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A.1 Supremum and maximum I ol

We herein review basic results on suprema and limits which are useful for the
development of information theoretic coding theorems.

e Throughout, we work on subsets of R, the set of real numbers.

Definition A.1 (Upper bound of a set) A real number u is called an upper
bound of a non-empty subset A of R if every element of A is less than or equal
to u; we say that A is bounded above. Symbolically, the definition becomes:

A C R is bounded above <= (3 u € R) such that (Va € A),a < u.

Definition A.2 (Least upper bound or supremum) Suppose A is a non-
empty subset of R. Then we say that a real number s is a least upper bound or
supremum of A if s is an upper bound of the set A and if s < s’ for each upper
bound s" of A. In this case, we write s = sup .A; other notations are s = sup,c 4
and s = sup{x: x € A}.

Completeness Axiom: (Least upper bound property) Let A be a non-
empty subset of R that is bounded above. Then A has a least upper bound (in
R).
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Completeness Axiom may not work for, say, @, the set of rational numbers.

Definition A.1" (Upper bound of a set in Q) A rational number u is
called an wupper bound of a non-empty subset A of Q if every element of A
is less than or equal to u; we say that A is bounded above. Symbolically, the
definition becomes:

A C Q is bounded above <= (Fu € Q) such that (Va € A),a < u.

M (Least upper bound or supremum in Q) Suppose A is a non-

empty subset of Q. Then we say that a rational number s is a least upper bound
or supremum of A if s is an upper bound of the set A and if s < s’ for each upper
bound s’ of A. In this case, we write s = sup .A; other notations are s = sup, 4
and s = sup{z: x € A},

Example. A = {x € Q: 2? < 2}. Then, sup, 4 is supposed to be “the largest
rational number” less than /2!
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e [t follows directly that if a non-empty set in R has a supremum, then this
supremuin 1Is unique.

e By definition, the empty set (()) and any set not bounded above do not admit
a supremum in R.

Property A.4 (Properties of the supremum)

1. The supremum of any set in RU{—o00, 0o} (the set of extended real numbers)

always exits.
—o00, ifA=10;
sup A = { R p

+o00, if A is not bounded above.
These extended definitions will be adopted in this course.
2. Vae ACRU{—00,0}) a <sup A

3. If —oco <sup A < o0, then (Ve > 0)(Fap € A) ag >sup A —e.
(The existence of ag € (sup A — ¢, sup A] for any € > 0 under the condition
of | sup A| < oo is called the approximation property for the supremum.)

4. If sup A = oo, then (V L € R)(3 By € A) By > L.

5. If sup A = —o0, then A is empty:.
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Definition A.3 (Maximum) If sup A € A, then sup A is also called the maz-
imum of A, and is denoted by max . A. However, if sup A € A, then we say that
the maximum of A does not exist.

E.g., if A= (0,1}, then max A =sup A = 1.
E.g., if A= (0,1), then sup.A = 1 but max.A does not exist!

Observation A.5 (Supremum of a set and channel coding theorems)
In information theory, a typical channel coding theorem establishes that a (finite)

real number « is the supremum of a set A. Thus, to prove such a theorem, one
must show that a satisfies both properties 3 and 2 above, i.e.,

Forward /Direct part: (a — €) is achievable in A : (Ve > 0)(Jag € A) ag > a—¢
(A.1.1)

and

Converse part: « is a bound for all achievable valuesin A : (V a € A) a < a.

(A.1.2)

Ve>0)a—e<supA<a
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Property A.6 (Properties of the maximum)

1. (Va€e A a<max A, if max A exists in R U {—o00, 00}

2. max.A € A.

e [rom the above property, in order to obtain
that « satisfies both

o = max A

. one needs to show

Converse part: a is a bound for all achievable valuesin A : (V a € A) a < a.

and

Achievability /Forward /Direct part: « is achievable in A: a € A

E.g. Computation of the channel capacity of a binary symmetric channel.
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The concepts of infimum and minimum are dual to those of supremum and maxi-
.

Definition A.7 (Lower bound of a set) A real number ¢ is called a lower
bound of a non-empty subset A in R if every element of A is greater than or equal
to £; we say that A is bounded below. Symbolically, the definition becomes:

A C R is bounded below <= (3¢ € R) such that (Va € A) a > /.

Definition A.8 (Greatest lower bound or infimum) Suppose A is a
non-empty subset of R. Then we say that a real number ¢ is a greatest lower
bound or infimum of A if £ is a lower bound of A and if £ > ¢ for each lower
bound ¢ of A. In this case, we write £ = inf A; other notations are £ = inf,c 4 x

and { = inf{z: z € A}.

Completeness Axiom: (Greatest lower bound property) Let A be a
non-empty subset of R that is bounded below. Then A has a greatest lower bound.
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e [t directly follows that if a non-empty set in R has an infimum, then this
infimum is unique.

e By definition, the empty set (()) and any set not bounded below do not admit
an infimum in R.

Property A.10 (Properties of the infimum)

1. The infimum of any set in R U {—o00, 0o} always exists.
A0
A +oo, if A=10;
—o00, if A is not bounded below.
These extended definitions will be adopted in this course.
2. Vae ACRU{—00,00}) a > inf A.

3. lf co>inf A > —o0, then (Ve >0)(Jay € A) ap <infA+e.
(The existence of ay € [inf A, inf A + ¢) for any € > 0 under the assumption
of | inf A| < oo is called the approximation property for the infimum.)

4. If inf A = —o0, then (VL € R)(3 By € A)By < L.
5. If inf A = oo, then A is empty.
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Definition A.9 (Minimum) If inf A € A, then inf A is also called the min-
imum of A, and is denoted by min A. However, if inf A & A, we say that the
minimum of A does not exist.

Observation A.11 (Infimum of a set and channel coding theorems)
In information theory, a typical source coding theorem establishes that a (finite)

real number « is the infimum of a set A. Thus, to prove such a theorem, one must
show that « satisfies both properties 3 and 2 above, i.e.,

Forward /Direct part: (a + €) is achievablein A: (Ve > 0)(Jag € A) ag < a+¢
(A.2.1)

and

Converse part: « is a bound for all achievable valuesin A4 : (V a € A) a > «.

(A.2.2)
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Property A.12 (Properties of the minimum)

1. (Va€e A a>minA, if min A exists in R U {—o00, 0o}

2. minA e A.

e [rom the above property, in order to obtain
that « satisfies both

o = min A

, one needs to show

Converse part: a is a bound for all achievable valuesin A : (V a € A) a > a.

and

Achievability /Forward /Direct part: « is achievable in A: a € A

E.g. Computation of the rate-distortion function for binary DMS and Hamming

distance measure (cf. Theorem 6.23).
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Definition A.13 (Boundedness) A subset A of R is said to be bounded if it
is both bounded above and bounded below; otherwise it is called unbounded.

Lemma A.14 (Condition for boundedness) A subset A of R is bounded
iff (3 k € R) such that (Va € A) |a] < k.

Lemma A.15 (Monotone property) Suppose that A and B are non-
empty subsets of R such that A C B. Then

1. sup A < supB.
2. inf A > inf B.
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Lemma A.16 (Supremum for set operations) Define the “addition” of
two sets A and B as

A+ B:={ceR:c=a+0bforsomea e Aandbe B}.
Define the “scaler multiplication” of a set A by a scalar £ € R as
k-A={ceR : c=k-aforsomeae A}.
Finally, define the “negation” of a set A as
—A:={ceR : ¢= —a for some a € A}.
Then the following hold.

1. If A and B are both bounded above, then A + B is also bounded above and
sup(A+ B) =sup A + sup B.

2. If 0 < k < oo and A is bounded above, then £ - A is also bounded above and
sup(k - A) =k -sup A.

3.supA=—inf(—A4) and inf A= —sup(—A).
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e Property 1 does not hold for the “product” of two sets, where the “product”
of sets A and B is defined as as

A-B:={ceR:c=abforsomeaec Aandbe B}.

In this case, both of these two situations can occur:

sup(A - B) > (sup.A) - (sup B))
sup(A - B) = (sup.A) - (sup B).

Example. A= [—1,0) and B =[—1,0). Then
sup(A-B) =1 and sup A =sup B = 0.

Example. A=[—1,0) and B=[0,1). Then
sup(A - B) =sup. A =0and supB = 1.
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Lemma A.17 (Supremum/infimum for monotone functions)
1. If f: R — R is a non-decreasing function, then
sup{z € R: f(z) < e} =inf{x e R: f(x) > ¢}

and
sup{z € R: f(z) <e} =inf{x € R: f(z) > e}.

2. If f: R — R is a non-increasing function, then
sup{z € R: f(z) > e} =inf{x e R: f(z) < ¢}

and

sup{z € R: f(z) > e} =inf{x e R: f(x) < e}.




[llustration of Lemma A.17 I a1d

(e f@)<c) sl f@) <} sw(r: f@)>e) sl f@) > 2]
=inf{z: f(z) > e} =inf{z: f(x) >} =inf{z: f(z)<e} =inf{z: f(z) <e}
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e Let N denote the set of “natural numbers” (positive integers) 1,2, 3, -.

e A sequence drawn from a real-valued function is denoted by
f:N—=R.

In other words, f(n) is a real number for each n =1,2,3, .. ..

e It is usual to write f(n) = a,, and we often indicate the sequence by any one
of these notations

{ala a2, a3, -+ ,Qp, """ } or {an}?}ozr

e One important question that arises with a sequence is what happens when
n gets large. To be precise, we want to know that when n is large enough,
whether or not every a,, is close to some fixed number L (which is the limit of

).
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Definition A.18 (Limit) The limit of {a, }5° is the real number L satisfying;
(Ve > 0)(3 N) such that (V n > N)

la, — L| < €.

In this case, we write L = lim,,_, a,. If no such L satisfies the above statement,
we say that the limit of {a,}

0.9

o0 | does not exist.

Property A.19 If {a,}°°; and {b,}:°, both have a limit in R, then the fol-
lowing hold.

L. limy, oo(@p + by) = limy, o0 @y + limy, o0 by,

3. limy, oo (@nby) = (limy, o0 @) (limy, o0 by).
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e Note that in the above definition, —oco and oo cannot be a legitimate limit for
any sequence.

e In fact, if (V L)(3 N) such that (V n > N) a, > L, then we say that a,
diverges to oo and write a,, — co. A similar argument applies to a,, diverging
to —o0.

e For convenience, we will work in the set of extended real numbers and thus
state that a sequence {a, }°°; that diverges to either co or —oo has a limit in
R U {—00, >}.

Lemma A.20 (Convergence of monotone sequences) If {a,}>°; is non-
decreasing in n, then lim,,_,, a,, exists in RU{—o0, co}. If {a, }> is also bounded
from above —i.e., a, < L Vn for some L in R — then lim,,_, a,, exists in R.
Likewise, if {a, }°° ; is non-increasing in n, then lim,,_,+ a, exists in RU{—o0, co}.
If {a, }°°, is also bounded from below — i.e., a,, > L Vn for some L in R — then
lim,,_, o @, exists in R.




A4 Sequences and their limits I 018

e The limit of a sequence may not exist.
Example. a, = (—1)".

Then a,, will be close to either —1 or 1 for n large.

e Hence, more generalized definitions that can describe the general limiting be-
havior of a sequence is required.

Definition A.21 (limsup and liminf) The limit supremum of {a,}>2 is
the extended real number in R U {—o00, 00} defined by

lim sup a,, := lim (sup ax),
n—00 n—=00 k>n

and the limit infimum of {a, }>° is the extended real number defined by

liminf a, := lim (inf ay).
n—00 n—o00 k>n

Some also use the notations lim and lim to denote limsup and liminf, respectively.

e Note that the limit supremum and the limit infimum of a sequence is always
defined in R U {—00, 00}, since the sequences sups, ar = sup{ar: k > n}
and infj>, a = inf{a;: k > n} are monotone in n (cf. Lemma A.20).
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00
n=1»

Lemma A.22 (Limit) For a sequence {a,}

lim a, = L <= limsupa, = liminfa, = L.
n— oo n—00 n—oo
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Property A.23 (Properties of the limit supremum)

L.
2.

The limit supremum always exists in R U {—o0, co}.

If | lim sup,,_,o, @m| < 00, then (V & > 0)(3 N) such that (Vn > N) a, <
lim sup,,,_,~ am + €. (Note that this holds for every n > N.)

At | limsup,,_, oo @m| < 00, then (V e > 0 and integer K)(3 N > K) such that

ay > limsup,, .. a, — €. (Note that this holds only for one N, which is
larger than K.)

Property A.24 (Properties of the limit infimum)

L.
2.

The limit infimum always exists in R U {—o00, 00}.

If |liminf,, 00 am| < oo, then (V & > 0 and K)(3 N > K) such that
ay < liminf,, . a, + €. (Note that this holds only for one N, which is
larger than K.)

Cf | liminf,, 00 am| < 00, then (V e > 0)(3 N) such that (V n > N) a, >

liminf,, yo a;, — €. (Note that this holds for every n > N.)




A4 Sequences and their limits I a2l

Definition A.25 (Sufficiently large) We say that a property holds for a se-
quence {a, 22, almost always or for all sufficiently large n if the property holds
for every n > N for some .

Definition A.26 (Infinitely often) We say that a property holds for a se-
quence {a, 2, infinitely often or for infinitely many n if for every K, the
property holds for one (specific) N with N > K.

e Then Properties 2 and 3 of Property A.23 can be respectively re-phrased as:
if | limsup,,_,, am| < oo, then (Ve > 0)

a, < limsupa,, +¢ for all sufficiently large n
m—o0

and

a, > limsupa,, — ¢ for infinitely many n.
m—0o0

e Similarly, Properties 2 and 3 of Property A.24 becomes: if | liminf,, s a,,| <
0o, then (Ve > 0)

a, < liminfa,, +¢ for infinitely many n
m—0o0
and

a, > liminf a,, — e for all sufficiently large n.
m—0o0
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Lemma A.27

l. liminf, o a, < limsup,_, ., a,.

2. If a, < b, for all sufficiently large n, then

liminf a, <liminfb, and limsupa, < limsupb,.

n—00 n—00 n—00 n—00

3. limsup,_,,a, <r = a, <r for all sufficiently large n.

4. limsup,,_,o, an > 1 = a, > r for infinitely many n.

5.

IA

lim inf a,, + lim inf b,, lim inf(a,, + by)
n—0o0 n—0o0 n—0o0

lim sup a,, + lim inf b,
n—00 n—00

lim sup(a, + by,)
n—0o0

lim sup a,, + limsup b,,.
n—0o0 n—0o0

IAIA

IA

6. If lim,,_,~ a, exists, then

liminf(a, + b,) = lim a, + liminf b,

and

limsup(a, +b,) = lim a, + limsup b,.
n—00 n—o0 n—o0
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e Limsup = largest clustering point
e Liminf = smallest clustering point

e A clustering point is a point that the sequence a,, hits close for infinitely many
times.
E.g., a, = sin(nm/2)
= {ap}n>1 =91,0,—1,0,1,0,—1,0,...}

There are three clustering points in this sequence, which are —1, 0 and 1.

Consequently,
limsupa, = 1= the largest clustering point
n—oo
liminf a, = —1 = the smallest clustering pint
n—o0
E.g., a, = —n. Then limsup,,_, . a, = liminf, , a, = —o0.

E.g., a, = n. Then limsup,_,. a, = liminf,, , a, = oo.
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e We close this appendix by providing some equivalent statements that are often
used to simplify proofs.

e For example, instead of directly showing that quantity x is less than or equal to
quantity y, one can take an arbitrary constant € > 0 and prove that x < y+e.

e Since y + ¢ is a larger quantity than g, in some cases it might be easier to show
xr <y —+ € than proving x < y.

Theorem A.28 For any x,y and a in R,
lL.x<y+eforalle >0iff x < y;

2. x <y —e¢forsomee>0iff x <y;
J.x>y—cforale>0iff z > y;

4. x > y+ e forsomee > 0iff z > y;

5. |a] < e forall e > 0iff a = 0.
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e Supremum and Infimum over a subset of real line
e Limsup and Liminf (and their properties)
e Sufficiently large and infinitely often

e Equivalence



