
Corrections

• Slide IDC6-54:

=

∫
�
fX(x)

[
1

2
log2(2πσ

2) + log(2) · (x− µ)2

2σ2

]
dx

=

∫
�
fY (x)

[
1

2
log2(2πσ

2) + log(2) · (x− µ)2

2σ2

]
dx

should be

=

∫
�
fX(x)

[
1

2
log2(2πσ

2) + log2(e) ·
(x− µ)2

2σ2

]
dx

=

∫
�
fY (x)

[
1

2
log2(2πσ

2) + log2(e) ·
(x− µ)2

2σ2

]
dx

• Slide IDC 6-56: “lim∆0” should be replaced by “lim∆↓0”.

• Slide IDC 7-4: “retransmite” should be replaced by “retransmit”.

• Slide IDC 7-8:

=
[
m0 m1 · · · mk−1

]



g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

ag0,0 + bg1,0 ag0,1 + bg1,1 · · · ag0,n−1 + bg1,n−1
...

...
. . .

...
gk−1,0 gk−1,1 · · · gk−1,n−1




k×n

=
[
m̃0 m̃1 · · · mk−1

]



g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

g3,0 g3,1 · · · g3,n−1
...

...
. . .

...
gk−1,0 gk−1,1 · · · gk−1,n−1




(k−1)×n

is better to be rewritten as

=
[
m0 m1 m2 m3 · · · mk−1

]



g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

ag0,0 + bg1,0 ag0,1 + bg1,1 · · · ag0,n−1 + bg1,n−1
...

...
. . .

...
gk−1,0 gk−1,1 · · · gk−1,n−1




k×n

=
[
m̃0 m̃1 m3 m4 · · · mk−1

]



g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

g3,0 g3,1 · · · g3,n−1
...

...
. . .

...
gk−1,0 gk−1,1 · · · gk−1,n−1




(k−1)×n

• Slide IDC 7-21: “rH” should be “rHT”. Two places.
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Sample Problems for Quiz 10

1. (a) A lossy data compression scheme for source symbols in {0, 1} is performed as follows.

• First, the source sequence is segmented into blocks of 3 bits.

• Then, the mapping below is performed.

000 → 000

001 → 000

010 → 000

100 → 000

011 → 111

101 → 111

110 → 111

111 → 111

Compress the input sequence s0s1 . . . s17 = 001010100101011000 to v0v1 . . . v17 using
the compression scheme above.

(b) Use the Hamming distortion measure give by

d(s, v) =

{
1, s �= v

0, s = v

and suppose the distortion is additive, i.e.,

d(s0s1s2 . . . sn−1, v0v1v2 . . . vn−1) =
n−1∑
i=0

d(si, vi).

What is the average distortion of the particular input sequence in (a)?

(c) Suppose the input sequence S0S1S2 . . . is i.i.d. with uniform marginal distribution.
What is the expected value of the average distortion of the scheme in (a)?

(d) Find the rate distortion function R(D) for D = 1
4
. Can we find a lossy data compres-

sion scheme better than the one in (a) in the sense that the same distortion requirement
can be fulfilled but a lower compression rate can be achieved?

Hint: For i.i.d. binary source sequence,

R(D) = Hb(p)−Hb(D) bits/source symbol,

where Pr[Si = 0] = p and

Hb(p) = p log2
1

p
+ (1− p) log2

1

(1− p)
.

Solution.

(a) s0s1 . . . s17 = 001, 010, 100, 101, 011, 000→ v0v1 . . . v17 = 000, 000, 000, 111, 111, 000
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(b) There are 18 source symbols. Hence, the average distortion of the particular input
sequence is

d(s0s1 . . . s17, v0v1 . . . v17)

18
=

1

18

17∑
i=0

d(si, vi)︸ ︷︷ ︸
distortion measure

is additive

=
5

18
(distortion per source symbol)

(c) The expected value of the average distortion is

1

3
E[d(S0S1S2, V1V2V2)] =

1

3
Pr[S0S1S2 = 000]d(000, 000) +

1

3
Pr[S0S1S2 = 001]d(001, 000)

+
1

3
Pr[S0S1S2 = 010]d(010, 000) +

1

3
Pr[S0S1S2 = 011]d(011, 111)

+
1

3
Pr[S0S1S2 = 100]d(100, 000) +

1

3
Pr[S0S1S2 = 101]d(101, 111)

+
1

3
Pr[S0S1S2 = 110]d(110, 111) +

1

3
Pr[S0S1S2 = 111]d(111, 111)

=
1

3
· 1
8
· 0 + 1

3
· 1
8
· 1 + 1

3
· 1
8
· 1 + 1

3
· 1
8
· 1

+
1

3
· 1
8
· 1 + 1

3
· 1
8
· 1 + 1

3
· 1
8
· 1 + 1

3
· 1
8
· 0

=
1

4
bits/source symbol

(d)

R(D) = Hb(
1
2
)−Hb(

1
4
)

= 1− (1
4
log2(4) +

3
4
log2(

4
3
)
)

= 3
4
log2(3)− 1 (≈ 0.189 bits/source symbol)

The entropy rate (bits per source symbol) of the lossily compressed output sequence
is

lim
n→∞

H(V0V1 . . . Vn−1)

n
= lim

�→∞
1

3�

�−1∑
i=0

H(V3iV3i+1V3i+2)

({V3iV3i+1V3i+2}�−1
i=0 are independent 3-tuples.

Note that V3i is actually strongly dependent on V3i+1.

In fact, we have Pr[V3i = V3i+1 = V3i+2] = 1.)

= lim
�→∞

1

3�

�−1∑
i=0

(
1

2
log2 2 +

1

2
log2 2

)

(Because Pr[V3iV3i+1V3i+2 = 000] = Pr[V3iV3i+1V3i+2 = 111] =
1

2
)

=
1

3
bits/source symbol.

Since R(1
4
) ≈ 0.189 < 1

3
, according to Shannon’s rate distortion theorem, there should

exist a better lossy data compression scheme in the sense that a lower compression
rate can be achieved subject to the expected value of the average distortion no larger
than 1/4.
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2. Finding the source distribution that maximizes entropy or differential entropy (i.e.,
richest in information content) is important in certain applications such as data analytics.
Here are some examples.

(a) (Maximal differential entropy) Prove that among all continuous random variables of
mean µ and variance σ2 (i.e., of the same “dc and ac energy”), Gaussian random
variable has the largest differential entropy.

(b) (Maximal differential entropy) Prove that among all continuous random variables of
support [a, b), the uniform random variable has the largest differential entropy.

(c) (Maximal discrete entropy) Among all discrete random variables of finite support,
say {0, 1, 2, . . . , K − 1}, what distribution gives the largest entropy? Justify your
answer.

(d) (Maximal discrete entropy) Prove that of all probability mass functions for a non-
negative integer-valued random variable with mean µ, the geometric distribution given
by

PX(x) =
1

1 + µ

(
µ

1 + µ

)x

, for x = 0, 1, 2, . . . ,

has the largest entropy.

Solution.

(a) See Slide IDC 6-54.

(b) See Slide IDC 6-55.

(c) From Slide IDC 6-18, we know the uniform distribution over {0, 1, . . . , K − 1} gives
the largest entropy. Proof can be found in Slide IDC 6-18 and hence we omit it.

(d) Let X be geometric distributed with mean µ, and let Y represent any other non-
negative integer-valued random variable with the same mean. Then

H(X) =

∞∑
x=0

PX(x) log2
1

PX(x)

=

∞∑
x=0

PX(x)

[
log2(1 + µ)− x · log2

µ

1 + µ

]
= log2(1 + µ)− E[X] · log2

µ

1 + µ

= log2(1 + µ)− E[Y ] · log2
µ

1 + µ

=
∞∑
x=0

PY (x)

[
log2(1 + µ)− x · log2

µ

1 + µ

]

=

∞∑
x=0

PY (x) log2
1

PX(x)
.
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Hence,

H(X)−H(Y ) =
∞∑
x=0

PX(x) log2
1

PX(x)
−

∞∑
x=0

PY (x) log2
1

PY (x)

=
∞∑
x=0

PY (x) log2
1

PX(x)
−

∞∑
x=0

PY (x) log2
1

PY (x)
(Change PX to PY .)

=
∞∑
x=0

PY (x) log2
PY (x)

PX(x)
(Gather all log terms.)

=

∞∑
x=0

PY (x) log2(e)

(
ln

PY (x)

PX(x)

)
(Change to natural logarithm.)

≥
∞∑
x=0

PY (x) log2(e)

(
1− PX(x)

PY (x)

)
(Fundamental ineq. y ≥ 1− 1

y
∀y > 0.)

=

∞∑
x=0

log2(e) (PY (x)− PX(x)) = log2(e)

( ∞∑
x=0

PY (x)−
∞∑
x=0

PX(x)

)
= 0,

with equality holding iff PY = PX .

Note: Now you shall sense what the shape of the source distribution that maximizes
entropy or differential entropy looks like.

3. The (7,4) Hamming code can be generated via generator matrix

G =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


 =



g1

g2

g3

g4




Its corresponding parity-check matrix is given by

H =


1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 .

(a) List all 24 codewords of the (7,4) Hamming code. What is the error correcting capa-
bility of this code?

(b) Is the parity-check matrix unique for the given generator matrix G? If affirmative,
prove it; if negative, give another parity-check matrix.

Hint: The parity-check matrix can be formed by three linearly independent row vectors
that are orthogonal to the linear subspace spanned by g1, g2, g3 and g4.

(c) Give another generator matrix of the (7,4) Hamming code.

Hint: G can be formed by any k (non-zero) linearly independent (1× n) codewords.

(d) List all the cosets of the (7,4) Hamming codes. There are eight of them.

(e) Find the coset leaders of the eight cosets.

Solution.
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(a) 


0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1




︸ ︷︷ ︸
all 16 possible inputs



1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


 =




0 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 1 0 0 1 0
0 1 0 0 0 1 1
0 1 1 0 1 0 0
1 1 0 0 1 0 1
1 0 0 0 1 1 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 1 1 1 0 0 1
0 0 1 1 0 1 0
1 0 0 1 0 1 1
1 0 1 1 1 0 0
0 0 0 1 1 0 1
0 1 0 1 1 1 0
1 1 1 1 1 1 1




The smallest Hamming weight (i.e., the number of 1’s in non-zero codewords) is 3.
Hence, the error correcting capability is �3−1

2
� = 1. So, this code guarantees to correct

1 bit error.

Note: I mark four rows by color red for later use.

(b) Writing

H =


h1

h2

h3


 ,

we require hi · gj = 0 for all i and j. Apparently,

H̃ =


 h1

h1 + h2

h1 + h2 + h3




can also serve as a parity-check matrix since we can easily prove that

H̃GT = 0 if, and only if HGT = 0.

Note: You are free to choose your own H̃ via linearly combination as long as the three
rows remain linearly independent.

(c) We can take four linear independent codewords in (a) (e.g., the four in color red) to
form a new generator matrix: 


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1



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(d) The seven cosets other than the codebook itself can be obtained by adding respectively
the error patterns (listed below) to each of the codewords:

(0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0) and (1, 0, 0, 0, 0, 0, 0).

As a result, the eight cosets are:


0 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 1 0 0 1 0
0 1 0 0 0 1 1
0 1 1 0 1 0 0
1 1 0 0 1 0 1
1 0 0 0 1 1 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 1 1 1 0 0 1
0 0 1 1 0 1 0
1 0 0 1 0 1 1
1 0 1 1 1 0 0
0 0 0 1 1 0 1
0 1 0 1 1 1 0
1 1 1 1 1 1 1







0 0 0 0 0 0 1
1 0 1 0 0 0 0
1 1 1 0 0 1 1
0 1 0 0 0 1 0
0 1 1 0 1 0 1
1 1 0 0 1 0 0
1 0 0 0 1 1 1
0 0 1 0 1 1 0
1 1 0 1 0 0 1
0 1 1 1 0 0 0
0 0 1 1 0 1 1
1 0 0 1 0 1 0
1 0 1 1 1 0 1
0 0 0 1 1 0 0
0 1 0 1 1 1 1
1 1 1 1 1 1 0







0 0 0 0 0 1 0
1 0 1 0 0 1 1
1 1 1 0 0 0 0
0 1 0 0 0 0 1
0 1 1 0 1 1 0
1 1 0 0 1 1 1
1 0 0 0 1 0 0
0 0 1 0 1 0 1
1 1 0 1 0 1 0
0 1 1 1 0 1 1
0 0 1 1 0 0 0
1 0 0 1 0 0 1
1 0 1 1 1 1 0
0 0 0 1 1 1 1
0 1 0 1 1 0 0
1 1 1 1 1 0 1







0 0 0 0 1 0 0
1 0 1 0 1 0 1
1 1 1 0 1 1 0
0 1 0 0 1 1 1
0 1 1 0 0 0 0
1 1 0 0 0 0 1
1 0 0 0 0 1 0
0 0 1 0 0 1 1
1 1 0 1 1 0 0
0 1 1 1 1 0 1
0 0 1 1 1 1 0
1 0 0 1 1 1 1
1 0 1 1 0 0 0
0 0 0 1 0 0 1
0 1 0 1 0 1 0
1 1 1 1 0 1 1







0 0 0 1 0 0 0
1 0 1 1 0 0 1
1 1 1 1 0 1 0
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 1 0 1 1 0 1
1 0 0 1 1 1 0
0 0 1 1 1 1 1
1 1 0 0 0 0 0
0 1 1 0 0 0 1
0 0 1 0 0 1 0
1 0 0 0 0 1 1
1 0 1 0 1 0 0
0 0 0 0 1 0 1
0 1 0 0 1 1 0
1 1 1 0 1 1 1







0 0 1 0 0 0 0
1 0 0 0 0 0 1
1 1 0 0 0 1 0
0 1 1 0 0 1 1
0 1 0 0 1 0 0
1 1 1 0 1 0 1
1 0 1 0 1 1 0
0 0 0 0 1 1 1
1 1 1 1 0 0 0
0 1 0 1 0 0 1
0 0 0 1 0 1 0
1 0 1 1 0 1 1
1 0 0 1 1 0 0
0 0 1 1 1 0 1
0 1 1 1 1 1 0
1 1 0 1 1 1 1



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


0 1 0 0 0 0 0
1 1 1 0 0 0 1
1 0 1 0 0 1 0
0 0 0 0 0 1 1
0 0 1 0 1 0 0
1 0 0 0 1 0 1
1 1 0 0 1 1 0
0 1 1 0 1 1 1
1 0 0 1 0 0 0
0 0 1 1 0 0 1
0 1 1 1 0 1 0
1 1 0 1 0 1 1
1 1 1 1 1 0 0
0 1 0 1 1 0 1
0 0 0 1 1 1 0
1 0 1 1 1 1 1







1 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 1 0 0 1 0
1 1 0 0 0 1 1
1 1 1 0 1 0 0
0 1 0 0 1 0 1
0 0 0 0 1 1 0
1 0 1 0 1 1 1
0 1 0 1 0 0 0
1 1 1 1 0 0 1
1 0 1 1 0 1 0
0 0 0 1 0 1 1
0 0 1 1 1 0 0
1 0 0 1 1 0 1
1 1 0 1 1 1 0
0 1 1 1 1 1 1




(e) The coset leader is on top of each coset in (d), which are (0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1),
(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0)
and (1, 0, 0, 0, 0, 0, 0).

4. Let the generator polynomial of a polynomial code of length n = 5 be g(X) = X3+X +1.

(a) List all the code polynomials of this polynomial code via

c(X) = a(X)g(X).

(b) List all the code polynomials of this polynomial code via

c̄(X) = X3a(X)−X3a(X)mod g(X).

(c) For the division circuit below for the calculation of X3a(X)mod g(X), indicate how
many clock cycles are needed to complete the division and where the remainder is.

(d) Find the syndrome polynomial for received word polynomial r(X) = 1+X+X2+X4.
In addition, determine the coset leader polynomial for this syndrome polynomial.

Solution.

(a) c(X) = (a0 + a1X)(1 +X +X3) implies
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c(X) (a0 + a1X)(1 +X +X3)
0 + 0 ·X + 0 ·X2 + 0 ·X3 + 0 ·X4 (0 + 0 ·X)(1 +X +X3)
0 + 1 ·X + 1 ·X2 + 0 ·X3 + 1 ·X4 (0 + 1 ·X)(1 +X +X3)
1 + 1 ·X + 0 ·X2 + 1 ·X3 + 0 ·X4 (1 + 0 ·X)(1 +X +X3)
1 + 0 ·X + 1 ·X2 + 1 ·X3 + 1 ·X4 (1 + 1 ·X)(1 +X +X3)

(b) c̄(X) = X3a(X)−X3a(X)mod g(X) implies

c̄(X) X3a(X) X3a(X)mod g(X)
0 + 0 ·X + 0 ·X2 + 0 ·X3 + 0 ·X4 0 ·X3 + 0 ·X4 0 + 0 ·X + 0 ·X2

0 + 1 ·X + 1 ·X2 + 0 ·X3 + 1 ·X4 0 ·X3 + 1 ·X4 0 + 1 ·X + 1 ·X2

1 + 1 ·X + 0 ·X2 + 1 ·X3 + 0 ·X4 1 ·X3 + 0 ·X4 1 + 1 ·X + 0 ·X2

1 + 0 ·X + 1 ·X2 + 1 ·X3 + 1 ·X4 1 ·X3 + 1 ·X4 1 + 0 ·X + 1 ·X2

(c) The input to this division circuit is X3a(X), i.e., 000a0a1 (a1 should be entered first).
We need n = 5 clocks to complete the division. The remainder is the content of the
shift registers after n = 5 clocks.

(d) We derive

s(X) = r(X)mod g(X) = (1 +X +X2 +X4)mod (1 +X +X3) = 1.

The coset contains {e(X) = c(X) + s(X) = c(X) + 1} for all c(X). Thus from the
table in (a), we obtain

e(X)
1 + 0 ·X + 0 ·X2 + 0 ·X3 + 0 ·X4

1 + 1 ·X + 1 ·X2 + 0 ·X3 + 1 ·X4

0 + 1 ·X + 0 ·X2 + 1 ·X3 + 0 ·X4

0 + 0 ·X + 1 ·X2 + 1 ·X3 + 1 ·X4

The coset leader polynomial is 1 + 0 ·X + 0 ·X2 + 0 ·X3 + 0 ·X4 = 1.
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