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Chapter 12 Weighted Residual Methods  

• 12.1 Weighted Residual Method 
• 12.2 Point Collocation Method 
• 12.3 Subdomain Collocation Method 
• 12.4 Least-Squares Method 
• 12.5 The Galerkin Method 

 



12.1 Weighted Residual Method 
• Consider the one-dimensional differential equation 

 
– 𝐿: a differential operator 
– 𝑢 𝑥 : unknown function 
– 𝑔 𝑥 : known function 
– If 𝐿 is chosen, it specifies the actual form of the differential 

equation 
    e.g. 

• BCs 
 
– 𝑢𝑎, 𝑢𝑏: known quantities 

• Only certain problems can be solved analytically in terms 
of exact closed-form solutions 
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12.1 Weighted Residual Method 
• To seek methods for solving the above differential 

equation for arbitrary expressions of 𝐿 and 𝑔, 
consider the following approximation procedure: 
– weighted integral 

– ∫ 𝑣 𝐿𝐿 + 𝑔 𝑑𝑑𝑏
𝑎 = 0 
• where 𝑣 is arbitrary 

– This is not a weak formulation unless an integration by 
parts is performed to reduce the order of 
differentiation of the unknown function 



12.1 Weighted Residual Method 
• Assume the approximation fulfilling the BCs 

– 𝑢𝑎𝑎𝑎 = 𝜓1𝑎1 + 𝜓2𝑎2 + ⋯+ 𝜓𝑛𝑎𝑛 
– 𝑎1, 𝑎2,…, 𝑎𝑛: unknown parameters 
– 𝜓1, 𝜓2…, 𝜓𝑛: trial functions, specified in advance 

• Trial functions are functions of 𝑥, may be taken as any 
approximation and this is why they are termed trial 
functions 

– Once 𝑎1, 𝑎2,…, 𝑎𝑛 are known, the approximate 
solution is given by 𝑢𝑎𝑎𝑎 

• 𝑢𝑎𝑎𝑎 = 𝝍𝒂 
• 𝝍 = 𝜓1 𝜓2 … 𝜓𝑛 , 𝒂 = 𝑎1 𝑎2 … 𝑎𝑛 𝑇 



12.1 Weighted Residual Method 
• Recall 

– ∫ 𝑣 𝐿𝑢 + 𝑔 𝑑𝑑𝑏
𝑎 = 0 

• Substitute 𝑢 by 𝑢𝑎𝑎𝑎 

– ∫ 𝑣 𝐿𝑢𝑎𝑎𝑎 + 𝑔 𝑑𝑑𝑏
𝑎 = 0 

• 𝑢𝑎𝑎𝑎 will not satisfy the equation exactly in general 
– 𝐿𝑢𝑎𝑎𝑎 + 𝑔 = 𝑒 

• 𝑒: residual, a measure for the error 

– ∫ 𝑣𝑒𝑑𝑑𝑏
𝑎 = 0   (1) 
• The residual 𝑒(𝑥) is given a certain weight 𝑣(𝑥)  
• The integral of the weighted residual 𝑣(𝑥)𝑒(𝑥) over the region of 

interest is required to be zero 



12.1 Weighted Residual Method 
• Consider the general form of the weight function 

– 𝑣 = 𝑉1𝑐1 + 𝑉2𝑐2 + ⋯+ 𝑉𝑛𝑐𝑛 
• 𝑐1, 𝑐2,…, 𝑐𝑛: certain parameters 
• 𝑉1, 𝑉2…, 𝑉𝑛: known functions of 𝑥, specified in advance 
• The numbers of terms in 𝑣 and 𝑢𝑎𝑎𝑎 are the same 

– 𝑣 = 𝑽𝑽 = 𝑽𝑽 𝑇 = 𝒄𝑇𝑽𝑇   (2) 
• 𝑽 = 𝑉1 𝑉2 … 𝑉𝑛 , 𝒄 = 𝑐1 𝑐2 … 𝑐𝑛 𝑇 
• As the weight function 𝑣 is arbitrary and 𝑽 is known, 𝒄 is 

arbitrary 

– (2) ⇒ (1): 𝒄T ∫ 𝑽T𝑒𝑒𝑒𝑏
𝑎 = 0 

• which holds for arbitrary 𝒄𝑇 

– ∫ 𝑽T𝑒𝑒𝑒𝑏
𝑎 = 0   (3) 



12.1 Weighted Residual Method 
• ∫ 𝑽T𝑒𝑒𝑒𝑏

𝑎 = 0   (3) 
– The column matrix 𝑽𝑇 has the dimension 𝑛 × 1 

 
 
 
 
 
 

– The residual 𝑒 depends on the unknowns 𝑎1, 𝑎2,…, 𝑎𝑛. Thus, 
eq.(4) serves as a system of equations to determine the 𝑛 
unknowns 

• 𝑒 = 𝐿 𝝍𝒂 + 𝑔 = 𝐿 𝝍 𝒂 + 𝑔   (5) 
– where 𝒂 is independent of 𝑥 
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12.1 Weighted Residual Method 
– (5) ⇒ (3): 
– Define 

 
 
 
 
 
 
 
 
 
 

– 𝑲 is a square matrix with dimension 𝑛 × 𝑛  
– The system consists of 𝑛 linear equations from which the 𝑛 unknowns 
𝑎1, 𝑎2,…, 𝑎𝑛, i.e. 𝒂, can be determined 

– When 𝒂 is obtained, 𝑢𝑎𝑎𝑎 = 𝝍𝒂 provides the approximate solution 
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12.1 Weighted Residual Method 

• The procedure described above applies to all 
weighted residual methods  

• A variety of different weighted residual methods 
is obtained depending on the choice of the 
weight function 𝑣, i.e. the choice for 𝑽 



12.2 Point Collocation Method 
• Dirac delta function 

– 𝛿 𝑥 − 𝑥𝑖 = � ∞   if 𝑥 = 𝑥𝑖
 0  otherwise

   (6) 

– ∫ 𝛿 𝑥 − 𝑥𝑖 𝑑𝑑
∞
−∞ = 1 
• 𝑥𝑖: a given fixed value 

– Alternatively, ∫ 𝛿 𝑥 − 𝑥𝑖 𝑑𝑑
𝑥𝑖+

𝑥𝑖−
= 1 

• 𝑥𝑖+ and 𝑥𝑖− denote 𝑥-values slightly larger than and smaller than 𝑥𝑖 

• The weight function 𝑣 is chosen such that 
– 𝑽 = 𝛿 𝑥 − 𝑥1 𝛿 𝑥 − 𝑥2 … 𝛿 𝑥 − 𝑥𝑛  
– The fixed points 𝑥1, 𝑥2,…, 𝑥𝑛 are collocation points chosen 

arbitrarily within the region 𝑎 ≤ 𝑥 ≤ 𝑏 
•   
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12.2 Point Collocation Method 
• As Dirac delta function is zero unless 𝑥 = 𝑥𝑖, we have 

 
 
 
 

 
• By analogy,  

 
 
 
 
 
 

 
– The differentiation indicated by the operator 𝐿, for instance 𝐿 𝜓1 𝑥2 , 

should be understood as follows: the differentiation of the function 𝜓1 𝑥  is 
first carried out and then the value 𝑥 = 𝑥2 is inserted 
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Example 

• Consider the following differential equation 

      𝑑
2𝑢

𝑑𝑥2
+ 𝑢 + 𝑥 = 0, 0 ≤ 𝑥 ≤ 1 

      
     BCs: 𝑢 0 = 𝑢 1 = 0 

     The exact solution is 𝑢 = sin𝑥
sin1

− 𝑥 

• Find the approximation 𝑢𝑎𝑎𝑎 to the problem 
– Recall 𝐿𝐿 + 𝑔 = 0  

– 𝐿 = 𝑑2

𝑑𝑥2
+ 1, 𝑔 = 𝑥 

 
 
 



Example 
• Express the approximation in the following form:  
      𝑢𝑎𝑎𝑎 = 𝜓1𝑎1 + 𝜓2𝑎2 + ⋯+ 𝜓𝑛𝑎𝑛 

 
• Consider 
𝑢𝑎𝑎𝑎 = 𝑏0 + 𝑎1sin𝑐𝑥 + 𝑏1cos𝑐𝑐 + 𝑎2sin2𝑐𝑐 + 𝑏2cos2𝑐𝑐 +
                … + 𝑎𝑛sin𝑛𝑐𝑐 + 𝑏𝑛cos𝑛𝑐𝑐  
– BCs 

• 𝑢𝑎𝑎𝑎 0 = 0 ⇒ 𝑏0 = 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑛 = 0 
• 𝑢𝑎𝑎𝑎 1 = 0 ⇒ 𝑐 = 𝜋 

– Thus,  
           𝑢𝑎𝑎𝑎 = 𝑎1sin𝜋𝑥 + 𝑎2sin2𝜋𝑥 + ⋯+ 𝑎𝑛sin𝑛𝜋𝑥 



Example 
• Consider one term in the series as a simple 

approximation 
– 𝑢𝑎𝑎𝑎 = 𝑎1sin𝜋𝑥  
–  or 𝑢𝑎𝑎𝑎 = 𝜓1𝑎1 = 𝝍𝒂 
– 𝝍 = 𝜓1 = sin𝜋𝑥  
– 𝒂 = 𝑎1  

• Use point collocation method to determine 𝑎1 
 



Example 
• Recall  

– 𝐿 = 𝑑2

𝑑𝑥2
+ 1, 𝑔 = 𝑥 

– 𝜓1 = sin𝜋𝑥 
– 𝑲𝑲 = 𝒇 

 
 
 

– Choose the collocation point, for instance, the midpoint of the 
interval 𝑥1 = 1

2
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12.3 Subdomain Collocation Method 
• In the point collocation method, 𝑛 points are chosen 
• In the subdomain collocation method, the region is 

divided into 𝑛 subregions 
– Each subregion is given by 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, where both 𝑥𝑖  and 
𝑥𝑖+1 are located in the region 𝑎 ≤ 𝑥 ≤ 𝑏 

– 𝑽 is chosen such that  

– 𝑉𝑖 = � 1   if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
0             otherwise

   𝑖 = 1,2, … ,𝑛  

  
  

 
 



12.3 Subdomain Collocation Method 
 
 
 
 

• The average of the residual over each subdomain is forced to be 
equal to zero 
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Example 
• Consider the differential equation 𝑑

2𝑢
𝑑𝑥2

+ 𝑢 + 𝑥 = 0, 
0 ≤ 𝑥 ≤ 1 

• BCs: 𝑢 0 = 𝑢 1 = 0 
• Use one term in the series as a simple approximation 

– 𝑢𝑎𝑎𝑎 = 𝑎1sin𝜋𝑥 = 𝝍𝒂 
–  𝝍 = 𝜓1 = sin𝜋𝑥 , 𝒂 = 𝑎1  

• Use subdomain collocation method to determine 𝑎1 
 



Example 
• In this case, only one subdomain is involved and this is 

chosen as the entire region of interest 

– 𝐿 = 𝑑2

𝑑𝑥2
+ 1, 𝑔 = 𝑥 

– 𝜓1 = sin𝜋𝑥 
– 𝑲𝑲 = 𝒇 
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12.4 Least-Squares Method 
• Recall the residual 𝑒 = 𝐿 𝝍 𝒂 + 𝑔 (5) ⇒ 𝑒 = 𝑒 𝑥,𝑎1,𝑎2, … ,𝑎𝑛  
• In the least-squares method, 𝑽 is chosen such that  

 
 
 

• To evaluate this choice, consider 𝐼 = ∫ 𝑒2 𝑥,𝑎1,𝑎2, … ,𝑎𝑛 𝑑𝑑𝑏
𝑎  

• As the integration is carried out over 𝑥, 𝐼 = 𝐼 𝑎1,𝑎2, … ,𝑎𝑛  
 
 

– The weight function in eq.(8) implies that 𝐼 is stationary. The 
stationary of 𝐼 is a minimum.  

– Consequently, the square of the error is a minimum, which gives the 
terminology of the least-squares method 
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12.4 Least-Squares Method 
• 𝑒 = 𝐿 𝝍 𝒂 + 𝑔 (5) 

 
 

– Insert eq.(5) into eq.(8) yields 

 
 
 
 
– The coefficient matrix 𝑲 is symmetric 
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Example 

• Consider the differential equation 𝑑
2𝑢

𝑑𝑥2
+ 𝑢 + 𝑥 = 0, 

0 ≤ 𝑥 ≤ 1 
• BCs: 𝑢 0 = 𝑢 1 = 0 
• Use one term in the series as a simple approximation 

– 𝑢𝑎𝑎𝑎 = 𝑎1sin𝜋𝑥 = 𝝍𝒂 
–  𝝍 = 𝜓1 = sin𝜋𝑥 , 𝒂 = 𝑎1  

• Use least-squares method to determine 𝑎1 
 



Example 
• Recall 

– 𝐿 = 𝑑2

𝑑𝑥2
+ 1, 𝑔 = 𝑥, 𝜓1 = sin𝜋𝑥 

– 𝑲𝑲 = 𝒇 

 
 
 

– where 

 
– Thus, 
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12.5 The Galerkin Method 
• 𝑽 is chosen as  

– i.e., weight (test) functions = trial functions 
 
 
 
 
 

– In general, the coefficient matrix 𝑲 is not symmetric 
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Example 
• Consider the differential equation 𝑑

2𝑢
𝑑𝑥2

+ 𝑢 + 𝑥 = 0, 
0 ≤ 𝑥 ≤ 1 

• BCs: 𝑢 0 = 𝑢 1 = 0 
• Use one term in the series as a simple approximation 

– 𝑢𝑎𝑎𝑎 = 𝑎1sin𝜋𝑥 = 𝝍𝒂 
–  𝝍 = 𝜓1 = sin𝜋𝑥 , 𝒂 = 𝑎1  

• Use Galerkin method to determine 𝑎1 
 



Example 
• Recall 

– 𝐿 = 𝑑2

𝑑𝑥2
+ 1, 𝑔 = 𝑥, 𝜓1 = sin𝜋𝑥 

– 𝑲𝑲 = 𝒇 
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1 10 0

1 1

10 0

2
1 1 2

11 sin 1
2

1sin

1 1 21 0.0718
2 1

L dx x dx

gdx x xdx

a a

ψ ψ π π π

ψ π
π

π
π π π

   = = − + = − +      

   = − = − = −      

− + = − ⇒ = ≈
−

∫ ∫

∫ ∫

K

f



Example 
• Comparison of different weighted residual methods 

– In this example, the Galerkin and least-squares methods 
provide the same results, and the superiority of the two 
methods is obvious for the example considered 

– The subdomain method is more accurate than the point 
collocation method 



Example 
• Comparison of different weighted residual methods 

– The least-squares method and the Galerkin method turn out to 
be very efficient 

– The least-squares method always results in a symmetric 
coefficient matrix, which is an advantage in numerical 
calculations 

– When the Galerkin method is used in combination with the 
weak formulation (in which an integration by parts is 
performed), a symmetric coefficient matrix arises  
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