
Sample Problems for Quiz 9

For the preparation of Quiz 9, you can focus on Problems 2 and 3.

1. (a) Suppose we intend to transmit a sequence of information bits through 4-ary ASK
modulation taking values from {−3,−1,+1,+3}. In order to reduce the word error
rate (WER), we design a channel code as follows.

info bits binary codeword channel codeword
U1U2U3 V1V2V3 (X1, X2, X3)
000 000000 (−3,−3,−3)
001 001001 (−3,+3,−1)
010 010010 (−1,−3,+3)
011 011011 (−1,+3,+1)
100 100100 (+3,−1,−3)
101 101101 (+3,+1,−1)
110 110110 (+1,−1,+3)
111 111111 (+1,+1,+1)

What is the code rate measured in information bits per channel usage?

(b) If the transmitter sends (−3,−3,−3), (−1,−3,+3), (+3,−1,−3), (+1,−1,+3), (−1,
−3, +3), (−3,−3,−3), (+1,−1,+3), (+3,+1,−1), (−3,+3,−1),(−3,+3,−1), and
the receiver, after performing detection based on thirty 4-ary receptions, outputs
(+3, −1, −3), (−1,−3,+3), (+3,−1,−3), (+1,−1,+3), (−1, −3, +3), (−3,−3,−3),
(+1,+1,+1), (+3,+1,−1), (−3,+3,−1),(−3,−3,−3), what is the word error rate
(WER)? What is the (information) bit error rate (BER)?

(c) Suppose the information sequence to be transmitted . . . U9U8U7 U6U5U4 U3U2U1 is
independent and satisfies PUi

(0) = PUi
(1) = 1

2
. What is the corresponding empirical

PX from the transmission of . . .X9X8X7 X6X5X4 X3X2X1, where X3k+3X3k+2X3k+1

is the channel codeword due to information block U3k+3U3k+2U3k+1?

(d) After performing measurement, the system designer found that the 4-ary ASK trans-
missions can be (approximately) modelled by a discrete memoryless channel (DMC),
and the channel transition probability follows

Q =



PY |X(−3| − 3) PY |X(−1| − 3) PY |X(1| − 3) PY |X(3| − 3)
PY |X(−3| − 1) PY |X(−1| − 1) PY |X(1| − 1) PY |X(3| − 1)
PY |X(−3|1) PY |X(−1|1) PY |X(1|1) PY |X(3|1)
PY |X(−3|3) PY |X(−1|3) PY |X(1|3) PY |X(3|3)




=



1− 3ε ε ε ε

ε 1− 3ε ε ε
ε ε 1− 3ε ε
ε ε ε 1− 3ε




Since it is a symmetric channel,1 the optimal input distribution that achieves the
channel capacity is uniform, i.e.,

PX(−3) = PX(−1) = PX(1) = PX(3) =
1

4
.

1A DMC is said to be symmetric if the rows of the transition probability matrix Q are permutations of each
other and the columns of Q are permutations of each other. It is known that the channel capacity of a symmetric
DMC can be achieved by uniform input distribution.
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Find the channel capacity.

Hint: Derive I(X; Y ) using the uniform input distribution.

(e) Is the rate in (a) a reliable transmission rate, give that ε in (d) is 0.1?

(f) We redesign the transmission scheme as follows.

info bits binary codeword channel codeword
U1U2U3 V1V2V3 (X1, X2, X3, X4, X5, X6)
000 000000000000 (−3,−3,−3,−3,−3,−3)
001 001001001001 (−3,+3,−1,−3,+3,−1)
010 010010010010 (−1,−3,+3,−1,−3,+3)
011 011011011011 (−1,+3,+1,−1,+3,+1)
100 100100100100 (+3,−1,−3,+3,−1,−3)
101 101101101101 (+3,+1,−1,+3,+1,−1)
110 110110110110 (+1,−1,+3,+1,−1,+3)
111 111111111111 (+1,+1,+1,+1,+1,+1)

Re-do (e).

Solution.

(a) We transmit three information bits using three channel usages. Hence, the code rate
is R = 3

3
= 1 (information) bits per channel usages.

Note: What Shannon’s capacity formula concerns is the information bit per channel
usage, not code bit per channel usage, which is 2 in this example.

(b) There are ten channel codewords transmitted, among which three codewords are in-
correctly detected. Hence, WER = 3

10
= 0.3.

For the three incorrectly detected codewords, the information sequences transmit-
ted are 000, 110 and 001 but the detector at the receiver outputs 100, 111 and 000.
Hence, among the thirty information bits transmitted, only three information bits are
erroneously detected, yielding the (information) bit error rate (BER) 3

30
= 0.1.

Note: For the transmission of the first codeword (−3,−3,−3), the receiver may receive
(+3,−3,−3) through a symbol-by-symbol decision maker, which is not a channel
codeword. According a certain decision rule, this received word of three 4-ary symbols
is regarded to be most likely the codeword (+3,−1,−3). The corresponding estimate
of the information bits is thus 100. We therefore have 1 information bit error and 1
codeword error from the transmission of the first codeword.

(c) Since each of the eight channel codewords will appear 1/8 of the time, we have

PX(−3) = PX(−1) = PX(1) = PX(3) =
6

24
=

1

4
.
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(d) With X = Y = {−3,−1, 1, 3}, we derive

C = I(X; Y )

=
∑
x∈X

∑
y∈Y

PX(x)PY |X(y|x) log2
PY |X(y|x)∑

x′∈X PX(x′)PY |X(y|x′)

=
∑
x∈X

∑
y∈Y

1

4
PY |X(y|x) log2

PY |X(y|x)∑
x′∈X

1
4
PY |X(y|x′)

=
∑
x∈X

∑
y∈Y

1

4
PY |X(y|x) log2

PY |X(y|x)
1
4

(∑
x′∈X

PY |X(y|x′) = (1− 3ε) + ε+ ε+ ε = 1

)

=
∑
x∈X

∑
y∈Y

1

4
PY |X(y|x) · 2 +

∑
x∈X

∑
y∈Y

1

4
PY |X(y|x) log2 PY |X(y|x)

=
1

2

∑
x∈X

∑
y∈Y

PY |X(y|x) + 1

4

∑
x∈X

∑
y∈Y

PY |X(y|x) log2 PY |X(y|x)

= 2 + (1− 3ε) log2(1− 3ε) + 3ε log2 ε.

(e) When ε = 0.1, we have

C = 2 + 0.7 log2 (0.7) + 0.3 log2 (0.1) ≈ 0.6432 . . . info bits/channel usage

Since R in (a) is also measured by the unit of info bits/channel usage, and since
R = 1 > 0.6432, the rate in (a) is not a reliable transmission rate.

Note: Because the rate is not a reliable transmission rate, WER cannot be made
arbitrarily small by extending the length of channel codeword (such as transmitting
n info bits using n channel usages for n very large).

(f) The rate of the new design is 3
6
= 0.5 info bits/channel usage, which is a reliable

transmission rate because it is less than 0.6432 info bits/channel usage.

Note: Even if 0.5 info bits/channel usage is less than C = 0.6432 info bits/channel
usage, Shannon only proves the existence of a code for any desired WER, but did not
tell us how such code can be designed.

The binary information sequence may sometimes be the output of a lossless data
compression coding scheme such as Huffman code or Lempel-Ziv code. Shannon’s
source coding theorem then gives the minimum source coding rate attainable by a
lossless data compression scheme is

R =
H(Sn)

n
= H(S) info bits/source symbol.

For example, the source entropy in Slide IDC 6-29 is given by

H(S) ≈ 2.38 info bits/source symbol (See Problem 2(c)),

and we can design a Huffman code with average codeword length (or average source
coding rate) R arbitrary close to 2.38 info bits/source symbol. Whether this source
can be reliably transmitted over the channel in (d) should be answered according to

R = 2.38 info bits/source symbols

Ts seconds/source symbol
≷ C = 0.6432 info bits/channel usage

Tc seconds/channel usage

where Ts is the average time between two source symbols, while the channel transmits
one channel symbol in every Tc seconds.
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2. Sub-problem (a) is for your reference. Not a part of the exam. You can see how Huffman
proves optimality of his code. However, sub-problems (b) and (c) will be a part of Quiz 9
and final exam.

(a) Prove that Huffman code has the minimum average codeword length among all uniquely
decodable codes.

Hint: From Slide IDC 6-28, Huffman proposes to combine the two least probable
source symbols into a new single symbol, whose probability is equal to the sum of
the probabilities of the original two (See the example on Slide IDC 6-29). This is
called the reduced source X ′, which contains one less symbol of the source X before
combining.

Hint: Prove by contradiction that if a code C′ for the reduced source X ′ is optimal,
then the code C for its immediate extended source X is optimal.

(b) Find a Huffman code for the source with probabilities {0.25, 0.25, 0.25, 0.1, 0.1, 0.05}
and compute their average codeword length.

(c) Why doesn’t the average codeword length of the optimal Huffman code in (b) equal
the source entropy?

Solution.

(a) Let the size of the source X be M . Assume without loss of generality that

p1 ≥ p2 ≥ · · · ≥ pM ,

where pi = Pr[X = ai]. Suppose C′ is optimal (in the sense of having the minimum
average codeword length) for the reduced source X ′ but the code C for the extended
source X that must satisfy

ACL(C) = ACL(C′) + pM−1 + pM (1)

is not optimal, where ACL is a shorthand for average codeword length. Then, there
must exist an optimal code D with ACL(D) < ACL(C) and with aM−1 and aM as
siblings (See Property 3 in Slide IDC 6-27).

As suggested by Huffman, combine aM−1 and aM into one new symbol aM−1,M

and assign its probability as pM−1 + pM , which immediately gives a code D′ for the
reduced source X ′, whose average codeword length satisfies

ACL(D) = ACL(D′) + pM−1 + pM . (2)

The two equations (1) and (2) indicate ACL(D′) < ACL(C′); a contradiction to the
optimality of C′ for the reduced source X ′ is obtained.

(b) Slide IDC 6-30 gives a Huffman code as 00, 01, 10, 110, 1110, 1111, of which the ACL
is

0.25× 2 + 0.25× 2 + 0.25× 2 + 0.1× 3 + 0.1× 4 + 0.05× 4 = 2.4.

(c) From Slide IDC 6-26, the average codeword length of an i.i.d. source S1, S2, S2, . . . , Sn

satisfies

H(S) =
1

n
H(Sn) ≤ 1

n
L̄n ≤ 1

n
H(Sn) +

1

n
= H(S) +

1

n
.
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As the code in (b) only uses n = 1. Thus, the optimal lossless data compression yields

H(S) ≤ L̄∗
1 = 2.4 ≤ H(S) + 1,

where

H(S) =
1

4
log2

1
1
4

+
1

4
log2

1
1
4

+
1

4
log2

1
1
4

+ 0.1 log2
1

0.1
+ 0.1 log2

1

0.1
+ 0.05 log2

1

0.05

= 1.8 + 0.25 log2(5)

= 2.38 . . .

Note: When taking n = 1, one can show that if all the probabilities p1, p2, . . . , pM are
in the form of 1

2k
for some k, then the ACL of Huffman code is equal to H(S). For

example, given

p1 =
1

2
, p2 = p3 =

1

4
,

we have H(S) = 1.5 and the Huffman code {0, 10, 11} also has the ACL equal to 1.5
bits.

3. (a) Compress 101011010101001010011010 by the Lempel-Ziv coding algorithm in Slide
IDC 6-33.

(b) Decompress 010001111000101011011000 by the Lempel-Ziv coding algorithm if the
decompressor knows the index is fixed as 3 bits in length.

Solution.

(a) We first parse the input stream as

10, 101, 1010, 10100, 101001, 1010

and build the below table:

decimal index 1 2 3 4 5 6 7

binary index 001 010 011 100 101 110 111

string 0 1 10 101 1010 10100 101001

where the first two indices are default. The Lempel-Ziv coding algorithm then outputs:

(010, 0)(011, 1)(100, 0)(101, 0)(110, 1)(100, 0)

i.e.,
010001111000101011011000.

(b) The decompressor will treat the sequence as a sequential concatenation of (index, last bit):

(010, 0)(011, 1)(100, 0)(101, 0)(110, 1)(100, 0) ≡ (2, 0)(3, 1)(4, 0)(5, 0)(6, 1)(4, 0)

Then, each step takes in one (index, last bit). Table can be built on the fly.

• (2, 0) → 10 and renew table as
index 1 2 3

string 0 1 10

• (3, 1) → 101 and renew table as
index 1 2 3 4

string 0 1 10 101
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• (4, 0) → 1010 and renew table as
index 1 2 3 4 5

string 0 1 10 101 1010

• (5, 0) → 10100 and renew table as
index 1 2 3 4 5 6

string 0 1 10 101 1010 10100

• (6, 1) → 101001 and renew table as
index 1 2 3 4 5 6 7

string 0 1 10 101 1010 10100 101001

• (4, 0) → 1010 and table remains
index 1 2 3 4 5 6 7

string 0 1 10 101 1010 10100 101001
Thus the decompressed sequence is

101011010101001010011010.

Note: We start the index by 1 by following the textbook. See page 580 in textbook.
It should be okay to start the index by 0.

4. From Slide IDC 6-60, the capacity for the continuous-input AWGN channel is given by

C =
1

2
log2

(
1 +

P

σ2

)
bits per channel usage,

where σ2 = N0

2
, and P (which sets the power constraint on the system, i.e., 1

n

∑n
i=1E[|Xi|2] ≤

P ) is measured in Joule per channel usage. What is the minimum Eb/N0 required for
reliable transmission, subject to R = k/n = 1

2
bits/channel usage?

Solution. (You shall be careful not to compare two quantities of different units.)

The energy of n transmissions (equivalently, n channel usages) is kEb. Thus, in average,
we have

P =
kEb

n
= REb Joule/channel usage.

The noise power experienced in each transmission is σ2 = N0

2
. Shannon then said that

reliable transmission is possible only when

R bits/channel usage < C bits/channel usage.

By Shannon’s formula, we know reliable transmission is possible if

R =
k

n
=

1

2
bits/channel usage <

1

2
log2

(
1 +

REb

N0

2

)
=

1

2
log2

(
1 +

Eb

N0

)
bits/channel usage,

which is equivalent to

1 <
Eb

N0

.

Hence, the minimum Eb/N0 required for reliable transmission over the continuous-input
AWGN channel, subject to R = k/n = 1

2
bits/channel usage, is 10 log10(1) = 0 dB.

Note: From Slide IDC 6-77, the minimum Eb/N0 required for reliable transmission over
the binary-input AWGN channel, subject to R = k/n = 1

2
bits/channel usage, is 0.186 dB,

which is only slightly larger than 0 dB. This confirms the effectiveness of digital communi-
cations.
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5. (Just for your reference. Not a part of the quiz or exam. Determination of
Channel Capacity by Lagrange Multipliers Technique) In order to simplify the
notation, we denote

pi = PX(i), p = (p1, . . . , pI), and qj|i = PY |X(j|i)

and let the ranges of i and j be 1, . . . , I and 1, . . . , J, respectively. Then, the mutual
information between channel input X and output Y is equal to

I(X; Y ) = f(p) =

I∑
i=1

J∑
j=1

pi qj|i log2
qj|i∑I

i′=1 pi′ qj|i′
.

The channel capacity is then given by

C � max
p=(p1,...,pI)∈[0,1)I:

∑I
i=1 pi=1

f(p) = max
p=(p1,...,pI)∈Q

f(p), (3)

where

Q =

{
p = (p1, . . . , pI) ∈ [0, 1)I :

I∑
i=1

pi = 1

}
.

Note that here we set each 0 ≤ pi < 1 because when pi′′ = 1 for some i′′, we have pi = 0
for i �= i′′, implying

I(X; Y ) = f(p) =

I∑
i=1

J∑
j=1

pi qj|i log2
qj|i∑I

i′=1 pi′ qj|i′
=

J∑
j=1

qj|i′′ log2
qj|i′′
qj|i′′

= 0.

Thus, such an input distribution can be excluded in our determination of channel capacity.

(a) Using the Lagrange multipliers technique, we rewrite (3) as

C = max
p∈Q

f(p) = max
p∈Q

fλ(p) ≤ max
p∈[0,1)I

fλ(p)︸ ︷︷ ︸
unconstrained
maximization

,

where

fλ(p) � f(p) + λ

(
I∑

i=1

pi − 1

)
.

Prove that p∗
λ, which maximizes fλ(p,Q) over p ∈ [0, 1)I, satisfies


di(p

∗
λ) = log2(e)− λ if p∗λ,i > 0

di(p
∗
λ) ≤ log2(e)− λ if p∗λ,i = 0

(4)

where

di(p) �
J∑

j=1

qj|i log2
qj|i∑I

i′=1 pi′ qj|i′
.

Note that di(p) is usually denoted as I(i; Y ) in the literature.
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Hint: Because
∂2fλ(p)

∂2pi′′
< 0,

fλ(p) is concave in pi′′ ∈ [0, 1) and hence the optimizer satisfies


∂fλ(p)

∂pi′′

∣∣∣∣
p=p∗

λ

= 0 if p∗λ,i′′ > 0

∂fλ(p)

∂pi′′

∣∣∣∣
p=p∗

λ

≤ 0 if p∗λ,i′′ = 0

(b) For binary symmetric channel with 0 < ε < 1
2
, we have I = J = 2, and

qj|i =

{
ε, j �= i

1− ε, j = i

Hence,

d1(p1, p2) �
2∑

j=1

qj|1 log2
qj|1∑2

i′=1 pi′ qj|i′
= q1|1 log2

q1|1∑2
i′=1 pi′ q1|i′

+ q2|1 log2
q2|1∑2

i′=1 pi′ q2|i′

= (1− ε) log2
(1− ε)

p1(1− ε) + p2ε
+ ε log2

ε

p1ε+ p2(1− ε)

and

d2(p1, p2) � ε log2
ε

p1(1− ε) + p2ε
+ (1− ε) log2

(1− ε)

p1ε+ p2(1− ε)
.

Using (4) to argue that p∗λ,1 = p∗λ,2 for any λ.

(c) Continue from (b). p∗
λ in (b) is a function of λ. Can we find a λ such that p∗λ,1+p∗λ,2 = 1

and therefore p∗
λ ∈ Q?

Note: If such λ exists, then C = f(p∗
λ(λ)).

Solution.
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(a) We first derive

∂fλ(p)

∂pi′′

=
∂

∂pi′′

{
I∑

i=1

J∑
j=1

piqj|i log2 qj|i −
I∑

i=1

J∑
j=1

piqj|i log2

(
I∑

i′=1

pi′qj|i′

)
+ λ

(
I∑

i=1

pi − 1

)}

=

J∑
j=1

qj|i′′ log2 qj|i′′ −
(

J∑
j=1

qj|i′′ log2

[
I∑

i′=1

pi′qj|i′

]
+ log2(e)

I∑
i=1

J∑
j=1

piqj|i
qj|i′′∑I

i′=1 pi′qj|i′

)
+ λ

=

(
J∑

j=1

qj|i′′ log2 qj|i′′ −
J∑

j=1

qj|i′′ log2

[
I∑

i′=1

pi′qj|i′

])
− log2(e)

I∑
i=1

J∑
j=1

piqj|i
qj|i′′∑I

i′=1 pi′qj|i′
+ λ

= di′′(p)− log2(e)
J∑

j=1�
�
�
�
�
�[

I∑
i=1

piqj|i

]
qj|i′′

�������∑I

i′=1 pi′qj|i′
+ λ

= di′′(p)− log2(e)

J∑
j=1

qj|i′′ + λ

= di′′(p)− log2(e) + λ

and

∂2fλ(p)

∂2pi′′
=

∂di′′(p)

∂pi′′

=
∂

∂pi′′

(
J∑

j=1

qj|i′′ log2 qj|i′′ −
J∑

j=1

qj|i′′ log2

[
I∑

i′=1

pi′qj|i′

])

= −log2(e)
J∑

j=1

qj|i′′
qj|i′′∑I

i′=1 pi′qj|i′
< 0.

Hence, the optimizer satisfies


∂fλ(p)

∂pi′′

∣∣∣∣
p=p∗

λ

= 0 if p∗λ,i′′ > 0

∂fλ(p)

∂pi′′

∣∣∣∣
p=p∗

λ

≤ 0 if p∗λ,i′′ = 0

=



di′′(p

∗
λ)− log2(e) + λ = 0 if p∗λ,i′′ > 0

di′′(p
∗
λ)− log2(e) + λ ≤ 0 if p∗λ,i′′ = 0

=



di′′(p

∗
λ) = log2(e)− λ if p∗λ,i′′ > 0

di′′(p
∗
λ) ≤ log2(e)− λ if p∗λ,i′′ = 0

(b) We first note that p∗λ,1 < 1 implies p∗λ,2 > 0, and vice versus. Hence, (4) indicates

d1(p
∗
λ,1, p

∗
λ,2) = d2(p

∗
λ,1, p

∗
λ,2) = log2(e)− λ,

which implies

(1− ε) log2
(1− ε)

p∗λ,1(1− ε) + p∗λ,2ε
+ ε log2

ε

p∗λ,1ε+ p∗λ,2(1− ε)

= ε log2
ε

p∗λ,1(1− ε) + p∗λ,2ε
+ (1− ε) log2

(1− ε)

p∗λ,1ε+ p∗λ,2(1− ε)
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equivalently,

(1− 2ε) log2(p
∗
λ,1(1− ε) + p∗λ,2ε) = (1− 2ε) log2(p

∗
λ,1ε+ p∗λ,2(1− ε))

⇔ (p∗λ,1(1− ε) + p∗λ,2ε) = (p∗λ,1ε+ p∗λ,2(1− ε))

⇔ p∗λ,1 = p∗λ,2.

(c) Last, we solve p∗
λ = (p∗λ, p

∗
λ) via

d1(p
∗
λ, p

∗
λ) = (1− ε) log2

(1− ε)

p∗λ(1− ε) + p∗λε
+ ε log2

ε

p∗λε+ p∗λ(1− ε)

= (1− ε) log2
(1− ε)

p∗λ
+ ε log2

ε

p∗λ
= (1− ε) log2(1− ε) + ε log2(ε)− log2(p

∗
λ) = log2(e)− λ

and obtain
(1− ε) log2(1− ε) + ε log2(ε)− log2(p

∗
λ) = log2(e)− λ.

Since we must have p∗λ = 1
2
(because p∗λ,1 + p∗λ,2 = 1 and p∗λ,1 = p∗λ,2) in order to have

p∗
λ ∈ Q, setting

λ = −(1 − ε) log2(1− ε)− ε log2(ε)− 1 + log2(e)

will make p∗
λ ∈ Q. In such case, log2(e)− λ = 1 + (1− ε) log2(1− ε) + ε log2(ε) and

C = f

(
1

2
,
1

2

)
=

2∑
i=1

p∗λ,i di(p
∗
λ)

=
2∑

i=1

p∗λ(log2(e)− λ)

= log2(e)− λ

= 1−
[
(1− ε) log2

1

(1− ε)
+ ε log2

1

ε

]
︸ ︷︷ ︸

H(ε)

= 1−H(ε) info bits/channel usage
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