
Sample Problems for Quiz 8

A minor correction to a slide

• IDC 5-104: Please replace “Details theoretical background” by “Detail theoretical back-
ground”.

1. (Optimality of Maximal-ratio combiner) Suppose (after performing inner products) the
receiver receives

r = ±α
√
E + z,

and assume α can be perfectly known to the receiver. Let z be real-valued zero-mean
Gaussian distributed with variance E[z2] = N0. With L-diversity, we have

r1 = ±α1

√
E + z1

r2 = ±α2

√
E + z2

...

rL = ±αL

√
E + zL

where {zk}Lk=1 are zero-mean i.i.d. with variance σ2 and {αk}Lk=1 are assumed to be perfectly
estimated. Find the optimal linear combiner

r =

L∑
k=1

wk · rk

that maximizes the output signal-to-noise ratio (SNR).

Hint: Find the weights {wk}Lk=1 such that the output SNR is maximized by using the
Cauchy-Schwartz inequality.

Solution. We derive

r =

L∑
k=1

wkrk

=

L∑
k=1

wk(s+ zk)

=
L∑

k=1

wkαks+
L∑

k=1

wkzk

= s

L∑
k=1

wkαk +

L∑
k=1

wkzk,

where s ∈ {±√E}. Under the assumption that {αk}Lk=1 can be perfectly estimated by the
receiver, the output SNR satisfies

SNR =

(∑L
k=1wkαk

)2
E[s2]∑L

k=1w
2
kE[z2k ]

≤
(∑L

k=1w
2
k

)(∑L
k=1 α

2
k

)
E[s2]

σ2
∑L

k=1w
2
k

=

(∑L
k=1 α

2
k

)
E[s2]

N0
,

1



where the inequality follows the Cauchy-Schwartz inequality. The optimal {wk}Lk=1 are thus
the ones that equate the Cauchy-Schwartz inequality, i.e., wk = C · αk for some constant
C.

Note: This problem shows that as long as {αk}Lk=1 can be perfectly estimated, and {zk}Lk=1

is i.i.d., the maximal ratio combiner is optimal (in the sense of maximizing the output
SNR). No Rayleigh or Gaussian assumptions are actually needed.

2. In an antenna arrays system, suppose the first user equipment (UE) has two antennas, the
second UE has one antennas, the third UE has two antennas, and the base station has
eight antennas. Thus, the base station receives



x1

x2

x3

x4

x5

x6

x7

x8




︸ ︷︷ ︸
=x

=
[
c1 c2 c3 c4 c5

]



m1

m1

m2

m3

m3


+




v1
v2
v3
v4
v5
v6
v7
v8




︸ ︷︷ ︸
v

,

where we suppose {ci}8i=1 can be perfectly pre-measured, and {vk}8k=1 are zero-mean
i.i.d. with variance σ2. Let m1 be the message of interest. The receiver then uses a
linear combiner with weights {wk}8k=1 to determine m1. Find the weights that maximize
the output SNR, subject to that w is orthogonal to c3 and c45 � c4 + c5, where

w =




w1

w2

w3

w4

w5

w6

w7

w8




.

Hint: Denote for convenience c12 = c1 + c2.

Solution. By using a dot to denote the inner product, the receiver performs

w · x = w · [c1 c2 c3 c4 c5
]



m1

m1

m2

m3

m3


+w · v

= w · [c1 + c2 c3 c4 + c5
]

m1

m2

m3


+w · v

=
[
w · c12 0 0

]

m1

m2

m3


+w · v

= m1w · c12 +w · v.
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The output SNR is thus given by

SNR =
E[|m1w · c12|2]
E[|w · v|2] =

|w · c12|2E[|m1|2]
‖w‖2σ2

.

Note that w must be orthogonal to the space I spanned by c3 and c45. Decompose

c12 = u⊥ + u,

where u is on the space I (so, w ·u = 0) and u⊥ is orthogonal to the space I. The output
SNR can the be rewritten as

SNR =
w · (u⊥ + u)E[|m1|2]

‖w‖2σ2
=

w · u⊥E[|m1|2]
‖w‖2σ2

≤ ‖w‖2‖u⊥‖2E[|m1|2]
‖w‖2σ2

=
‖u⊥‖2E[|m1|2]

σ2

where we use the Cauchy-Schwartz inequality. The optimal w is thus proportional to u⊥.

Note: The L-diversity communication in Problem 1 can be regarded as a special case of
Problem 2, where c3 = c4 = c5 = 0, m1 = s ∈ {±√E}, and

x =



r1
...
rL


 , u = c1,2 =



α1
...
αL


 .

Thus, the antenna array system can be considered a further generalization of L-diversity.

3. After presuming that “information measure” is a function of event probability, three ax-
ioms have been proposed by Shannon. What are these three axioms? Also, give their
corresponding mathematical formulations.

Solution. See Slides IDC 6-6 ∼ 6-8.

Note: In fact, Shannon mentioned four axioms. The last axiom is that the information
measure should be non-negative. There is no reason for one to make a new observation
but gain “negative” information amount due to it. But the function of information measure
that satisfies the first three axioms turns out to automatically satisfy the non-negativity
axiom. So, this axiom can be ignored and removed.

4. (a) Compute the entropy H(X) of random variable X, where

Pr[X = 0] =
1

8
, Pr[X = 1] =

1

8
, Pr[X = 2] =

1

4
, and Pr[X = 3] =

1

2
.

(b) Compute the entropy H(Y ) of random variable Y , where

Pr[Y = i] =
1

D
for i = 1, 2, . . . , D.

Solution

(a)

H(X) =
1

8
log2

1

(1
8
)
+

1

8
log2

1

(1
8
)
+

1

4
log2

1

(1
4
)
+

1

2
log2

1

(1
2
)

=
1

8
× 3 +

1

8
× 3 +

1

4
× 2 +

1

2
× 1

=
7

4
bits
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(b)

H(Y ) =

D∑
i=1

1

D
log2

1

( 1
D
)
= log2(D) bits.

Note: Rudolph Clausius had introduced entropy as a concept in thermodynamics
in 1854 and defined entropy from a macroscopic point of view. As an alternative,
Boltzmann gave a microscopic description of entropy in 1877:

S = kB logD,

where S is entropy, D is the number of energy states in the system that can be ran-
domly filled with energy, and KB is the Boltzmann constant. In comparison with
Shannon’s entropy formula, we know that Boltzmann’s formula assumes uniform dis-
tribution over all energy states, as exemplified in this subproblem. Thus, it is reason-
able to name the “uncertainty” formula developed from the three axioms proposed by
Shannon the entropy of the source.
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