mostly seen form of the KKT condition when it is

used in problems of information theory.
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Example B.20 Suppose for non-negative {qi,j}1≤i≤n,1≤j≤n′ with
∑n′

j=1 qi,j = 1,

f(x) = −

n∑
i=1

n′∑
j=1

xiqi,j log
qi,j∑n

i′=1 xi′qi′,j

gi(x) = −xi ≤ 0 i = 1, . . . , n

h(x) =
∑n

i=1 xi − 1 = 0

Then

L(x;λ,ν) :=

(
f(x) +

n∑
i=1

λigi(x) + νh(x)

)
.

Then the KKT condition implies


xi ≥ 0, λi ≥ 0, λixi = 0 i = 1, . . . , n∑n
i=1 xi = 1

∂L
∂xk

(x;λ,ν) =


1− n′∑

j=1

qk,j log
qk,j∑n

i′=1 xi′qi′,j


− λk + ν = 0 k = 1, . . . , n
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which further implies that (we can choose)

λk =



1−

n′∑
j=1

qk,j log
qk,j∑n

i′=1 xi′qi′,j
+ ν = 0 xk > 0

1−
n′∑
j=1

qk,j log
qk,j∑n

i′=1 xi′qi′,j
+ ν ≥ 0 xk = 0

By this, the input distributions that achieve the channel capacities of some channels

such as BSC and BEC can be identified. �
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• Definitions of (weakly, strictly) stationarity, ergodicity and Markovian (irre-

ducible, homogeneous)

• Mode of convergences (almost surely or with probability 1, in probability, in

distribution, in Lr mean)

• Laws of large numbers

• Central limit theorem

• Jensen’s inequality (convexity and concavity)

• KKT conditions


