
Four corrections to the slides:

• Slide IDC2-39:

P (Ĩ2k error) = P (Ĩ2k correct)P (Ĩ2k−1 error)

+P (Ĩ2k error)P (Ĩ2k−1 correct)

should be

P (I2k error) = P (Ĩ2k correct)P (Ĩ2k−1 error)

+P (Ĩ2k error)P (Ĩ2k−1 correct)

• Slides IDC2-46 and IDC2-52:

sGMSK(t) =

√
2Eb

Tb

∞∑
�=0

[
a2�−1(t)·g(t− (2�− 1)Tb) · cos(2πfct)

−a2�(t)·g(t− 2�Tb) · sin(2πfct)
]

is better “symbolized” as

sGMSK(t) =

√
2Eb

Tb

∞∑
�=0

[
a2�−1(t)�g(t− (2�− 1)Tb) · cos(2πfct)

−a2�(t)�g(t− 2�Tb) · sin(2πfct)
]
,

where “�” is the convolution operation. You may refer to the following paper about how
GMSK is realized.

[1] Mitsuru Ishizuka and Kenkichi Hirade, “OptimumGaussian filter and deviated-frequency-
locking scheme for coherent detection of MSK,” IEEE Trans. Comm., vol. COM-28, no. 6,
pp. 850-857, June 1980.

• Slide IDC2-72: Remove “(coherent)”.

• Slide IDC2-74: Replace “coherent matched filter” with “quadratic receiver using matched
filter”.
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Sample Problems for the 3rd quiz

1. Prove the following statements.

(a) Find all solutions of real-valued x and h for the identity ejxπh = xejπh.

(b) Suppose In ∈ {±1}. Prove that {Jn �
∏n

k=0 Ik} is uniform i.i.d. if {Ik} is uniform
i.i.d.

(c) Suppose we have received

x =



x1
x2
x3
x4


 =



s1,k
s2,k
s3,k
s4,k




︸ ︷︷ ︸
sk

+



w1

w2

w3

w4




︸ ︷︷ ︸
w

,

where

s1,k
s2,k
s3,k
s4,k


 =



√
E
0
0
0




︸ ︷︷ ︸
k=1

or




0√
E
0
0




︸ ︷︷ ︸
k=2

or




0
0√
E
0




︸ ︷︷ ︸
k=3

or




0
0
0√
E




︸ ︷︷ ︸
k=4

with equal probability,

and w1, w2, w3 and w4 are zero-mean i.i.d. Gaussian with variance σ2. Under this
setting, the optimal decision rule is

decision = arg max
1≤k≤4

f(x|s).

Prove that we can simplify the decision rule to

decision = arg max
1≤k≤4

4∏
i=1

esi,kxi/σ
2

= arg max
1≤k≤4

exp

{
1

σ2

4∑
k=1

si,kxi

}
.

Note: This sub-problem is a supplement to Slide IDC2-66.

Solution.

(a) We first solve x. Since ejxπh = xejπh, we have |ejxπh| = |x| |ejπh|, which implies |x| = 1,
i.e., x = ±1. We next solve h. When x = 1, the identity holds for every real h. When
x = −1, we have

e−jπh = −ejπh ⇒
{
cos(πh) = − cos(πh)

− sin(πh) = − sin(πh)
⇒ h = ±(2�− 1)

2
for integer �.

Note: When h = ± (2�−1)
2

for integer �, the identity ejxπh = xejπh holds exactly for
two values of x, i.e., x = ±1. We can thus apply this identity in the design of binary
(digital) transmission as we have mentioned in class.
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(b) First, we note that

Pr(Jn = jn|J0 = j0, J1 = j1, . . . , Jn−1 = jn−1) = Pr(In = jnjn−1) =
1

2

remains equal to constant 1/2, regardless of the values of j0, j1, . . ., jn−1. Hence, Jn
is independent of J0, J1, . . ., Jn−1. Secondly, uniformity of Jn can be proved by

Pr(Jn = jn) =
∑

(j0,...,jn−1)∈{±1}n
Pr(J0 = j0, J1 = j1, . . . , Jn−1 = jn−1)

×Pr(Jn = jn|J0 = j0, J1 = j1, . . . , Jn−1 = jn−1)

=
∑

(j0,...,jn−1)∈{±1}n
Pr(J0 = j0, J1 = j1, . . . , Jn−1 = jn−1)× 1

2

=
1

2

∑
(j0,...,jn−1)∈{±1}n

Pr(J0 = j0, J1 = j1, . . . , Jn−1 = jn−1)

=
1

2

for jn ∈ {±1}.
Note: As long as {In} is uniform i.i.d., {Jn} is uniform i.i.d. Hence,

∑
n Ing(t− nT )

and
∑

n Jng(t − nT ) have exactly the same time-averaged PSD. This gives us the
freedom of using {Jn} in place of {In} in the communications system when necessary.
See Slide IDC2-41.

(c) Since w1, w2, w3 and w4 are independent, we have

f(x|sk) =
4∏

i=1

f(xi|si,k)

=
4∏

i=1

1√
2πσ2

exp

{
−(xi − si,k)

2

2σ2

}

=

(
1√
2πσ2

)4

exp

{
− 1

2σ2

4∑
i=1

(xi − si,k)
2

}

=
1

4π2σ4
exp

{
− 1

2σ2

( 4∑
i=1

x2i︸ ︷︷ ︸
irrelevant to k

−2

4∑
i=1

xisi,k +

4∑
i=1

s2i,k︸ ︷︷ ︸
=E for every k

)}

=
1

4π2σ4
exp

{
− 1

2σ2

( 4∑
i=1

x2i + E

)}
︸ ︷︷ ︸

irrelevant to k

exp

{
1

σ2

4∑
i=1

xisi,k

}

Hence, we can remove the multiplicative factor that is irrelevant to k and obtain

decision = arg max
1≤k≤4

f(x|s) = arg max
1≤k≤4

exp

{
1

σ2

4∑
i=1

xisi,k

}
.
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2. (This problem and the next problem will show you that the FSK formulation selected in the
very beginning will have a fundamental impact on the final design. Each FSK formulation
has its own advantage, and which one to use depends on the applications.)

Consider a binary FSK signaling scheme defined by

s(t) =
∞∑

k=−∞
g(t− kTb) cos

(
2πfct + Ik

πh

Tb
t

)
, (1)

where Ik ∈ {±1} and g(t) =

{
1, 0 ≤ t < Tb;

0, otherwsie
. Suppose f1 = 1.81 MHz and f2 = 1.79

MHz.

(a) Give an example of fc, h and Tb that satisfy (1). Is the value of fc unique? Is the
value of h unique? Is the value of Tb unique?

(b) If we require

(i) memorylessness,

(ii) phase continuity and

(iii) coherent orthogonality between two waveforms corresponding to f1 and f2 over
[nTb, (n+ 1)Tb) for all integers n,

what are the conditions for h and fcTb?

Hint: Discontinuity can only occur at t = nTb; thus, we require

lim
t↑nTb

s(t) = lim
t↓nTb

s(t)

for arbitrary In−1 and In and for arbitrary integer n.

(c) Check whether Sunde’s FSK described in Slide IDC2-4 fulfills the condition in (b).

(d) In modern communications, only fc � 1/Tb is guaranteed, while 2fcTb may not be an
integer. Also, coherent orthogonality is actually not as important as phase-continuity.
When only phase-continuity is required and 2fcTb is not an integer, what is the largest
transmission rate Rb (bits per second) attainable under the FSK formulation in (1)?

Solution.

(a)

cos

(
2πfct + Ik

πh

Tb
t

)
= cos

(
2π

[
fc + Ik

h

2Tb

]
t

)
,

implies that f1 = fc +
h

2Tb
and f2 = fc − h

2Tb
. Thus, summing and subtracting the two

above equations yield f1 + f2 = 2fc and f1 − f2 = h/Tb. As a result, fc = 1.8 MHz
is unique; but, we have h/Tb = 20 KHz, and hence, h and Tb can be adjusted (e.g.,
h = 1 and Tb = 50 µs).

Note: h/Tb is a constant. Hence, a smaller h gives a smaller Tb, which in turns gives
a higher transmission rate Rb = 1/Tb.
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(b) The FSK formulation in (1) guarantees a memoryless BFSK; hence, no constraint on
h and fcTb is devised from memoryless requirement.

For phase-continuity requirement, we observe that discontinuity can only occur
at t = nTb; thus, we require

lim
t↑nTb

s(t) = lim
t↓nTb

s(t).

Derive

lim
t↑nTb

s(t) = lim
t↑nTb

∞∑
k=−∞

g(t− kTb) cos

(
2πfct + Ik

πh

Tb
t

)
= cos (2πfcnTb + In−1πhn) (i.e., k = n− 1 when (n− 1)Tb ≤ t < nTb)

and

lim
t↓nTb

s(t) = s(nTb) =

∞∑
k=−∞

g(nTb − kTb) cos

(
2πfcnTb + Ik

πh

Tb
nTb

)
= cos (2πfcnTb + Inπhn) (i.e., k = n).

As a result, phase-continuity requires

(∀ In−1, In ∈ {±1}) cos (2πfcnTb + In−1πhn) = cos (2πfcnTb + Inπhn)

⇔ (∀ In−1, In ∈ {±1}) cos (2πfcnTb) cos (In−1πhn)− sin (2πfcnTb) sin (In−1πhn)

= cos (2πfcnTb) cos (Inπhn)− sin (2πfcnTb) sin (Inπhn)

for every integer n, which is equivalent to

sin(2πfcnTb) sin(πhn) = 0

for every integer n. A sufficient and necessary condition for phase continuity is

2πfcnTb mod π = 0 or πhn mod π = 0 for every integer n,

i.e.,
2fcTb is an integer or h is an integer.

With this condition in mind, coherent orthogonality requires∫ (n+1)Tb

nTb

cos

(
2πfct+

πh

Tb
t

)
cos

(
2πfct− πh

Tb
t

)
dt = 0

⇔
∫ (n+1)Tb

nTb

cos (4πfct) dt+

∫ (n+1)Tb

nTb

cos

(
2
πh

Tb
t

)
dt = 0

⇔ 1

4πfc
sin (4πfct)

∣∣∣∣(n+1)Tb

nTb

+
Tb
2πh

sin

(
2
πh

Tb
t

)∣∣∣∣(n+1)Tb

nTb

= 0

⇔ 1

4πfc
(sin(4πfc(n+ 1)Tb)− sin(4πfcnTb))

+
Tb
4πh

(sin(2πh(n + 1))− sin(2πhn)) = 0 for every integer n

⇔
{
sin(2πh(n+ 1)) = sin(2πhn), if 2fcTb integer

sin(4πfc(n+ 1)Tb) = sin(4πfcnTb), if h integer
for every integer n

⇔
{
2h integer, if 2fcTb integer

2fcTb integer, if h integer

5



To sum up, the three requirements dictate that both 2h and 2Tbfc are integers.

(c) In Sunde’s FSK, f1 = k/Tb and f2 = �/Tb are both multiples of 1/Tb. We confirm
that 2fcTb = (f1 + f2)Tb = k + � is an integer, and 2h = 2(f1 − f2)Tb = 2(k − �) is an
integer. Hence, the three requirements are all satisfied.

(d) As mentioned in the solution of (a), we shall make h as small as possible (in order
to approach the largest transmission rate). In the solution of (b), we obtain that
phase-continuity dictates

2fcTb is an integer or h is an integer.

As 2fcTb is not an integer, the smallest h attainable is h = 1. As such, h/Tb = hRb =
20 KHz implies Rb,max = 20/h = 20 Kbps.

Note: When fc � 1
Tb
, we have∫ (n+1)Tb

nTb

cos (4πfct) dt ≈ 0.

Thus, setting h = 1 still results in coherent near-orthogonality. As a result, at Rb = 20
Kbps, the FSK formulation in (1) can fulfill memorylessness, phase-continuity and
coherent near-orthogonality.

3. Consider a binary FSK signaling scheme defined by

s(t) =

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+

n−1∑
k=−∞

Ikπh+ Inπh

(
t− nTb
Tb

))
, (2)

where In ∈ {±1} and g(t) =

{
1, 0 ≤ t < Tb;

0, otherwsie
. Suppose f1 = 1.81 MHz and f2 = 1.79

MHz.

(a) Give an example of fc, h and Tb that satisfy (2). Is the value of fc unique? Is the
value of h unique? Is the value of Tb unique?

(b) If we require

(i) memorylessness,

(ii) phase continuity and

(iii) coherent orthogonality between two waveforms corresponding to f1 and f2 over
[nTb, (n+ 1)Tb) for all integers n,

what are the conditions for h and fcTb?

Hint: Discontinuity can only occur at t = nTb; thus, we require

lim
t↑nTb

s(t) = lim
t↓nTb

s(t)

for arbitrary In−1 and In and for arbitrary integer n.

(c) In modern communications, only fc � 1/Tb is guaranteed, while 2fcTb may not be an
integer. Also, coherent orthogonality is actually not as important as phase-continuity.
When only phase-continuity is required and 2fcTb is not an integer, what is the largest
transmission rate Rb (bits per second) attainable under the FSK formulation in (2)?
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Solution.

(a)

cos

(
2πfct+

n−1∑
k=−∞

Ikπh + Inπh

(
t− nTb
Tb

))

= cos

(
2π

[
fc + In

h

2Tb

]
t+

n−1∑
k=−∞

Ikπh− nInπh

)
,

implies that f1 = fc +
h

2Tb
and f2 = fc − h

2Tb
. Thus, summing and subtracting the two

above equations yield f1 + f2 = 2fc and f1 − f2 = h/Tb. As a result, fc = 1.8 MHz
is unique; but, we have h/Tb = 20 KHz, and hence, h and Tb can be adjusted (e.g.,
h = 1 and Tb = 50 µs).

(b) Memorylessness requires s(t) to be independent of {Ik}n−1
k=−∞ for nTb ≤ t < (n+ 1)Tb.

In this period of t, we have

s(t) = cos

(
2πfct +

n−1∑
k=−∞

Ikπh+ Inπh

(
t− nTb
Tb

))

= cos

(
2π

[
fc + In

h

2Tb

]
t+

n−1∑
k=−∞

Ikπh− Inπhn

)
.

Accordingly, memorylessness implies
(∑n−1

k=−∞ Ikπh
)
mod 2π = constant for arbitrary∑n−1

k=−∞ Ik, which gives that h must be an even integer.

For phase-continuity, we observe that discontinuity can only occur at t = �Tb;
thus, we require limt↑�Tb

s(t) = limt↓�Tb
s(t). Derive

lim
t↑�Tb

s(t)

= lim
t↑�Tb

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+

n−1∑
k=−∞

Ikπh+ Inπh

(
t− nTb
Tb

))

= cos

(
2πfc�Tb +

�−2∑
k=−∞

Ikπh + I�−1πh

(
�Tb − (�− 1)Tb

Tb

))
(i.e., n = �− 1)

= cos

(
2πfc�Tb +

�−1∑
k=−∞

Ikπh

)
,

and

lim
t↓�Tb

s(t) = s(�Tb)

=
∞∑

n=−∞
g(t− nTb) cos

(
2πfct+

n−1∑
k=−∞

Ikπh + Inπh

(
t− nTb
Tb

))∣∣∣∣∣
t=�Tb

= cos

(
2πfc�Tb +

�−1∑
k=−∞

Ikπh

)
(i.e., n = �).
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Thus, no condition is imposed upon h and fcTb from phase-continuity requirement.
(Note: This is an anticipated result because the formulation in (2) is a CPFSK sig-
naling scheme.)

From Slide IDC2-24, we obtain∫ (n+1)Tb

nTb

cos

(
2πfct +

n−1∑
k=−∞

Ikπh+ πh

(
t− nTb
Tb

))

cos

(
2πfct+

n−1∑
k=−∞

Ikπh− πh

(
t− nTb
Tb

))
dt = 0

⇔
∫ (n+1)Tb

nTb

cos

(
4πfct+ 2

n−1∑
k=−∞

Ikπh

)
dt+

∫ (n+1)Tb

nTb

cos

(
2πh

(
t− nTb
Tb

))
dt = 0

⇔ 1

4πfc

(
sin

(
4πfc(n+ 1)Tb + 2

n−1∑
k=−∞

Ikπh

)
− sin

(
4πfcnTb + 2

n−1∑
k=−∞

Ikπh

))

+
Tb
2πh

sin (2πh) = 0

Thus, if 2h is an integer, then coherent orthogonality requires sin (4πfc(n+ 1)Tb) =
sin (4πfcnTb), i.e., 2fcTb must be an integer.

To sum up, memorylessness, phase-continuity and coherent orthogonality can be
secured by setting both h/2 and 2fcTb to be an integer.

(c) Since phase-continuity is guaranteed straightforwardly by the formulation in (2), we
can make h arbitrarily small. Hence, Rb = 20/h Kbps can approach infinity (at the
price of coherent non-orthogonality).

Note: When fc � 1
Tb
, we have∫ (n+1)Tb

nTb

cos

(
4πfct+ 2

n−1∑
k=−∞

Ikπh

)
dt ≈ 0.

Thus, taking h = 1/2 doubles the transmission rate but still maintains coherent

orthogonality as 〈φ1(t), φ2(t)〉 = sin(2πh)
2πh

= sinc(2h) = 0. We can further increase
the transmission rate by making h smaller than 1/2 at the price of a higher error
performance due to coherent non-orthogonality.

For example, in the bluetooth standard, binary GFSK is adopted. The frequency
deviation range fd � (f1 − f2)/2 = f1 − fc = fc − f2 of the bluetooth standard is
between 140 KHz and 175 KHz. The symbol rate of 1 mega symbols per second
(Ms/s) corresponds to a data rate of 1 Mb/s, which results in the modulation index h

between 0.28 =
2fd,min

1/Tb
= 2×140 KHz

1Mbps
and 0.35 =

2fd,max

1/Tb
= 2×175 KHz

1Mbps
.

Note that at the bottom line of page 387, the textbook names the quantity h as the
deviation ratio. But usually, it is referred to as themodulation index (See Section 3.3-1
of the book Digital Communications by Proakis and Salehi, or see the bluetooth spec-
ification). In terminologies, fd is generally referred to as the peak frequency deviation
(or simply frequency deviation), and f1 − f2 = 2fd is called the frequency separation.
Also, in the textbook, the Gaussian filter in GMSK is truncated at t = ±2.5Tb; but in
Digital Communcations (bottom line of p. 118), the suggested truncation is perfomed
at t = ±1.5Tb. Thus, the truncation window is an engineering choice.
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4. Suppose we transmit either
√
Ebφ1(t) or

√
Ebφ2(t) with equal probability; however, φ1(t)

and φ2(t) are no longer orthogonal (perhaps due to setting modulation index h = 0.28 to
0.35). Let 〈φ1(t), φ1(t)〉 = 〈φ2(t), φ2(t)〉 = 1, and w(t) is the additive white Gaussian noise
process with two-sided PSD N0/2. Express the optimal error performance as a function of
〈φ1(t), φ2(t)〉, provided |〈φ1(t), φ2(t)〉| < 1.

Note: Here, all functions (i.e., φ1(t), φ2(t) and w(t)) are real-valued and the receiver knows
φ1(t) and φ2(t) and hence has the knowledge of 〈φ1(t), φ2(t)〉.
Solution. For convenience, denote α = 〈φ1(t), φ2(t)〉.
Based on the Gram-Schmidt procedure, we let ψ1(t) = φ1(t) and

ψ2(t) =
φ2(t)− 〈φ2(t), ψ1(t)〉ψ1(t)√

1− (〈φ1(t), φ2(t)〉)2
=
φ2(t)− αφ1(t)√

1− α2
.

Then, the transmitter transmits either
√
Ebψ1(t) or√

Ebαψ1(t) +
√
Eb(1− α2)ψ2(t).

The optimal receiver will perform[
x1
x2

]
=

[〈x(t), ψ1(t)〉
〈x(t), ψ2(t)〉

]
=

[√
Eb

0

]
or

[ √
Ebα√

Eb(1− α2)

]
+

[
w1

w2

]

where w1 and w2 are zero-mean independent Gaussian distributed with variance σ2 = N0

2
.

The optimal decision rule is

y =
√
1− α2x1 − (1 + α)x2

√
Ebφ2(t) is trasmitted

≶√
Ebφ1(t) is transmitted

0

Since
y =
(√

(1− α2)Eb or −
√

(1− α2)Eb

)
+ w

with w zero-mean Gaussian of variance (1 + α)N0, the error probability is equal to1

Φ

(
−
√

(1− α2)Eb

(1 + α)N0

)
= Φ

(
−
√

(1− α)
Eb

N0

)
.

Note: For CPFSK, 〈φ1(t), φ2(t)〉 = sinc(2h). Hence, the error rate, as a function of the
modulation index h, is

Φ

(
−
√

(1− sinc(2h))
Eb

N0

)
.

The performance loss, in comparison with orthogonal MSK, is −10 log10(1− sinc(2h)) dB.
For the bluetooth standard that adopts h = 0.28 to 0.35, the performance loss is around
2.53 dB to 4.34 dB (but we gain a better transmission rate).

1Recall that given y = ±√
Eb + w and w being zero-mean Gaussian distributed with variance σ2, the error

rate is Φ(−√Eb/σ2).
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