
Further notes on the sample problems for Quiz 3

• Sample problem 2(b): The logic of the solution is that all three requirements must be
fulfilled; hence, we simply use the previously obtained conditions to check what will be
further required by the next requirement. So we wrote:

(b) The FSK formulation in (1) . . . no constraint on h and fcTb is devised from memo-
ryless requirement.

For phase-continuity requirement, . . . A sufficient and necessary condition for
phase continuity is . . .

2fcTb is an integer︸ ︷︷ ︸
sub-condition 1

or h is an integer︸ ︷︷ ︸
sub-condition 2

.

With this condition in mind︸ ︷︷ ︸
i.e., two sub-conditions above

, coherent orthogonality requires

. . .

⇔



sin(2πh(n+ 1)) = sin(2πhn), if 2fcTb integer︸ ︷︷ ︸

sub-condition 1

sin(4πfc(n+ 1)Tb) = sin(4πfcnTb), if h integer︸ ︷︷ ︸
sub-condition 2

for every integer n

⇔ . . .

• Correction to the solution for sample problem 3(b): “if 2h is an integer, then coherent
orthogonality requires sin (4πfc(n+ 1)Tb) = sin (4πfcnTb), i.e., 2fcTb must be an integer
. . . both h/2 and 2fcTb to be an integer” should be corrected as “if 2h is an integer, then
coherent orthogonality requires sin (4πfc(n + 1)Tb) = sin (4πfcnTb), i.e., 4fcTb must be an
integer . . . both h/2 and 4fcTb to be an integer”.

Sample Problems for Quiz 4

1. Find all solutions of real-valued x such that

cos((1− x)π + θ) = −(−1)x cos(θ) for arbitrary θ.

Solution. Since the equation must hold for arbitrary θ, we take θ = 0 for simplicity.
Solving cos(πx) = (−1)x yields that x must be an integer. As integer x fulfills the equation
for arbitrary θ, the set of all solutions is the set of integers.

2. (a) A general binary continuous-phase signal such as binary continuous-phase modulation
(CPM) can be formulated as

s(t) =

∞∑
n=−∞

g(t− nTb) cos

(
2πfct + πh

n−1∑
k=−∞

Ik + 2πhIn · q (t− nTb)

)
, (1)

where In ∈ {±1},
g(t) =

{
1, 0 ≤ t < Tb;

0, otherwsie,
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and p(t) is a continue function satisfying

q(t) =

{
0, t ≤ 0;
1
2
, t ≥ Tb.

(2)

Verify that the signal formulation in (1) is continuous in phase.

(b) Under h = 1
2
, can we specify q(·) (which is allowed to violate (2)) such that (1) can

be used to formulate DPSK in Slide IDC2-81? Justify your answer by characterizing
the relationship among Ik, bk and dk. Here, we assume 2Eb = Tb for simplicity.

Hint: Check s(t) in Slide IDC2-83.

(c) Is the DPSK in (c) continuous in phase?

Solution

(a) For phase-continuity, we observe that discontinuity can only occur at t = �Tb; thus,
we require limt↑�Tb

s(t) = limt↓�Tb
s(t). Derive

lim
t↑�Tb

s(t)

= lim
t↑�Tb

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+ πh

n−1∑
k=−∞

Ik + 2πhIn · q(t− nTb)

)

= lim
t↑�Tb

g(t− (�− 1)Tb) cos

(
2πfct + πh

�−2∑
k=−∞

Ik + 2πhI�−1 · q(t− (�− 1)Tb)

)

= cos

(
2πfc�Tb + πh

�−2∑
k=−∞

Ik + 2πhI�−1 · q(�Tb − (�− 1)Tb)

)

= cos

(
2πfc�Tb + πh

�−1∑
k=−∞

Ik

)
,

and

lim
t↓�Tb

s(t)

= lim
t↓�Tb

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+ πh

n−1∑
k=−∞

Ik + 2πhIn · q (t− nTb)

)

= lim
t↓�Tb

g(t− �Tb) cos

(
2πfct+ πh

�−1∑
k=−∞

Ik + 2πhI� · q(t− �Tb)

)

= cos

(
2πfc�Tb + πh

�−1∑
k=−∞

Ik

)
.

Thus, s(t) is continuous in phase.

Note: In the book titled Digital Communicaitons (5th edition) by Proakis and Salehi,
GMSK is defined as h = 1

2
and

∂q(t)

∂t
=

1√
ln(2)

[
Φ

(
−2πB

(
t− T

2

))
− Φ

(
−2πB

(
t+

T

2

))]
.
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(See Fig. 3.3-4 on p. 119.) In this definition of GMSK, it is the phase that is filtered
through a Gaussian filter to smooth the transitions from one point to the next. This
is indeed different from what was introduced in our textbook.

In order to clarify why there are two “different” definitions of GMSK, let me quote
from the below article: https://www.electronics-notes.com/articles/radio/modulation/

what-is-gmsk-gaussian-minimum-shift-keying.php

There are two main ways in which GMSK modulation can be generated. The most
obvious way (as introduced in Proakis and Salehi’s book) is to filter the modulating
signal using a Gaussian filter and then apply this to a frequency modulator where the
modulation index is set to 0.5. This method is very simple and straightforward but
it has the drawback that the modulation index must exactly equal 0.5. In practice
this analogue method is not suitable because component tolerances drift and cannot
be set exactly (See the figure therein).

A second method is more widely used. Here what is known as a quadrature
modulator is used (as introduced in our lectures). The term quadrature means that
the phase of a signal is in quadrature or 90 degrees to another one. The quadrature
modulator uses one signal that is said to be in-phase and another that is in quadrature
to this. In view of the in-phase and quadrature elements this type of modulator is
often said to be an I-Q modulator. Using this type of modulator the modulation index
can be maintained at exactly 0.5 without the need for any settings or adjustments.
This makes it much easier to use, and capable of providing the required level of
performance without the need for adjustments. For demodulation the technique can
be used in reverse (See the figure therein).

The textbook adopts the second method and passes a nonreturn-to-zero binary
data stream through a baseband pulse-shaping-filter. You can also refer to [1], which
gives (See Eq. (7) in [1]) that

e0(t) = Re{h(t) � Ei(t)e
j2πfct}

with Ei(t) being the baseband MSK and h(t) =
√
π
α

exp
(
−π2

α2 t
2
)
Gaussian filter (See

Eq. (11) in [1]).

[1] Mitsuru Ishizuka and Kenkichi Hirade, “Optimum Gaussian filter and deviated-
frequency-locking scheme for coherent detection of MSK,” IEEE Trans. Comm., vol. 28,
no. 6, pp. 850-857, June 1980.

(b) A PSK signal should have a constant frequency; thus, the derivative of the phase term
must be a constant, i.e., for nTb ≤ t < (n + 1)Tb,

1

2π

∂
(
2πfct + πh

∑n−1
k=−∞ Ik + 2πhIn · q (t− nTb)

)
∂t

= fc + hInq
′(t) = constant.

Since s(t) needs to be a function of In for nTb ≤ t < (n+1)Tb, we cannot set q(t) = 0.
So, we assign q(t) = 1

2
for 0 ≤ t < Tb in order to obtain the desired π-difference for

In = ±1, which gives

s(t) =
∞∑

n=−∞
g(t− nTb) cos

(
2πfct +

π

2

n−1∑
k=−∞

Ik +
π

2
In

)

= cos

(
2πfct+

π

2

n−1∑
k=−∞

Ik +
π

2
In

)
for nTb ≤ t < (n+ 1)Tb.
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In comparison with s(t) in Slide IDC2-83, i.e.,

s(t) = cos(2πfct+ θ + (1− dn)π) for nTb ≤ t < (n+ 1)Tb,

a feasible assignment under In ∈ {±1} and dn ∈ {0, 1} is{
π
2

∑n−1
k=−∞ Ik − π

2
= θ

π
2
In +

π
2
= (1− dn)π

⇒ In = 2(1− dn)− 1 = (−1)dn

Since−(−1)dn = (−1)dn−1(−1)bn , we obtain−In = In−1(−1)bn , which implies (−1)bn =
−InIn−1.

(c) With q(t) = 1
2
for 0 ≤ t < Tb and h = 1

2
,

lim
t↑�Tb

s(t)

= lim
t↑�Tb

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+ πh

n−1∑
k=−∞

Ik + 2πhIn · q(t− nTb)

)

= lim
t↑�Tb

g(t− (�− 1)Tb) cos

(
2πfct + πh

�−2∑
k=−∞

Ik + 2πhI�−1 · q(t− (�− 1)Tb)

)

= cos

(
2πfc�Tb + πh

�−2∑
k=−∞

Ik + 2πhI�−1 · q(�Tb − (�− 1)Tb)

)

= cos

(
2πfc�Tb + πh

�−1∑
k=−∞

Ik

)
,

and

lim
t↓�Tb

s(t)

= lim
t↓�Tb

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+ πh

n−1∑
k=−∞

Ik + 2πhIn · q (t− nTb)

)

= lim
t↓�Tb

g(t− �Tb) cos

(
2πfct+ πh

�−1∑
k=−∞

Ik + 2πhI� · q(t− �Tb)

)

= cos

(
2πfc�Tb + πh

�−1∑
k=−∞

Ik + πhI�

)
.

Apparently, DPSK is not continuous in phase.

Note: It can be easily seen from Slide IDC2-81 that DPSK does not have phase-
continuity. Thus, the above proof is somewhat superfluous (and is just for your ref-
erence). Since {ak} is uniform i.i.d. when {bk} is uniform i.i.d., the PSD of binary
DPSK is the same as that of binary PSK, which decays at the speed of 1/f 2 only, an
anticipated result from its discontinuous phase.

3. For digital communications, we can ignore completely the waveforms and work on the
system design over the projections (i.e., over the signal constellation). Suppose a N -
dimensional constellation is constructed. A system designer chooses two constellation
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points s1 and s2 for binary transmission over the AWGN channel. The additive noise
vector n has the pdf

1

(2πσ2)N/2
exp{−‖n‖2/(2σ2)}.

(a) Find the optimal decision rule for the received vector x = s + n, where s is either s1
or s2 with equal probability.

Hint: MAP decision rule.

(b) Let s1 =

[√
Eb

0

]
and s2 =

[ √
Ebα√

Eb(1− α2)

]
as in Sample Problem 4 for Quiz 3. What

is the optimal decision rule.

(c) Derive the error probability of the optimal decision rule in (a).

Solution.

(a)

ŝMAP = max
m=1,2

1

(2πσ2)N/2
exp{−‖x− sm‖2/(2σ2)}

= min
m=1,2

‖x− sm‖2

Hence, ŝMAP = s1 if ‖x− s1‖2 ≤ ‖x− s2‖2, and ŝMAP = s2, otherwise. Derive

‖x− s1‖2 ≤ ‖x− s2‖2
⇔ ‖x‖2 + ‖s1‖2 − 2〈x, s1〉 ≤ ‖x‖2 + ‖s2‖2 − 2〈x, s2〉
⇔ ‖s1‖2 − ‖s2‖2 ≤ 2〈x, s1〉 − 2〈x, s2〉 = 2〈x, s1 − s2〉

Consequently, the optimal decision rule is

〈x, s1 − s2〉
s2 is trasmitted

≶
s1 is transmitted

‖s1‖2 − ‖s2‖2
2

Note: The boundary of the two decision regions is characterized by

〈x, s1 − s2〉 = ‖s1‖2 − ‖s2‖2
2

.

Note that the hyperplain
〈x, s1 − s2〉 = constant

is perpendicular to the line connecting the two points. Hence, the boundary is exactly
the perpendicular bisector of the two points.

(b) Since ‖s1‖2 = ‖s2‖2, and s1 − s2 =

[ √
Eb(1− α)

−√Eb(1− α2)

]
the optimal decision rule is

〈x, s1 − s2〉 = x1

√
Eb(1− α)− x2

√
Eb(1− α2)

s2 is trasmitted

≶
s1 is transmitted

0

(
⇔ 〈x, s1 − s2〉 ×

√
1− α2

(1− α)
√
Eb

= x1

√
1− α2 − x2(1 + α)

s2 is trasmitted

≶
s1 is transmitted

0

)
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(c) When s = s1, we have x = s1 + n and an erroneous decision is made if

〈s1 + n, s1 − s2〉 ≤ ‖s1‖2 − ‖s2‖2
2

≡ N � 〈n, s1 − s2〉 ≤ ‖s1‖2 − ‖s2‖2
2

− 〈s1, s1 − s2〉

= −1

2
‖s1 − s2‖2

Since N is zero-mean Gaussian distributed with variance

E[(〈n, s1 − s2〉)2] = E[(s1 − s2)
TnnT (s1 − s2)] = σ2‖s1 − s2‖2,

we derive

Pr

[
N ≤ −1

2
‖s1 − s2‖2

]
= Φ

(−1
2
‖s1 − s2‖2 − 0

σ‖s1 − s2‖
)

= Φ

(
−‖s1 − s2‖

2σ

)
.

On the other hand, when s = s2, we have x = s2 + n and an erroneous decision
is made if

〈s2 + n, s1 − s2〉 > ‖s1‖2 − ‖s2‖2
2

≡ N � 〈n, s1 − s2〉 >
‖s1‖2 − ‖s2‖2

2
− 〈s2, s1 − s2〉

=
1

2
‖s1 − s2‖2

We thus have

Pr

[
N >

1

2
‖s1 − s2‖2

]
= Pr

[
N < −1

2
‖s1 − s2‖2

]
= Φ

(
−‖s1 − s2‖

2σ

)
.

As a result, the overall decision error rate is

1

2︸︷︷︸
Pr(s=s1)

Φ

(
−‖s1 − s2‖

2σ

)
+

1

2︸︷︷︸
Pr(s=s2)

Φ

(
−‖s1 − s2‖

2σ

)
= Φ

(
−‖s1 − s2‖

2σ

)
.

Note: The optimal error is only a function of the distance of the two constellation
points, and is irrelevant to their locations.

4. (a) Continue from Problem 3. Suppose

x =



x1

x2

x3

x4


 , s1 =



s1,1
s1,2
0
0


 , s2 =




0
0
s2,3
s2,4


 , n =



n1

n2

n3

n4




are four dimensional vectors, and the receiver can only observe �21 � x2
1 + x2

2 and
�22 � x2

3 + x2
4. The receiver thus adopts the decision rule as:

�21

s2 is trasmitted

≶
s1 is transmitted

�22

What is the probability of erroneous decision?

Hint: The pdf of � �
√
n2
3 + n2

4 is �
σ2 e

− �2

2σ2 for � ≥ 0.
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(b) Subject to ‖s1‖2 + ‖s2‖2 = E, where E is constant, find the optimal power allocation
‖s1‖2 such that the error rate in (a) is minimized.

Solution.

(a) When s = s1, an erroneous decision is made if �21 ≤ �22. Thus, the error rate given
s = s1 is

Pr[�21 ≤ �22|s = s1] = Pr

(
x2
1 + x2

2 ≤ x2
3 + x2

4

)
with



x1 ∼ N (s1,1, σ

2)

x2 ∼ N (s1,2, σ
2)

x3 ∼ N (0, σ2)

x4 ∼ N (0, σ2)

= Pr

(
x2
1 + x2

2 ≤ �22

)
with



x1 ∼ N (s1,1, σ

2)

x2 ∼ N (s1,2, σ
2)

�2 Rayleigh with E[�22] = 2σ2

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

(x1−s1,1)
2

2σ2 e−
(x2−s1,2)

2

2σ2

(∫ ∞
√

x2
1+x2

2

�2
σ2

e−
�22
2σ2 d�2

)
dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

(x1−s1,1)
2

2σ2 e−
(x2−s1,2)

2

2σ2

(
e−

x21+x22
2σ2

)
dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

2x21−2s1,1x1+s21,1+2x22−2s1,2x2+s21,2

2σ2 dx1dx2

=
1

2
e−

(s21,1+s21,2)

4σ2

∫ ∞

−∞

∫ ∞

−∞

1

πσ2
e−

(x1− 1
2 s1,1)

2

σ2 e−
(x2− 1

2 s1,2)
2

σ2 dx1dx2

=
1

2
e−

(s21,1+s21,2)

4σ2 =
1

2
e−

‖s1‖2
4σ2 .

Similarly, when s = s2, the error rate given s = s2 is

1

2
e−

(s22,3+s22,4)

4σ2 =
1

2
e−

‖s2‖2
4σ2 .

As a result, the overall error rate is

1

4
e−

‖s1‖2
4σ2 +

1

4
e−

‖s2‖2
4σ2 .

(b)

arg min
0≤‖s1‖2≤E

(
1

4
e−

‖s1‖2
4σ2 +

1

4
e−

E−‖s1‖2
4σ2

)

= 4σ2 · arg min
0≤P1≤E1

(
e−P1 + e−(E1−P1)

)
(P1 =

‖s1‖2
4σ2

and E1 =
E

4σ2
)

Since e−P1+e−(E1−P1) is convex, equating its derivative to zero yields P ∗
1 = 1

2
E1, which

implies the optimal power allocation that minimizes the error rate is ‖s1‖2 = E
2
.
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