Appendix A Overview on Suprema and Limits

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

We herein review basic results on suprema and limits which are useful for the development of information theoretic coding theorems.

• Throughout, we work on subsets of R, the set of real numbers.

Definition A.1 (Upper bound of ^a set) A real number ^u is called an *upper* bound of a **non-empty** subset $\mathcal A$ of $\mathbb R$ if every element of $\mathcal A$ is less than or equal to u ; we say that $\mathcal A$ is *bounded above*. Symbolically, the definition becomes:

 $\mathcal{A} \subset \mathbb{R}$ is bounded above $\iff (\exists u \in \mathbb{R})$ such that $(\forall a \in \mathcal{A}), a \leq u$.

 $\bf{Definition \ A.2 (Least upper bound or supremum)}$ Suppose \cal{A} is a $\bf{non-}$ **empty** subset of R. Then we say that ^a real number ^s is ^a *least upper bound* or supremum of A if s is an upper bound of the set A and if $s \leq s'$ for each upper bound s' of A. In this case, we write $s = \sup A$; other notations are $s = \sup_{x \in A} x$ and $s = \sup\{x : x \in \mathcal{A}\}.$

Completeness Axiom: (Least upper bound property) Let A be ^a **nonempty** subset of R that is bounded above. Then A has ^a least upper bound (in \mathbb{R}).

Completeness Axiom may not work for, say, Q, the set of rational numbers.

Definition A.1 (Upper bound of ^a set in Q **)** A rational number ^u is called an *upper* bound of a **non-empty** subset $\mathcal A$ of $\mathbb Q$ if every element of $\mathcal A$ is less than or equal to u; we say that A is *bounded above*. Symbolically, the definition becomes:

 $\mathcal{A} \subset \mathbb{Q}$ is bounded above $\iff (\exists u \in \mathbb{Q})$ such that $(\forall a \in \mathcal{A}), a \leq u$.

 $\overline{}$ — ❤ — **Definition** $\widetilde{A_2}$ (Least upper bound or supremum in \mathbb{Q}) Suppose A is a **nonempty** subset of Q. Then we say that ^a rational number ^s is ^a *least upper bound* or *supremum* of A if s is an upper bound of the set A and if $s \leq s'$ for each upper bound s' of A. In this case, we write $s = \sup A$; other notations are $s = \sup_{x \in A} x$ and $s = \sup\{x : x \in \mathcal{A}\}.$

Example. $A = \{x \in \mathbb{Q} : x^2 < 2\}$. Then, $\sup_{x \in A} x$ is supposed to be "the largest" rational number" less than $\sqrt{2}$!

- It follows directly that if ^a **non-empty** set in R has ^a supremum, then this supremum is unique.
- By definition, the empty set (\emptyset) and any set not bounded above do not admit ^a supremum in R.

Property A.4 (Properties of the supremum)

1. The supremum of any set in $\mathbb{R}\cup\{-\infty,\infty\}$ (the set of extended real numbers) always exits.

$$
\sup \mathcal{A} := \begin{cases} -\infty, & \text{if } \mathcal{A} = \emptyset; \\ +\infty, & \text{if } \mathcal{A} \text{ is not bounded above.} \end{cases}
$$

These extended definitions will be adopted in this course.

- 2. $(\forall a \in \mathcal{A} \subset \mathbb{R} \cup \{-\infty, \infty\})$ $a \leq \sup \mathcal{A}$.
- 3. If $-\infty < \sup A < \infty$, then $(\forall \varepsilon > 0)(\exists a_0 \in A) a_0 > \sup A \varepsilon$. (The existence of $a_0 \in (\sup \mathcal{A} - \varepsilon, \sup \mathcal{A}]$ for any $\varepsilon > 0$ under the condition of $|\sup A| < \infty$ is called the *approximation property for the supremum.*)

4. If
$$
\sup \mathcal{A} = \infty
$$
, then $(\forall L \in \mathbb{R})(\exists B_0 \in \mathcal{A}) B_0 > L$.

5. If $\sup \mathcal{A} = -\infty$, then $\mathcal A$ is empty.

Definition A.3 (Maximum) If $\sup \mathcal{A} \in \mathcal{A}$, then $\sup \mathcal{A}$ is also called the max *imum* of A, and is denoted by max A. However, if $\sup \mathcal{A} \notin \mathcal{A}$, then we say that the maximum of A does not exist.

E.g., if $\mathcal{A} = (0, 1]$, then $\max \mathcal{A} = \sup A = 1$.

E.g., if $\mathcal{A} = (0, 1)$, then sup $\mathcal{A} = 1$ but max \mathcal{A} does not exist!

Observation A.5 (Supremum of ^a set and channel coding theorems) In information theory, ^a typical channel coding theorem establishes that ^a (finite) real number α is the supremum of a set \mathcal{A} . Thus, to prove such a theorem, one must show that α satisfies both properties 3 and 2 above, i.e.,

Forward/Direct part: $(\alpha - \epsilon)$ is achievable in $\mathcal{A}: (\forall \epsilon > 0)(\exists a_0 \in \mathcal{A}) a_0 > \alpha - \epsilon$ $(A.1.1)$

and

Converse part: <u> α is a bound for all achievable values in \mathcal{A} </u> : (\forall $a \in \mathcal{A}$) $a \leq \alpha$. (A.1.2)

 $(\forall \epsilon > 0) \; \alpha - \epsilon \leq \sup \mathcal{A} \leq \alpha$

Property A.6 (Properties of the maximum)

1. ($\forall a \in \mathcal{A}$) $a \leq \max \mathcal{A}$, if $\max \mathcal{A}$ exists in $\mathbb{R} \cup \{-\infty, \infty\}$.

2. max $A \in \mathcal{A}$.

• From the above property, in order to obtain $\alpha = \max A$, one needs to show that α satisfies both

Converse part: <u> α is a bound for all achievable values in \mathcal{A} </u> : (\forall $a \in \mathcal{A}$) $a \leq \alpha$. and

Achievability/Forward/Direct part: α is achievable in \mathcal{A} : $\alpha \in \mathcal{A}$

E.g. Computation of the channel capacity of ^a binary symmetric channel.

A.2 Infimum and minimum I: a-6

The concepts of infimum and minimum are dual to those of supremum and maximum.

Definition A.7 (Lower bound of a set) A real number ℓ is called a *lower bound* of a non-empty subset $\mathcal A$ in $\mathbb R$ if every element of $\mathcal A$ is greater than or equal to ℓ ; we say that $\mathcal A$ is *bounded below*. Symbolically, the definition becomes:

 $\mathcal{A} \subset \mathbb{R}$ is bounded below $\iff (\exists \ell \in \mathbb{R})$ such that $(\forall a \in \mathcal{A})$ $a \geq \ell$.

Definition A.8 (Greatest lower bound or infimum) Suppose A is ^a non-empty subset of \mathbb{R} . Then we say that a real number ℓ is a *greatest lower* bound or infimum of A if ℓ is a lower bound of A and if $\ell \geq \ell'$ for each lower bound ℓ' of A. In this case, we write $\ell = \inf A$; other notations are $\ell = \inf_{x \in A} x$ and $\ell = \inf\{x \colon x \in \mathcal{A}\}.$

Completeness Axiom: (Greatest lower bound property) Let A be ^a non-empty subset of $\mathbb R$ that is bounded below. Then $\mathcal A$ has a greatest lower bound.

A.2 Infimum and minimum

- It directly follows that if ^a **non-empty** set in R has an infimum, then this infimum is unique.
- By definition, the empty set (\emptyset) and any set not bounded below do not admit an infimum in R.

Property A.10 (Properties of the infimum)

1. The infimum of any set in $\mathbb{R} \cup \{-\infty, \infty\}$ always exists.

$$
\inf \mathcal{A} := \begin{cases} +\infty, & \text{if } \mathcal{A} = \emptyset; \\ -\infty, & \text{if } \mathcal{A} \text{ is not bounded below.} \end{cases}
$$

These extended definitions will be adopted in this course.

- 2. $(\forall a \in \mathcal{A} \subset \mathbb{R} \cup \{-\infty, \infty\}) a \ge \inf \mathcal{A}$.
- 3. If $\infty > \inf A > -\infty$, then $(\forall \varepsilon > 0)(\exists a_0 \in A) a_0 < \inf A + \varepsilon$. (The existence of $a_0 \in [\inf \mathcal{A}, \inf \mathcal{A} + \varepsilon)$ for any $\varepsilon > 0$ under the assumption of $|\inf A| < \infty$ is called the *approximation property for the infimum.*)

4. If
$$
\inf \mathcal{A} = -\infty
$$
, then $(\forall L \in \mathbb{R})(\exists B_0 \in \mathcal{A})B_0 < L$.

5. If inf $\mathcal{A} = \infty$, then \mathcal{A} is empty.

A.2 Infimum and minimum

Definition A.9 (Minimum) If inf $A \in \mathcal{A}$, then inf A is also called the min *imum* of A , and is denoted by min A . However, if inf $A \notin A$, we say that the minimum of A does not exist.

Observation A.11 (Infimum of ^a set and channel coding theorems) In information theory, ^a typical source coding theorem establishes that ^a (finite) real number α is the infimum of a set $\mathcal A$. Thus, to prove such a theorem, one must show that α satisfies both properties 3 and 2 above, i.e.,

Forward/Direct part: $(\alpha + \epsilon)$ is achievable in $\mathcal{A}: (\forall \epsilon > 0)(\exists a_0 \in \mathcal{A}) a_0 < \alpha + \epsilon$ $(A.2.1)$

and

Converse part: <u> α is a bound for all achievable values in \mathcal{A} </u> : (\forall $a \in \mathcal{A}$) $a \geq \alpha$. (A.2.2)

A.2 Infimum and minimum I: a-9

Property A.12 (Properties of the minimum)

1.
$$
(\forall a \in \mathcal{A}) a \ge \min \mathcal{A}
$$
, if $\min \mathcal{A}$ exists in $\mathbb{R} \cup \{-\infty, \infty\}$.

2. min $A \in \mathcal{A}$.

• From the above property, in order to obtain $\alpha = \min A$, one needs to show that α satisfies both

Converse part: <u> α is a bound for all achievable values in \mathcal{A} </u> : (\forall $a \in \mathcal{A}$) $a \geq \alpha$. and

Achievability/Forward/Direct part: α is achievable in \mathcal{A} : $\alpha \in \mathcal{A}$

E.g. Computation of the rate-distortion function for binary DMS and Hamming distance measure (cf. Theorem 6.23).

Definition A.13 (Boundedness) A subset A of R is said to be *bounded* if it is both bounded above and bounded below; otherwise it is called *unbounded*.

Lemma A.14 (Condition for boundedness) A subset A of R is bounded iff $(\exists k \in \mathbb{R})$ such that $(\forall a \in \mathcal{A}) |a| \leq k$.

Lemma A.15 (Monotone property) Suppose that A and B are **nonempty** subsets of $\mathbb R$ such that $\mathcal A \subset \mathcal B$. Then

1. sup $\mathcal{A} \leq \sup \mathcal{B}$.

2. inf $\mathcal{A} \geq \inf \mathcal{B}$.

Lemma A.16 (Supremum for set operations) Define the "addition" of two sets $\mathcal A$ and $\mathcal B$ as

$$
\mathcal{A} + \mathcal{B} := \{ c \in \mathbb{R} : c = a + b \text{ for some } a \in \mathcal{A} \text{ and } b \in \mathcal{B} \}.
$$

Define the "scaler multiplication" of a set A by a scalar $k \in \mathbb{R}$ as

$$
k \cdot \mathcal{A} = \{c \in \mathbb{R} : c = k \cdot a \text{ for some } a \in \mathcal{A}\}.
$$

Finally, define the "negation" of a set $\mathcal A$ as

$$
-\mathcal{A} = \{c \in \mathbb{R} : c = -a \text{ for some } a \in \mathcal{A}\}.
$$

Then the following hold.

- 1. If A and B are both bounded above, then $A + B$ is also bounded above and $\sup(\mathcal{A}+\mathcal{B})=\sup\mathcal{A}+\sup\mathcal{B}.$
- 2. If $0 < k < \infty$ and A is bounded above, then $k \cdot A$ is also bounded above and $\sup(k\cdot\mathcal{A})=k\cdot\sup\mathcal{A}.$

3. sup
$$
\mathcal{A} = -\inf(-\mathcal{A})
$$
 and inf $\mathcal{A} = -\sup(-\mathcal{A})$.

• Property 1 does not hold for the "product" of two sets, where the "product" of sets $\mathcal A$ and $\mathcal B$ is defined as as

 $\mathcal{A} \cdot \mathcal{B} := \{c \in \mathbb{R} \colon c = ab \text{ for some } a \in \mathcal{A} \text{ and } b \in \mathcal{B}\}.$

In this case, both of these two situations can occur:

$$
\sup(\mathcal{A} \cdot \mathcal{B}) > (\sup \mathcal{A}) \cdot (\sup \mathcal{B})
$$

$$
\sup(\mathcal{A} \cdot \mathcal{B}) = (\sup \mathcal{A}) \cdot (\sup \mathcal{B}).
$$

Example. $\mathcal{A} = [-1, 0)$ and $\mathcal{B} = [-1, 0)$. Then

$$
\sup(\mathcal{A}\cdot\mathcal{B})=1 \text{ and } \sup\mathcal{A}=\sup\mathcal{B}=0.
$$

Example. $\mathcal{A} = [-1, 0)$ and $\mathcal{B} = [0, 1)$. Then

$$
\sup(\mathcal{A}\cdot\mathcal{B}) = \sup\mathcal{A} = 0 \text{ and } \sup\mathcal{B} = 1.
$$

Lemma A.17 (Supremum/infimum for monotone functions) 1. If $f: \mathbb{R} \to \mathbb{R}$ is a non-decreasing function, then $\sup\{x \in \mathbb{R} : f(x) < \varepsilon\} = \inf\{x \in \mathbb{R} : f(x) \ge \varepsilon\}$ and $\sup\{x \in \mathbb{R} : f(x) \leq \varepsilon\} = \inf\{x \in \mathbb{R} : f(x) > \varepsilon\}.$ 2. If $f: \mathbb{R} \to \mathbb{R}$ is a non-increasing function, then $\sup\{x \in \mathbb{R} : f(x) > \varepsilon\} = \inf\{x \in \mathbb{R} : f(x) \leq \varepsilon\}$ and $\sup\{x \in \mathbb{R} : f(x) \geq \varepsilon\} = \inf\{x \in \mathbb{R} : f(x) < \varepsilon\}.$

-
- Let $\mathbb N$ denote the set of "natural numbers" (positive integers) $1, 2, 3, \cdots$.
- A sequence drawn from ^a real-valued function is denoted by

$$
f:\mathbb{N}\to\mathbb{R}.
$$

In other words, $f(n)$ is a real number for each $n = 1, 2, 3, \ldots$

• It is usual to write $f(n) = a_n$, and we often indicate the sequence by any one of these notations

$$
\{a_1, a_2, a_3, \cdots, a_n, \cdots\}
$$
 or $\{a_n\}_{n=1}^{\infty}$.

• One important question that arises with ^a sequence is what happens when n gets large. To be precise, we want to know that when n is large enough, whether or not every a_n is close to some fixed number L (which is the *limit* of a_n).

Definition A.18 (Limit) The *limit* of $\{a_n\}_{n=1}^{\infty}$ is the real number L satisfying: $(\forall \varepsilon > 0)(\exists N)$ such that $(\forall n > N)$

$$
|a_n - L| < \varepsilon.
$$

In this case, we write $L = \lim_{n \to \infty} a_n$. If no such L satisfies the above statement, we say that the limit of $\{a_n\}_{n=1}^{\infty}$ does not exist.

Property A.19 If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both have a limit in R, then the following hold.

- 1. $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$.
- 2. $\lim_{n\to\infty}(\alpha \cdot a_n)=\alpha \cdot \lim_{n\to\infty}a_n$.
- 3. $\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n)$.

- Note that in the above definition, $-\infty$ and ∞ cannot be a legitimate limit for any sequence.
- In fact, if $(\forall L)(\exists N)$ such that $(\forall n > N)$ $a_n > L$, then we say that a_n diverges to ∞ and write $a_n \to \infty$. A similar argument applies to a_n diverging to $-\infty$.
- For convenience, we will work in the set of extended real numbers and thus state that a sequence $\{a_n\}_{n=1}^{\infty}$ that diverges to either ∞ or $-\infty$ has a limit in $\mathbb{R} \cup \{-\infty, \infty\}.$

 ${\bf Lemma~ A.20~(Convergence~of~monotone~ sequences)~}$ If $\{a_n\}_{n=1}^\infty$ is nondecreasing in n, then $\lim_{n\to\infty} a_n$ exists in $\mathbb{R}\cup\{-\infty,\infty\}$. If $\{a_n\}_{n=1}^{\infty}$ is also bounded from above – i.e., $a_n \leq L \,\forall n$ for some L in \mathbb{R} – then $\lim_{n\to\infty} a_n$ exists in \mathbb{R} . Likewise, if $\{a_n\}_{n=1}^{\infty}$ is non-increasing in n, then $\lim_{n\to\infty} a_n$ exists in $\mathbb{R}\cup\{-\infty,\infty\}$. If $\{a_n\}_{n=1}^{\infty}$ is also bounded from below – i.e., $a_n \geq L \forall n$ for some L in \mathbb{R} – then $\lim_{n\to\infty}a_n$ exists in R.

• The limit of ^a sequence may not exist.

```
\textbf{Example.} \ \ a_n = (-1)^n.
```
Then a_n will be close to either -1 or 1 for n large.

• Hence, more generalized definitions that can describe the general limiting behavior of ^a sequence is required.

Definition A.21 (limsup and liminf) The *limit supremum* of $\{a_n\}_{n=1}^{\infty}$ is the extended real number in $\mathbb{R} \cup \{-\infty, \infty\}$ defined by

> lim sup n→∞ $a_n := \lim_{n \to \infty} (\sup_{k \geq n}$ $a_k),$

and the *limit infimum* of $\{a_n\}_{n=1}^{\infty}$ is the extended real number defined by

lim inf n→∞ $a_n := \lim_{n \to \infty} (\inf_{k \geq n}$ a_k).

Some also use the notations $\overline{\lim}$ and $\underline{\lim}$ to denote limsup and liminf, respectively.

• Note that the limit supremum and the limit infimum of ^a sequence is always defined in $\mathbb{R} \cup \{-\infty, \infty\}$, since the sequences $\sup_{k\geq n} a_k = \sup\{a_k : k \geq n\}$ and $\inf_{k>n} a_k = \inf\{a_k : k \geq n\}$ are monotone in n (cf. Lemma A.20).

Lemma A.22 (Limit) For a sequence $\{a_n\}_{n=1}^{\infty}$,

$$
\lim_{n \to \infty} a_n = L \iff \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = L.
$$

Property A.23 (Properties of the limit supremum)

- 1. The limit supremum always exists in $\mathbb{R} \cup \{-\infty, \infty\}$.
- 2. If $|\limsup_{m\to\infty} a_m| < \infty$, then $(\forall \varepsilon > 0)(\exists N)$ such that $(\forall n > N)$ $a_n <$ $\limsup_{m\to\infty} a_m + \varepsilon$. (Note that this holds for every $n>N$.)
- 3. If $|\limsup_{m\to\infty} a_m| < \infty$, then $(\forall \varepsilon > 0$ and integer $K)(\exists N > K)$ such that a_N > lim sup_{m→∞} $a_m - \varepsilon$. (Note that this holds *only* for *one* N, which is larger than K .)

Property A.24 (Properties of the limit infimum)

- 1. The limit infimum always exists in $\mathbb{R} \cup \{-\infty, \infty\}$.
- 2. If $|\liminf_{m\to\infty} a_m| < \infty$, then $(\forall \varepsilon > 0 \text{ and } K)(\exists N > K)$ such that a_N < lim inf_{m→∞} $a_m + \varepsilon$. (Note that this holds *only* for *one* N, which is larger than K .)
- 3. If $|\liminf_{m\to\infty} a_m| < \infty$, then $(\forall \varepsilon > 0)(\exists N)$ such that $(\forall n > N)$ $a_n >$ $\liminf_{m\to\infty} a_m - \varepsilon$. (Note that this holds for every $n>N$.)

Definition A.25 (Sufficiently large) We say that ^a property holds for ^a sequence $\{a_n\}_{n=1}^{\infty}$ *almost always* or for *all sufficiently large n* if the property holds for every $n>N$ for some N.

Definition A.26 (Infinitely often) We say that ^a property holds for ^a sequence ${a_n}_{n=1}^{\infty}$ *infinitely often* or for *infinitely* many *n* if for every K, the property holds for *one* (specific) N with $N > K$.

• Then Properties 2 and 3 of Property A.23 can be respectively re-phrased as: if $|\limsup_{m\to\infty} a_m| < \infty$, then $(\forall \varepsilon > 0)$

$$
a_n
$$
 \leq $\limsup_{m \to \infty} a_m + \varepsilon$ for all sufficiently large *n*

and

$$
a_n > \limsup_{m \to \infty} a_m - \varepsilon
$$
 for infinitely many *n*.

• Similarly, Properties 2 and 3 of Property A.24 becomes: if $|\liminf_{m\to\infty} a_m|$ ∞ , then $(\forall \varepsilon > 0)$

$$
a_n < \liminf_{m \to \infty} a_m + \varepsilon \quad \text{for infinitely many } n
$$

and

$$
a_n > \liminf_{m \to \infty} a_m - \varepsilon
$$
 for all sufficiently large *n*.

Lemma A.27

1. $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$. 2. If $a_n \leq b_n$ for all sufficiently large n, then lim inf $n{\to}\infty$ $a_n \leq \liminf$ $n{\to}\infty$ b_n and $\limsup a_n \leq \limsup b_n$. $n \rightarrow \infty$ $n\rightarrow\infty$ 3. $\limsup_{n\to\infty} a_n < r \Rightarrow a_n < r$ for all sufficiently large n. 4. $\limsup_{n\to\infty} a_n > r \Rightarrow a_n > r$ for infinitely many n. 5. lim inf n→∞ $a_n + \liminf_{n \to \infty}$ $b_n \leq \liminf_{n \to \infty} (a_n + b_n)$ $\leq \limsup_{n \to \infty} a_n + \liminf_{n \to \infty}$ $n \rightarrow \infty$ $b_n \$ $\leq \limsup (a_n + b_n)$ $n\rightarrow\infty$ $\leq \limsup a_n + \limsup b_n$. $n\rightarrow\infty$ $n\rightarrow\infty$ 6. If $\lim_{n\to\infty} a_n$ exists, then $\liminf_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}$ $a_n + \liminf_{n \to \infty}$ $b_n\,$ and $\limsup_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty}$ $n\rightarrow\infty$ $a_n + \limsup$ n→∞ $b_n.$

Concept behind limsup and liminf $I: a-23$

- Limsup = largest clustering point
- Liminf $=$ smallest clustering point
- A clustering point is a point that the sequence a_n hits close for infinitely many times.

$$
\mathbf{E}.\mathbf{g}_\bullet, a_n = \sin(n\pi/2)
$$

$$
\Rightarrow \{a_n\}_{n\geq 1} = \{1, 0, -1, 0, 1, 0, -1, 0, \ldots\}
$$

There are three clustering points in this sequence, which are -1 , 0 and 1. Consequently,

$$
\limsup_{n \to \infty} a_n = 1 =
$$
 the largest clustering point

$$
\liminf_{n \to \infty} a_n = -1 =
$$
 the smallest clustering pint

E.g., $a_n = -n$. Then $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = -\infty$. **E.g.,** $a_n = n$. Then $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = \infty$.

A.5 Equivalence I: a-24

- We close this appendix by providing some equivalent statements that are often used to simplify proofs.
- For example, instead of directly showing that quantity x is less than or equal to quantity y, one can take an arbitrary constant $\varepsilon > 0$ and prove that $x < y + \varepsilon$.
- Since $y + \varepsilon$ is a larger quantity than y, in some cases it might be easier to show $x < y + \varepsilon$ than proving $x \leq y$.

Theorem A.28 For any x, y and a in \mathbb{R} , 1. $x < y + \varepsilon$ for all $\varepsilon > 0$ iff $x \leq y$; 2. $x < y - \varepsilon$ for some $\varepsilon > 0$ iff $x < y$; 3. $x > y - \varepsilon$ for all $\varepsilon > 0$ iff $x \ge y$; 4. $x > y + \varepsilon$ for some $\varepsilon > 0$ iff $x > y$; 5. $|a| < \varepsilon$ for all $\varepsilon > 0$ iff $a = 0$.

Key Notes I: a-25

- Supremum and Infimum over ^a subset of real line
- Limsup and Liminf (and their properties)
- Sufficiently large and infinitely often
- Equivalence