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We herein review basic results on suprema and limits which are useful for the

development of information theoretic coding theorems.

• Throughout, we work on subsets of R, the set of real numbers.

Definition A.1 (Upper bound of a set) A real number u is called an upper

bound of a non-empty subset A of R if every element of A is less than or equal

to u; we say that A is bounded above. Symbolically, the definition becomes:

A ⊂ R is bounded above ⇐⇒ (∃ u ∈ R) such that (∀ a ∈ A), a ≤ u.

Definition A.2 (Least upper bound or supremum) SupposeA is a non-

empty subset of R. Then we say that a real number s is a least upper bound or

supremum of A if s is an upper bound of the set A and if s ≤ s′ for each upper

bound s′ of A. In this case, we write s = supA; other notations are s = supx∈A x

and s = sup{x : x ∈ A}.
Completeness Axiom: (Least upper bound property) Let A be a non-

empty subset of R that is bounded above. Then A has a least upper bound (in

R).
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Completeness Axiom may not work for, say, Q, the set of rational numbers.

Definition A.1′ (Upper bound of a set in Q) A rational number u is

called an upper bound of a non-empty subset A of Q if every element of A
is less than or equal to u; we say that A is bounded above. Symbolically, the

definition becomes:

A ⊂ Q is bounded above ⇐⇒ (∃ u ∈ Q) such that (∀ a ∈ A), a ≤ u.

����������������������������Definition A.2′ (Least upper bound or supremum in Q) Suppose A is a non-

empty subset of Q. Then we say that a rational number s is a least upper bound

or supremum of A if s is an upper bound of the set A and if s ≤ s′ for each upper

bound s′ of A. In this case, we write s = supA; other notations are s = supx∈A x

and s = sup{x : x ∈ A}.
Example. A = {x ∈ Q : x2 < 2}. Then, supx∈A x is supposed to be “the largest

rational number” less than
√
2 !
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• It follows directly that if a non-empty set in R has a supremum, then this

supremum is unique.

• By definition, the empty set (∅) and any set not bounded above do not admit

a supremum in R.

Property A.4 (Properties of the supremum)

1. The supremum of any set in R∪{−∞,∞} (the set of extended real numbers)

always exits.

supA :=

{
−∞, if A = ∅;
+∞, if A is not bounded above.

These extended definitions will be adopted in this course.

2. (∀ a ∈ A ⊂ R ∪ {−∞,∞}) a ≤ supA.

3. If −∞ < supA < ∞, then (∀ ε > 0)(∃ a0 ∈ A) a0 > supA− ε.

(The existence of a0 ∈ (supA− ε, supA] for any ε > 0 under the condition

of | supA| < ∞ is called the approximation property for the supremum.)

4. If supA = ∞, then (∀ L ∈ R)(∃ B0 ∈ A) B0 > L.

5. If supA = −∞, then A is empty.
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Definition A.3 (Maximum) If supA ∈ A, then supA is also called themax-

imum of A, and is denoted by maxA. However, if supA 
∈ A, then we say that

the maximum of A does not exist.

E.g., if A = (0, 1], then maxA = supA = 1.

E.g., if A = (0, 1), then supA = 1 but maxA does not exist!

Observation A.5 (Supremum of a set and channel coding theorems)

In information theory, a typical channel coding theorem establishes that a (finite)

real number α is the supremum of a set A. Thus, to prove such a theorem, one

must show that α satisfies both properties 3 and 2 above, i.e.,

Forward/Direct part: (α− ε) is achievable in A : (∀ ε > 0)(∃ a0 ∈ A) a0 > α− ε

(A.1.1)

and

Converse part: α is a bound for all achievable values in A : (∀ a ∈ A) a ≤ α.

(A.1.2)

(∀ε > 0) α− ε ≤ supA ≤ α
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Property A.6 (Properties of the maximum)

1. (∀ a ∈ A) a ≤ maxA, if maxA exists in R ∪ {−∞,∞}.
2. maxA ∈ A.

• From the above property, in order to obtain α = maxA , one needs to show

that α satisfies both

Converse part: α is a bound for all achievable values in A : (∀ a ∈ A) a ≤ α.

and

Achievability/Forward/Direct part: α is achievable in A : α ∈ A

E.g. Computation of the channel capacity of a binary symmetric channel.
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The concepts of infimum and minimum are dual to those of supremum and maxi-

mum.

Definition A.7 (Lower bound of a set) A real number � is called a lower

bound of a non-empty subset A in R if every element of A is greater than or equal

to �; we say that A is bounded below. Symbolically, the definition becomes:

A ⊂ R is bounded below ⇐⇒ (∃ � ∈ R) such that (∀ a ∈ A) a ≥ �.

Definition A.8 (Greatest lower bound or infimum) Suppose A is a

non-empty subset of R. Then we say that a real number � is a greatest lower

bound or infimum of A if � is a lower bound of A and if � ≥ �′ for each lower

bound �′ of A. In this case, we write � = infA; other notations are � = infx∈A x

and � = inf{x : x ∈ A}.

Completeness Axiom: (Greatest lower bound property) Let A be a

non-empty subset of R that is bounded below. Then A has a greatest lower bound.
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• It directly follows that if a non-empty set in R has an infimum, then this

infimum is unique.

• By definition, the empty set (∅) and any set not bounded below do not admit

an infimum in R.

Property A.10 (Properties of the infimum)

1. The infimum of any set in R ∪ {−∞,∞} always exists.

infA :=

{
+∞, if A = ∅;
−∞, if A is not bounded below.

These extended definitions will be adopted in this course.

2. (∀ a ∈ A ⊂ R ∪ {−∞,∞}) a ≥ infA.

3. If ∞ > infA > −∞, then (∀ ε > 0)(∃ a0 ∈ A) a0 < infA + ε.

(The existence of a0 ∈ [infA, infA + ε) for any ε > 0 under the assumption

of | infA| < ∞ is called the approximation property for the infimum.)

4. If infA = −∞, then (∀L ∈ R)(∃ B0 ∈ A)B0 < L.

5. If infA = ∞, then A is empty.
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Definition A.9 (Minimum) If infA ∈ A, then infA is also called the min-

imum of A, and is denoted by minA. However, if infA 
∈ A, we say that the

minimum of A does not exist.

Observation A.11 (Infimum of a set and channel coding theorems)

In information theory, a typical source coding theorem establishes that a (finite)

real number α is the infimum of a set A. Thus, to prove such a theorem, one must

show that α satisfies both properties 3 and 2 above, i.e.,

Forward/Direct part: (α + ε) is achievable in A : (∀ ε > 0)(∃ a0 ∈ A) a0 < α+ ε

(A.2.1)

and

Converse part: α is a bound for all achievable values in A : (∀ a ∈ A) a ≥ α.

(A.2.2)
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Property A.12 (Properties of the minimum)

1. (∀ a ∈ A) a ≥ minA, if minA exists in R ∪ {−∞,∞}.
2. minA ∈ A.

• From the above property, in order to obtain α = minA , one needs to show

that α satisfies both

Converse part: α is a bound for all achievable values in A : (∀ a ∈ A) a ≥ α.

and

Achievability/Forward/Direct part: α is achievable in A : α ∈ A

E.g. Computation of the rate-distortion function for binary DMS and Hamming

distance measure (cf. Theorem 6.23).
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Definition A.13 (Boundedness) A subset A of R is said to be bounded if it

is both bounded above and bounded below; otherwise it is called unbounded.

Lemma A.14 (Condition for boundedness) A subset A of R is bounded

iff (∃ k ∈ R) such that (∀ a ∈ A) |a| ≤ k.

Lemma A.15 (Monotone property) Suppose that A and B are non-

empty subsets of R such that A ⊂ B. Then
1. supA ≤ supB.
2. infA ≥ inf B.
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Lemma A.16 (Supremum for set operations) Define the “addition” of

two sets A and B as

A + B := {c ∈ R : c = a + b for some a ∈ A and b ∈ B}.
Define the “scaler multiplication” of a set A by a scalar k ∈ R as

k · A:={c ∈ R : c = k · a for some a ∈ A}.
Finally, define the “negation” of a set A as

−A:={c ∈ R : c = −a for some a ∈ A}.
Then the following hold.

1. If A and B are both bounded above, then A + B is also bounded above and

sup(A + B) = supA + supB.
2. If 0 < k < ∞ and A is bounded above, then k · A is also bounded above and

sup(k · A) = k · supA.

3. supA = − inf(−A) and infA = − sup(−A).
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• Property 1 does not hold for the “product” of two sets, where the “product”

of sets A and B is defined as as

A · B := {c ∈ R : c = ab for some a ∈ A and b ∈ B}.
In this case, both of these two situations can occur:

sup(A · B) > (supA) · (supB))
sup(A · B) = (supA) · (supB).

Example. A = [−1, 0) and B = [−1, 0). Then

sup(A · B) = 1 and supA = supB = 0.

Example. A = [−1, 0) and B = [0, 1). Then

sup(A · B) = supA = 0 and supB = 1.
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Lemma A.17 (Supremum/infimum for monotone functions)

1. If f : R → R is a non-decreasing function, then

sup{x ∈ R : f(x) < ε} = inf{x ∈ R : f(x) ≥ ε}
and

sup{x ∈ R : f(x) ≤ ε} = inf{x ∈ R : f(x) > ε}.
2. If f : R → R is a non-increasing function, then

sup{x ∈ R : f(x) > ε} = inf{x ∈ R : f(x) ≤ ε}
and

sup{x ∈ R : f(x) ≥ ε} = inf{x ∈ R : f(x) < ε}.



Illustration of Lemma A.17 I: a-14

�

�

f(x)

ε

sup{x : f(x) < ε}
= inf{x : f(x) ≥ ε}

sup{x : f(x) ≤ ε}
= inf{x : f(x) > ε}

�
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f(x)

ε

sup{x : f(x) ≥ ε}
= inf{x : f(x) < ε}

sup{x : f(x) > ε}
= inf{x : f(x) ≤ ε}
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• Let N denote the set of “natural numbers” (positive integers) 1, 2, 3, · · · .

• A sequence drawn from a real-valued function is denoted by

f : N → R.

In other words, f(n) is a real number for each n = 1, 2, 3, . . ..

• It is usual to write f(n) = an, and we often indicate the sequence by any one

of these notations

{a1, a2, a3, · · · , an, · · · } or {an}∞n=1.

• One important question that arises with a sequence is what happens when

n gets large. To be precise, we want to know that when n is large enough,

whether or not every an is close to some fixed number L (which is the limit of

an).
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Definition A.18 (Limit) The limit of {an}∞n=1 is the real number L satisfying:

(∀ ε > 0)(∃ N) such that (∀ n > N)

|an − L| < ε.

In this case, we write L = limn→∞ an. If no such L satisfies the above statement,

we say that the limit of {an}∞n=1 does not exist.

Property A.19 If {an}∞n=1 and {bn}∞n=1 both have a limit in R, then the fol-

lowing hold.

1. limn→∞(an + bn) = limn→∞ an + limn→∞ bn.

2. limn→∞(α · an) = α · limn→∞ an.

3. limn→∞(anbn) = (limn→∞ an)(limn→∞ bn).
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• Note that in the above definition, −∞ and ∞ cannot be a legitimate limit for

any sequence.

• In fact, if (∀ L)(∃ N) such that (∀ n > N) an > L, then we say that an
diverges to ∞ and write an → ∞. A similar argument applies to an diverging

to −∞.

• For convenience, we will work in the set of extended real numbers and thus

state that a sequence {an}∞n=1 that diverges to either ∞ or −∞ has a limit in

R ∪ {−∞,∞}.

Lemma A.20 (Convergence of monotone sequences) If {an}∞n=1 is non-

decreasing in n, then limn→∞ an exists inR∪{−∞,∞}. If {an}∞n=1 is also bounded

from above – i.e., an ≤ L ∀n for some L in R – then limn→∞ an exists in R.

Likewise, if {an}∞n=1 is non-increasing in n, then limn→∞ an exists inR∪{−∞,∞}.
If {an}∞n=1 is also bounded from below – i.e., an ≥ L ∀n for some L in R – then

limn→∞ an exists in R.
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• The limit of a sequence may not exist.

Example. an = (−1)n.

Then an will be close to either −1 or 1 for n large.

• Hence, more generalized definitions that can describe the general limiting be-

havior of a sequence is required.

Definition A.21 (limsup and liminf) The limit supremum of {an}∞n=1 is

the extended real number in R ∪ {−∞,∞} defined by

lim sup
n→∞

an := lim
n→∞(supk≥n

ak),

and the limit infimum of {an}∞n=1 is the extended real number defined by

lim inf
n→∞ an := lim

n→∞( infk≥n
ak).

Some also use the notations lim and lim to denote limsup and liminf, respectively.

• Note that the limit supremum and the limit infimum of a sequence is always

defined in R ∪ {−∞,∞}, since the sequences supk≥n ak = sup{ak : k ≥ n}
and infk≥n ak = inf{ak : k ≥ n} are monotone in n (cf. Lemma A.20).
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Lemma A.22 (Limit) For a sequence {an}∞n=1,

lim
n→∞ an = L ⇐⇒ lim sup

n→∞
an = lim inf

n→∞ an = L.
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Property A.23 (Properties of the limit supremum)

1. The limit supremum always exists in R ∪ {−∞,∞}.
2. If | lim supm→∞ am| < ∞, then (∀ ε > 0)(∃ N) such that (∀ n > N) an <

lim supm→∞ am + ε. (Note that this holds for every n > N .)

3. If | lim supm→∞ am| < ∞, then (∀ ε > 0 and integer K)(∃ N > K) such that

aN > lim supm→∞ am − ε. (Note that this holds only for one N , which is

larger than K.)

Property A.24 (Properties of the limit infimum)

1. The limit infimum always exists in R ∪ {−∞,∞}.
2. If | lim infm→∞ am| < ∞, then (∀ ε > 0 and K)(∃ N > K) such that

aN < lim infm→∞ am + ε. (Note that this holds only for one N , which is

larger than K.)

3. If | lim infm→∞ am| < ∞, then (∀ ε > 0)(∃ N) such that (∀ n > N) an >

lim infm→∞ am − ε. (Note that this holds for every n > N .)
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Definition A.25 (Sufficiently large) We say that a property holds for a se-

quence {an}∞n=1 almost always or for all sufficiently large n if the property holds

for every n > N for some N .

Definition A.26 (Infinitely often) We say that a property holds for a se-

quence {an}∞n=1 infinitely often or for infinitely many n if for every K, the

property holds for one (specific) N with N > K.

• Then Properties 2 and 3 of Property A.23 can be respectively re-phrased as:

if | lim supm→∞ am| < ∞, then (∀ ε > 0)

an < lim sup
m→∞

am + ε for all sufficiently large n

and

an > lim sup
m→∞

am − ε for infinitely many n.

• Similarly, Properties 2 and 3 of Property A.24 becomes: if | lim infm→∞ am| <
∞, then (∀ ε > 0)

an < lim inf
m→∞ am + ε for infinitely many n

and

an > lim inf
m→∞ am − ε for all sufficiently large n.
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Lemma A.27

1. lim infn→∞ an ≤ lim supn→∞ an.

2. If an ≤ bn for all sufficiently large n, then

lim inf
n→∞ an ≤ lim inf

n→∞ bn and lim sup
n→∞

an ≤ lim sup
n→∞

bn.

3. lim supn→∞ an < r ⇒ an < r for all sufficiently large n.

4. lim supn→∞ an > r ⇒ an > r for infinitely many n.

5.
lim inf
n→∞ an + lim inf

n→∞ bn ≤ lim inf
n→∞ (an + bn)

≤ lim sup
n→∞

an + lim inf
n→∞ bn

≤ lim sup
n→∞

(an + bn)

≤ lim sup
n→∞

an + lim sup
n→∞

bn.

6. If limn→∞ an exists, then

lim inf
n→∞ (an + bn) = lim

n→∞ an + lim inf
n→∞ bn

and

lim sup
n→∞

(an + bn) = lim
n→∞ an + lim sup

n→∞
bn.
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• Limsup = largest clustering point

• Liminf = smallest clustering point

• A clustering point is a point that the sequence an hits close for infinitely many

times.

E.g., an = sin(nπ/2)

⇒ {an}n≥1 = {1, 0,−1, 0, 1, 0,−1, 0, . . .}
There are three clustering points in this sequence, which are −1, 0 and 1.

Consequently,

lim sup
n→∞

an = 1 = the largest clustering point

lim inf
n→∞ an = −1 = the smallest clustering pint

E.g., an = −n. Then lim supn→∞ an = lim infn→∞ an = −∞.

E.g., an = n. Then lim supn→∞ an = lim infn→∞ an = ∞.
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• We close this appendix by providing some equivalent statements that are often

used to simplify proofs.

• For example, instead of directly showing that quantity x is less than or equal to

quantity y, one can take an arbitrary constant ε > 0 and prove that x < y+ε.

• Since y+ ε is a larger quantity than y, in some cases it might be easier to show

x < y + ε than proving x ≤ y.

Theorem A.28 For any x, y and a in R,

1. x < y + ε for all ε > 0 iff x ≤ y;

2. x < y − ε for some ε > 0 iff x < y;

3. x > y − ε for all ε > 0 iff x ≥ y;

4. x > y + ε for some ε > 0 iff x > y;

5. |a| < ε for all ε > 0 iff a = 0.
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• Supremum and Infimum over a subset of real line

• Limsup and Liminf (and their properties)

• Sufficiently large and infinitely often

• Equivalence


