
Sample problems for the 1st quiz

Corrections to slides

• I have sorted out the slides before the lectures, and now use φ2(t) = −
√

2
T
sin(2πfct)

throughouts. So, if you obtain a previous version, you may find some mismatches between
your slides and the slides I use in the lectures.

• Slide IDC1-11:

Rxx(τ)
cos(2πfct) + cos(2πfc(2t+ τ))

2
+Ryy(τ)

cos(2πfct)− cos(2πfc(2t+ τ))

2

−Rxy(τ)
sin(2πfc(2t + τ))− sin(2πfct)

2
− Ryx(τ)

sin(2πfc(2t+ τ)) + sin(2πfct)

2

should be replaced by

Rxx(τ)
cos(2πfcτ ) + cos(2πfc(2t+ τ))

2
+Ryy(τ)

cos(2πfcτ)− cos(2πfc(2t+ τ))

2

−Rxy(τ)
sin(2πfc(2t+ τ))− sin(2πfcτ)

2
− Ryx(τ)

sin(2πfc(2t+ τ)) + sin(2πfcτ)

2

• IDC1-34: Rs̃s̃(t + τ, τ) should be Rs̃s̃(t + τ, t).

• IDC1-38:


φ1 =

√
2
T
cos(2πfct)

φ2 = −
√

2
T
sin(2πfct)

should be


φ1(t) =

√
2
T
cos(2πfct)

φ2(t) = −
√

2
T
sin(2πfct)

• IDC1-40: In order to be consistent with the figures,

is now replaced by .

1. Answer the following questions.

(a) Which of the followings is ASK? Which is PSK? Which is FSK? Note that the digital
data to be transmitted here are 00, 11, 10, 01.

i.
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ii.

iii.

(b) Which of the following is the measuring unit for bandwidth efficiency?

i. bit/second/Hz

ii. bps

iii. Watt/Hz

(c) If the autocorrelation functions satisfy

Rxx(τ) = f(τ) and Ryy(τ) = f(τ) + 1

for some f(τ), can both

s̃(t) = x(t) + jy(t) and s(t) = x(t) cos(2πfct)− y(t) sin(2πfct)

wide-sense stationary? Justify your answer.

(d) Continue from (c). Given fc = 2, plot the spectrum of S(f) if S̃(f) is equal to

S̃(f) =

{
1− f, 0 ≤ f < 1;

0, otherwise.

Solution.

(a) (i) is FSK, (ii) is ASK, and (iii) is PSK.

(b) (i)

(c) No because Rxx(τ) must be equal to Ryy(τ). So, in this particular case, only one of
s̃(t) and s(t) can be wide-sense stationary.

(d)

�

�

�
�
�
�

�
�

�
�

20−2

1/2
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2. Below are two key identities for Fourier analysis.

g(t) � G(f) wordy summary

1.
g∗(t) � G∗(−f) conjugate in one domain
G∗(f) � g∗(−t) = conjugate & mirror in another document

2a. g(t)ej2πf0t � G(f − f0)
constant phase-increase in t-domain
=constant right shift in f -domain

2b. G(f)e−j2πft0 � g(t− t0)
constant phase-decrease in f -domain
=constant right shift in t-domain

Use the two identifies to prove the following properties of Fourier transform. Note that
“constant phase-increase” and “constant phase-decrease” are usually termed linear phase
in documents.

(a) g(t) is real iff G(f) is a conjugate even function.

(b) g(t) is pure imaginary iff G(f) is a conjugate odd function.

(c) G(f) is real iff g(t) is a conjugate even function.

(d) G(f) is pure imaginary iff g(t) is a conjugate odd function.

(e) g(t) is real and symmetric iff G(f) is real and symmetric.

(f) For the math relation between passband and baseband,

S(f) = F{s(t)} = F{Re[s̃(t)ej2πfct]} =
1

2
[S̃(f − fc) + S̃∗(−f − fc)].

(g) For the matched filter, F−1{G∗(f)e−j2πfT} = g∗(T − t).

Solution.

(a) g(t) real ⇐⇒ g(t) = g∗(t)
by 1.⇐⇒ G(f) = G∗(−f)

(b) g(t) imaginary ⇐⇒ g(t) = −g∗(t)
by 1.⇐⇒ G(f) = −G∗(−f)

(c) G(f) real ⇐⇒ G(f) = G∗(f)
by 1.⇐⇒ g(t) = g∗(−t)

(d) G(f) imaginary ⇐⇒ G(f) = −G∗(f)
by 1.⇐⇒ g(t) = −g∗(−t)

(e) g(t) is real and symmetric ⇐⇒ g(t) = g∗(t) = g∗(−t)
by 1.⇐⇒ G(f) = G∗(−f) = G∗(f)

3



(f)

S(f) = F{Re[s̃(t)ej2πfct]}
= F

{
1

2

[
s̃(t)ej2πfct + s̃∗(t)e−j2πfct

]}
(Remove non-linear Re{·} operation)

=
1

2
F {

s̃(t)ej2πfct
}
+

1

2
F {

s̃∗(t)e−j2πfct
}

(Exchange the order of linear “

∫
” and “+” operations.)

=
1

2
F {s̃(t)}|f→f−fc

+
1

2
F {s̃∗(t)}|f→f+fc

(By 2.)

=
1

2
S̃(f)

∣∣∣
f→f−fc

+
1

2
S̃∗(−f)

∣∣∣
f→f+fc

(By 1.)

=
1

2
S̃(f − fc) +

1

2
S̃∗(−(f + fc))

=
1

2
S̃(f − fc) +

1

2
S̃∗(−f − fc).

(g)

F−1{G∗(f)e−j2πfT} = F−1{G∗(f)}∣∣
t→t−T

(By 2.)

= g∗(−t)|t→t−T (By 1.)

= g∗(−(t− T ))

= g∗(T − t)

3. Define the inner product of two signals as

〈φ1(t), φ2(t)〉 �
∫ T

0

φ1(t)φ
∗
2(t)dt.

(a) Show that if fcT is an integer, then

φ1(t) =

√
2

T
cos(2πfct) and φ2(t) = −

√
2

T
sin

(
2πfc

(
t− T

2

))
for Offset QPSK are orthogonal.

(b) Show that if 2(f1 + f2)T and 2(f1 − f2)T are both integers, then

φ1(t) =

√
2

T
cos(2πf1t) and φ2(t) =

√
2

T
cos (2πf2t)

for FSK are orthogonal.

(c) Show that the projections of a zero-mean white noise process w(t) onto two or-
thonormal basis φ1(t) and φ2(t) are uncorrelated.

Hint: Rw(τ) = E[w(t+ τ)w∗(t)] = N0

2
δ(τ). In this sub-problem, w(t), φ1(t) and φ2(t)

are generally complex-valued functions.

Solution.
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(a)

〈φ1(t), φ2(t)〉

= −
∫ T

0

√
2

T
cos(2πfct)︸ ︷︷ ︸
φ1(t)

√
2

T
sin

(
2πfc

(
t− T

2

))
︸ ︷︷ ︸

φ2(t)

dt

= − 2

T

∫ T

0

cos(2πfct) sin (2πfct− πfcT ) dt

=




2

T

∫ T

0

cos(2πfct) sin (2πfct) dt, fcT odd

− 2

T

∫ T

0

cos(2πfct) sin (2πfct) dt, fcT even

= ± 1

T

∫ T

0

sin (4πfct) dt

= ±1− cos(4πfcT )

4πfcT
= 0.

(b)

〈φ1(t), φ2(t)〉
=

2

T

∫ T

0

cos(2πf1t) cos (2πf2t) dt

=
2

T

∫ T

0

cos(2π(f1 + f2)t) + cos(2π(f1 − f2)t)

2
dt

=
sin(2π(f1 + f2)T )

2π(f1 + f2)T
+

sin(2π(f1 − f2)T )

2π(f1 − f2)T
= 0

Note: The smallest positive integer (for 2(f1−f2)T to be equal to) is 1; as a result, the
minimum shift that makes φ1(t) and φ2(t) orthogonal is f1 − f2 =

1
2T
, which implies

f1 =
k+1
4T

and f2 =
k−1
4T

for integer k.

However, if both f1 and f2 are required to be multiples of 1
T
, then the smallest

positive integer that is equal to 2(f1− f2)T becomes 2; as a result, the minimum shift
that makes φ1(t) and φ2(t) orthogonal becomes f1 − f2 =

1
T
, which implies f1 =

k+2
4T

and f2 =
k−2
4T

for k = 2, 6, 10, . . . (cf. Slide IDC1-22).

(c) Let w1 = 〈w(t), φ1(t)〉 and w2 = 〈w(t), φ2(t)〉. By definition, w1 and w2 are uncorre-
lated if E[w1w

∗
2] = E[w1]E[w∗

2] = 0, where the last equality holds because w(t) is a
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zero-mean process. Hence, we derive

E[w1w2] = E [〈w(t), φ1(t)〉 · (〈w(t), φ2(t)〉)∗]
= E

[(∫ ∞

−∞
w(t)φ∗

1(t)dt

)
·
(∫ ∞

−∞
w(s)φ∗

2(s)ds

)∗]
=

∫ ∞

−∞

∫ ∞

−∞
E [w(t)w∗(s)]φ∗

1(t)φ2(s)dtds

=

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(t− s)φ∗

1(t)φ2(s)dtds

=
N0

2

∫ ∞

−∞
φ∗
1(t)φ2(t)dt

=
N0

2
〈φ2(t), φ1(t)〉

= 0

Note: If w(t) is also a Gaussian process, then the uncorrelatedness of w1 and w2

implies their independence.

4. Give

s̃(t) =

N∑
k=1

s̃k · φ̃k(t),

where {φ̃k(t)}Nk=1 are complex-valued orthonormal basis. Show that

‖s̃(t)‖2 = 〈s̃(t), s̃(t)〉
is equal to

∑N
k=1 |s̃k|2.

Hint: In parellel to Slide IDC1-20,

〈s̃k · φ̃k(t), s̃k′ · φ̃k′(t)〉 = s̃ks̃
∗
k′ · 〈φ̃k(t), φ̃k′(t)〉

when the inner product operation is extended to the complex domain.

Solution.

〈s̃(t), s̃(t)〉 =

〈
N∑
k=1

s̃k · φ̃k(t),
N∑

k′=1

s̃k′ · φ̃k′(t)

〉

=
N∑
k=1

N∑
k′=1

〈
s̃k · φ̃k(t), s̃k′ · φ̃k′(t)

〉

=
N∑
k=1

N∑
k′=1

s̃k(s̃k′)
∗ ·

〈
φ̃k(t), φ̃k′(t)

〉

=
N∑
k=1

s̃k(s̃k)
∗

=

N∑
k=1

|s̃k|2.
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5. Suppose s(t) = Re{s̃(t)ej2πfct}. Then, we have

S(f) =
1

2

[
S̃(f − fc) + S̃∗(−f − fc)

]
,

where S(f) and S̃(f) are respectively the Fourier transforms of s(t) and s̃(t).

(a) Is S̃(f) always real-valued? Is S(f) always real-valued? Justify your answer.

(b) Further assume that s̃(t) = x(t) with x(t) being a real-valued wide-sense stationary
(WSS) random process with Rxx(τ) �= 0 for some τ . Is s(t) a WSS random process?
Justify your answer.

(c) Continue from (b). Determine the time-averaged autocorrelation function R̄ss(τ) of
s(t) in (b), where

R̄ss(τ) := lim
W→∞

1

2W

∫ W

−W

Rss(t+ τ, t)dt,

and Rss(t + τ, t) := E[s(t+ τ)s(t)]. Show that

R̄ss(τ) =
1

2
Re

{
Rs̃s̃(τ)e

j2πfcτ
}
.

Hint:

lim
W→∞

1

2W

∫ W

−W

cos(2πfc(2t+ τ))dt = 0.

Solution.

(a) Both S̃(f) and S(f) are not necessarily real-valued. S̃(f) is real-valued if, and only
if, s̃∗(−t) = s̃(t), and S(f) is real-valued if, and only if, s∗(−t)

(
= s(−t)

)
= s(t).

(b)

Rss(t + τ, t) = E[s(t + τ)s(t)]

= E
[
Re

{
x(t + τ)ej2πfc(t+τ)

} · Re{x(t)ej2πfct}]
= E[x(t + τ)x(t)] cos(2πfc(t+ τ)) cos(2πfct)

(Because x(t + τ) and x(t) are real.)

= Rxx(τ) · 1
2
[cos(2πfc(2t+ τ)) + cos(2πfcτ)]

indicates that Rss(t + τ, t) is in general a function of both t and τ ; hence, s(t) is not
a WSS random process.

Note: Since s̃(t) = x(t) + jy(t) = x(t) is WSS and Ryy(τ) = 0 �= Rxx(τ) (as y(t) = 0),
s(t) cannot be WSS! Recall again that Rxx(τ) �= Ryy(τ) implies at least one of s(t)
and s̃(t) is not WSS.
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(c) It follows from the solution to (b) that

R̄ss(τ) = lim
W→∞

1

2W

∫ W

−W

Rss(t+ τ, t)dt

= Rxx(τ) · 1
2

[
lim

W→∞
1

2W

∫ W

−W

cos(2πfc(2t+ τ))dt

+ lim
W→∞

1

2W

∫ W

−W

cos(2πfcτ)dt

]
=

1

2
Rxx(τ) cos(2πfcτ)

=
1

2
Re

{
Rs̃s̃(τ)e

j2πfcτ
}
,

where the last step follows from Rs̃s̃(τ) = Rxx(τ).

Note: Even in a general non-WSS situation, we still have R̄ss(τ) =
1
2
Re

{
Rs̃s̃(τ)e

j2πfcτ
}

from the time-averaged perspective.

6. Suppose

si(t) =

{√
2E
T
cos

[
2πfct+ (2i− 1)π

4

]
, 0 ≤ t < T

0, elsewhere

where i = 1, 2, 3, 4, fcT is an integer, E is the transmitted energy per QPSK symbol, and
T is the symbol duration.

(a) Give the orthonormal basis 
φ1(t) =

√
2
T
cos(2πfct);

φ2(t) = −
√

2
T
sin(2πfct).

Determine si =

[〈si(t), φ1(t)〉
〈si(t), φ2(t)〉

]
.

(b) Suppose x(t) = s(t) + w(t), where w(t) is a zero-mean white Gaussian noise with
variance N0

2
. After performing projection onto φ1(t) and φ2(t), we obtain[

x1

x2

]
=

[
s1
s2

]
+

[
w1

w2

]
.

Under the assumptions that each of {si(t)}4i=1 was used with equal probability, we
obtain that the maximum likelihood (i.e., optimal) decision is given by

x1

−√
E/2

≶
+
√
E/2

0 and x2

−√
E/2

≶
+
√
E/2

0.

We thus derive from the decision rule that

P (s1 error) = P (s2 error) = Φ

(
−
√

2
Eb

N0

)
,
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where Φ(·) is the cdf of the standard normal random variable, and Eb = 1
2
E is the

equivalent transmitted energy per message bit.

Now suppose Gray labelling is adopted as

.

What is the error rate of the second message bit?

(c) Continue from (b). If we change to natural labelling as

,

what is the error rate of the second message bit?

Hint: [s1 error] and [s2 error] are independent events since w1 and w2 are independent
noises.

(a) From√
2E

T
cos

[
2πfct+ (2i− 1)

π

4

]
=

√
E cos((2i− 1)π

4
) ·

√
2
T
cos(2πfct)︸ ︷︷ ︸
φ1(t)

+
√
E sin((2i− 1)π

4
) ·

(
−
√

2
T
sin(2πfct)

)
︸ ︷︷ ︸

φ2(t)

,

we know si =

[√
E cos((2i− 1)π

4
)√

E sin((2i− 1)π
4
)

]
.

(b) Let the first bit and the second bit be denoted as b1 and b2, respectively. Denote the
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estimate of the two bits by b̂1 and b̂2. Then,

P (b2 error)

= P (b2 = 0)P (b̂2 = 1|b2 = 0) + P (b2 = 1)P (b̂2 = 0|b2 = 1)

= P (b̂2 = 1 ∧ b2 = 0) + P (b̂2 = 0 ∧ b2 = 1)

= P (ŝ2 = −
√

E/2 ∧ s2 =
√

E/2) + P (ŝ2 =
√
E/2 ∧ s2 = −

√
E/2)

= P (s2 error) (I.e., P (ŝ2 �= s2))

= Φ

(
−
√

2
Eb

N0

)

(c)

P (b2 error)

= P (b2 = 0)P (b̂2 = 1|b2 = 0) + P (b2 = 1)P (b̂2 = 0|b2 = 1)

= P (b̂2 = 1 ∧ b2 = 0) + P (b̂2 = 0 ∧ b2 = 1)

= P (ŝ1ŝ2 = E/2 ∧ s1s2 = −E/2) + P (ŝ1ŝ2 = −E/2 ∧ s1s2 = E/2)

= P (s1 correct ∧ s2 error ∧ s1s2 = −E/2) + P (s1 error ∧ s2 correct ∧ s1s2 = −E/2)

+ P (s1 correct ∧ s2 error ∧ s1s2 = E/2) + P (s1 error ∧ s2 correct ∧ s1s2 = E/2)

= P (s1 correct ∧ s2 error) + P (s1 error ∧ s2 correct)

= P (s1 correct)P (s2 error) + P (s1 error)P (s2 correct) (They are independent events.)

= 2Φ

(
−
√

2
Eb

N0

)[
1− Φ

(
−
√

2
Eb

N0

)]

Note: Although the BER of the second message bit for natural labelling (in (c)) is
always worse than that for Gray labelling (in (b)), the error rate of the first message
bit is the same for (b) and (c). Also, the symbol error rates of (b) and (c) are identical
(since symbol error rate has nothing to do with bit labelling).

7. The time-averaged power spectrum density of the M-ary PSK signaling scheme is given by
2E · sinc2(fT ), where E is the symbol energy and T is the symbol period.

(a) Find the null-to-null bandwidth.

(b) Find the bandwidth efficiency based on null-to-null bandwidth.

Solution.

(a) 2
T
.

(b) 1
2
log2(M) (cf. Slide IDC1-65)
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