
Three corrections and one supplement to slides

• IDC1-67: si =

[
ak
√
E0

bk
√
E0

]
should be sk =

[
ak
√
E0

bk
√
E0

]
.

• IDC2-15:

S̄B = S̄B,gI + S̄B,gQ(f)

=
Eb

2Tb

[
δ

(
f − 1

2Tb

)
+ δ

(
f +

1

2Tb

)]
+

8Eb cos
2(πTbf)

π2(1− 42bf
2)2

should be

S̄B(f) = S̄B,gI (f) + S̄B,gQ(f)

=
Eb

2Tb

[
δ

(
f − 1

2Tb

)
+ δ

(
f +

1

2Tb

)]
+

8Eb cos
2(πTbf)

π2(1− 42bf
2)2

• IDC2-31: 

J2� sin

(
π

2

[(
t− 2�Tb

Tb

)
+ 2�

])
, In = 1

−J2� sin

(
π

2

[
−
(
t− 2�Tb

Tb

)
+ 2�+ 2

])
, In = −1

should be 

J2� sin

(
π

2

[(
t− 2�Tb

Tb

)
+ 2�

])
, In = 1

J2� sin

(
π

2

[
−
(
t− 2�Tb

Tb

)
+ 2�+ 2

])
, In = −1

• Sample Problem 1(c) for Quiz 1 & Slide IDC1-11: Without prior knowledge on the wide-
sense stationarity of s(t) and s̃(t), the general relation in autocorrelation functions are

Rss(t+ τ, t)

=
1

2
[Rxx(t + τ, t) +Ryy(t+ τ, t)] cos(2πfcτ)

+
1

2
[Rxx(t + τ, t)−Ryy(t + τ, t)] cos(2πfc(2t+ τ))

+
1

2
[Rxy(t+ τ, t)− Ryx(t + τ, t)] sin(2πfcτ)

−1

2
[Rxy(t + τ, t) +Ryx(t + τ, t)] sin(2πfc(2t+ τ))

As a result, all four cases below are possible.

i) s(t) WSS and s̃(t) WSS;

ii) s(t) WSS and s̃(t) non-WSS;

iii) s(t) non-WSS and s̃(t) WSS, and

iv) s(t) non-WSS and s̃(t) nonWSS,
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Examples for i) and iv) are either given or straightforward. Case iii) occurs when Rxx(τ) �=
0 for some τ but y(t) = 0, provided that s̃(t) = x(t) is real and WSS. A trivial example
for ii) can be constructed with fc = 0, under which s(t) = Re{s̃(t)} = x(t) can be
made WSS but s̃(t) = x(t) + jy(t) is not. Alternatively, we can set s̃(t) = e−j2πfct; then,
s(t) = Re{s̃(t)ej2πfct} = 0 is WSS but s̃(t) is definitely non-WSS.

Sample Problems for the 2nd Quiz

1. Denote the Hilbert transform operation and the Fourier transform operation by H{·} and
F{·}, respectively. The inverse transforms of both are denoted by adding superscript “−1”.
Note that the Hilbert transform is only defined for real-valued functions, while the Fourier
transform is generally operated over complex domain.

(a) Prove that if p̂(t) = H{p(t)}, then p̂(t) � h(t) = H{p(t) � h(t)}.
Hint: p̂(t) = H{p(t)} iff

(
jF{p̂(t)} =

)
jP̂ (f) =

{
P (f), f > 0

−P (f), f < 0

(
=

{
F{p(t)}, f > 0

−F{p(t)}, f < 0

)

(b) Prove p̂(t) = H{p(t)} is orthogonal to p(t) by using the identity:

〈g1(t), g2(t)〉 =
(∫ ∞

−∞
g1(t)g

∗
2(t)dt =

∫ ∞

−∞
G1(f)G

∗
2(f)df =

)
〈G1(f), G2(f)〉,

where G1(f) = F{g1(t)} and G2(f) = F{g2(t)}.
Hint: Use te hint in (a) and the fact that p(t) is real.

(c) Give P (f) = F{p(t)} as follows.

P (f)

f
�

�

����

����

����

����
21 30−1−2−3

1
2

1

Let

H(f) =

{
1, 2 < |f | < 3

0, otherwise

Plot jF{H{p(t) � h(t)}}.
Solution.

(a) From the hint, we know that p̂(t) � h(t)︸ ︷︷ ︸
ĝ(t)

= H{p(t) � h(t)︸ ︷︷ ︸
g(t)

} iff

jĜ(f) =

{
G(f), f > 0

−G(f), f < 0
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The above equality holds because

jĜ(f) = jP̂ (f)H(f) =

{
P (f)H(f), f > 0

−P (f)H(f), f < 0
=

{
G(f), f > 0

−G(f), f < 0

Note: A Hilbert transform pair remains a Hilbert transform pair after passing through
the same linear filter.

(b)

j〈p̂(t), p(t)〉 = j〈P̂ (f), P (f)〉
=

∫ ∞

−∞
jP̂ (f)P ∗(f)df

=

∫ 0

−∞
(−P (f))P ∗(f)df +

∫ ∞

0

P (f)P ∗(f)df

= −
∫ 0

−∞
|P (f)|2df +

∫ ∞

0

|P (f)|2df
= 0,

where the last equality holds because the the Fourier transform P (f) of real p(t) must
satisfy P (f) = P ∗(−f).

(c)

jF{H{p(t) � h(t)}}

f
�

�

����

����
21 30−1−2−3

1
2

1

2. Find F{sin(πt/T ) · 1[0 ≤ t < T )}, where

1[0 ≤ t < T ) =

{
1, 0 ≤ t < T

0, otherwise

is the set indicator function.

Hint: F{sin(2πf0t)} = 1
2j
(δ(f − f0)− δ(f + f0)) and

F{1[0 ≤ t < T )} = T sinc(Tf)e−jπfT

Solution.
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(a)

F{sin(πt/T ) · 1[0 ≤ t < T )}
=

1

2j

[
δ

(
f − 1

2T

)
− δ

(
f +

1

2T

)]
� T sinc(Tf)e−jπTf

=
1

2j

[
T sinc

(
T

(
f − 1

2T

))
e−jπT (f−1/2T ) − T sinc

(
T

(
f +

1

2T

))
e−jπT (f+1/2T )

]

=
Te−jπTf

2

(
sinc

(
Tf − 1

2

)
+ sinc

(
Tf +

1

2

))

=
Te−jπTf

2

(
sin(π(Tf − 1/2))

π(Tf − 1/2)
+

sin(π(Tf + 1/2))

π(Tf + 1/2)

)

=
Te−jπTf

2π

(− cos(πTf)

(Tf − 1/2)
+

cos(πTf)

(Tf + 1/2)

)

=
T cos(πTf)e−jπTf

2π

( −1

(Tf − 1/2)
+

1

(Tf + 1/2)

)

=
T cos(πTf)e−jπTf

2π

1

(1/4− T 2f 2)

=
2T cos(πTf)e−jπTf

π(1− 4T 2f 2)

3. Let

s(t) =
∞∑

k=−∞
Ik · g(t− kT ),

where {Ik}∞k=−∞ is a zero-mean, stationary, uncorrelated, complex-valued information se-
quence, i.e.,

E[IkI
∗
� ] =

{
σ2
I , k = �;

0, k �= �,

and g(t) is a complex pulse shaping function. Note that we do not require g(t) = 0 outside
[0, T ).

(a) Show that the autocorrelation function of s(t) is given by

Rss(t + τ, t) = σ2
I

∞∑
k=−∞

g(t+ τ − kT )g∗(t− kT ).

Hint:

Rss(t+ τ, t) = E

[( ∞∑
k=−∞

Ik · g(t+ τ − kT )

)( ∞∑
�=−∞

I� · g(t− �T )

)∗]

(b) Show that the time-averaged PSD of s(t) is equal to

S̄ss(f) =
σ2
I

T
|G(f)|2,

where

S̄ss(f) =

∫ ∞

−∞
R̄ss(τ)e

−j2πfτdτ and R̄ss(τ) =
1

T

∫ T

0

Rss(t+ τ, t)dt.
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(c) Find the time-averaged PSD of the ASK signal

s(t) =
∞∑

k=−∞
Ik · cos(2πfct) · π(t− kT ),

where {Ik}∞k=−∞ is a zero-mean, stationary, uncorrelated, complex-valued information
sequence, T is a multiple of 1/fc, and π(t) is a pulse shaping function with Fourier
transform Π(f).

Hint: Express s(t) as
∑∞

k=−∞ Ik · g(t − kT ) for some properly chosen g(t) and then
use the formula in (b).

Solutions.

(a)

Rss(t + τ, t) = E

[( ∞∑
k=−∞

Ik · g(t+ τ − kT )

)( ∞∑
�=−∞

I� · g(t− �T )

)∗]

=

∞∑
k=−∞

∞∑
�=−∞

E [IkI
∗
� ] · g(t+ τ − kT )g∗(t− �T )

= σ2
I

∞∑
k=−∞

g(t+ τ − kT )g∗(t− �T )
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(b)

S̄ss(f) =

∫ ∞

−∞
R̄ss(τ)e

−j2πfτdτ

=

∫ ∞

−∞

(
1

T

∫ T

0

Rss(t+ τ, t)dt

)
e−j2πfτdτ

=

∫ ∞

−∞

(
1

T

∫ T

0

[
σ2
I

∞∑
k=−∞

g(t+ τ − kT )g∗(t− kT )

]
dt

)
e−j2πfτdτ

=
σ2
I

T

∞∑
k=−∞

∫ T

0

(∫ ∞

−∞
g(t+ τ − kT )e−j2πfτdτ

)
g∗(t− kT )dt

(Let s = t + τ − kT .)

=
σ2
I

T

∞∑
k=−∞

∫ T

0

(∫ ∞

−∞
g(s)e−j2πf(s−t+kT )ds

)
g∗(t− kT )dt

=
σ2
I

T

∞∑
k=−∞

∫ T

0

(∫ ∞

−∞
g(s)e−j2πfsds

)
g∗(t− kT )ej2πf(t−kT )dt

=
σ2
I

T
G(f)

∞∑
k=−∞

∫ T

0

g∗(t− kT )ej2πf(t−kT )dt

(Let u = t− kT .)

=
σ2
I

T
G(f)

∞∑
k=−∞

∫ (1−k)T

−kT

g∗(u)ej2πfudt

=
σ2
I

T
G(f)

(∫ ∞

−∞
g(u)e−j2πfudt

)∗

=
σ2
I

T
G(f)G∗(f)

=
σ2
I

T
|G(f)|2

Note: For general zero-mean stationary uncorrelated complex {Ik} and complex g(t),

we have Sss(f) =
σ2
I

T
|G(f)|2.

(c) Since T is a multiple of 1/fc, we obtain

s(t) =
∞∑

k=−∞
Ik · cos(2πfct) · π(t− kT )

=

∞∑
k=−∞

Ik · cos(2πfc(t− kT )) · π(t− kT )︸ ︷︷ ︸
g(t−kT )

=

∞∑
k=−∞

Ik · g(t− kT )
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where g(t) = cos(2πfct) · π(t). It can be derived that

G(f) = F{cos(2πfct) · π(t)}
=

1

2
(δ(f − fc) + δ(f + fc)) � Π(f)

=
1

2
Π(f − fc) +

1

2
Π(f + fc).

Therefore,

S̄ss(f) =
σ2
I

4T
|Π(f − fc) + Π(f + fc)|2 .

Note: Setting fcT to be an integer makes easy the derivation of the (time-averaged)
PSD of s(t).

4. (a) Suppose the channel follows x(t) = s(t) + w(t), where s(t) is equal to either m1(t)
or m2(t) with equal probability, and w(t) is an additive noise. After the reception of
x(t), the detector performs “projection” onto φ(t)-axis, i.e.,

〈x(t), φ(t)〉︸ ︷︷ ︸
x

= 〈s(t), φ(t)︸ ︷︷ ︸
s

〉+ 〈w(t), φ(t)︸ ︷︷ ︸
w

〉,

where s is equal to either m1 = 〈m1(t), φ(t)〉 or m2 = 〈m2(t), φ(t)〉 with equal prob-
ability, and w is the noise with pdf f(w). Let m1 < m2. Assume f(w) is symmetric
with respect to w = w0 and is strictly decreasing for w > w0. Find the best decision
rule (in the sense of minimizing the detection error probability) about the transmitted
message (i.e., m1 or m2) based upon x.

(b) Suppose m1 = −d
2
, m2 = d

2
and w0 = 0. Let w be Gaussian distributed with mean

zero and variance σ2. Show that the error rate in (a) is

Φ

(
− d

2σ

)

where Φ(·) is the cdf of the standard normal.

Hint:

∫ r

−∞
N (µ, σ2) = Φ

(
r − µ

σ

)
Solution.

(a)

m̂ = argmax{Pr(x|m1),Pr(x|m2)}
= argmax{f(x−m1), f(x−m2)}

implies

x
m1

≶
m2

w0 +
(m1 +m2)

2
.
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Note: The optimal decision rule for m1 = −m2 and w0 = 0 is

x
m1

≶
m2

0.

Hence, the above simple rule remains optimal whenever the pdf of w peaks at zero and
is strictly decreasing for positive argument. If w does not have zero mean or m1 �=
−m2, then the threshold needs to be adjusted by the amount of the mid-point of s︸ ︷︷ ︸

(m1+m2)/2

and the median value︸ ︷︷ ︸
w0

of w.

(b)

Error rate = Pr

(
s = −d

2

)
Pr

(
x > 0

∣∣∣∣s = −d

2

)
+ Pr

(
s =

d

2

)
Pr

(
x < 0

∣∣∣∣s = d

2

)

=
1

2
Pr

(
s+ w > 0

∣∣∣∣s = −d

2

)
+

1

2
Pr

(
s+ w < 0

∣∣∣∣s = d

2

)

=
1

2
Pr

(
w >

d

2

)
+

1

2
Pr

(
w < −d

2

)

=
1

2
Pr

(
w < −d

2

)
+

1

2
Pr

(
w < −d

2

)
(By symmetry of the pdf of zero-mean Gaussian)

= Pr

(
w < −d

2

)

= Φ

(
−d

2
− 0

σ

)

= Φ

(
− d

2σ

)

Note: For IDC2-6, we have d =
√
Eb− (−√

Eb) = 2
√
Eb and σ2 = N0. Thus, the error

rate is

Φ

(
− d

2σ

)
= Φ

(
−2

√
Eb

2
√
N0

)
= Φ

(
−
√

Eb

N0

)
.

For IDC1-30, we have d = 2
√
Eb but σ

2 = N0

2
. Thus, the error rate

Φ

(
− d

2σ

)
= Φ

(
− 2

√
Eb

2
√

N0/2

)
= Φ

(
−
√

2
Eb

N0

)
.

For IDC1-62, we are given that σ2 = N0

2
for varying distances among different pairs

of constellation points; thus,

Φ

(
− d

2σ

)
= Φ

(
− d

2
√

N0/2

)
= Φ

(
− d√

2N0

)

is the basic form for each component.
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