
• Sample Problem 1 for Quiz 8: Here we provide the detail derivation of the power of the
noise term for your reference, i.e.,
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• There will be five problems in the second midterm. At least four of them will come from
the sample problems for Quizzes 5, 6, 7, 8 and Midterm 2.

Additional Sample Problems for Midterm 2

1. Which of the following codes are prefix codes? Which of the following codeword lengths
satisfy the Kraft-McMillan inequality? Let the three codewords respectively correspond to
A, B and C. Decode 1110010010100 if the code is a prefix code.

(a) {1, 0, 00}.
(b) {1, 01, 00}.
(c) {1, 10, 00}.
Solution.

(a) Codeword 0 is the prefix of codeword 00. Hence, it is not a prefix code. Its codeword
lengths (i.e., 1, 1 and 2) do not satisfy the Kraft-McMillan inequality because 2−1 +
2−1 + 2−2 = 5

4
> 1.
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(b) No codewords are prefixes of other codewords (the code can form a tree with all code-
words on leaves); hence, it is a prefix code. It must satisfy the Kraft-McMillan inequal-
ity. We can uniquely decode the sequence 1110010010100 as (1, 1, 1, 00, 1, 00, 1, 01, 00) =
AAACACABC.

(c) Codeword 1 is the prefix of codeword 10. Hence, it is not a prefix code. Its codeword
lengths (i.e., 1, 2 and 2) satisfy the Kraft-McMillan inequality because 2−1+2−2+2−2 =
1> 1==.

2. (a) Give a binary prefix code, of which the longest codeword is 3 and which equates the
Kraft-McMillan inequality.

(b) Determine the largest code size among all binary prefix codes that satisfy the require-
ment in (a).

Solution.

(a) Let nj be the number of codewords of length j. Then, equality of the Kraft-McMillan
inequality requires a saturated binary tree, i.e.,

n1 · 22 + n2 · 2 + n3 = 23, (1)

where 0 ≤ n1 < 2, 0 ≤ n2 < 4 and 2 ≤ n3 ≤ 8. Note that n1 cannot be equal to 2
(similarly, n2 cannot be equal to 4) because otherwise the tree cannot have codewords
of length 3. The below table then lists all possible values of (n1, n2, n3) that satisfies
(1).

n1 1 1 0 0 0 0
n2 1 0 3 2 1 0
n3 2 4 2 4 6 8

code size 4 5 5 6 7 8

Thus, a quick example is {000, 001, 010, 011, 100, 101, 110, 111}.
(b) The code size is equal to n1 + n2 + n3. Thus the table in the solution of (a) indicates

that the largest code size is 23 = 8.

3. Prove that the entropy of a discrete random variable X satisfies the following inequalities.
Also, give the necessary and sufficient condition under which equality holds.

(a) H(X) ≥ 0

(b) H(X) ≤ log2(K), where K is the size of the support of X (i.e., X only takes on K
possible values).

Solution. See Slides IDC 6-17 and 6-18.
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4. (Not a part of the exam but only for your reference) Prove that the function defined over
p ∈ [0, 1] and satisfying three axioms listed below must be of the form:

I(p) = −c · logb(p),

where c is a positive constant and the base b of the logarithm is any number larger than
one.

i) I(p) is monotonically decreasing in p;

ii) I(p1 × p2) = I(p1) + I(p2);

iii) I(p) is a continuous function of p for 0 ≤ p ≤ 1;

Proof.

Step 1: Claim. For integer value of n = 1, 2, 3, . . .,
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where c > 0 is a constant.

Proof: First note that for n = 1, Axiom ii) directly verifies the claim since it yields
that I(1) = I(1) + I(1). Thus I(1) = 0 = −c logb(1).

Now let n be a fixed positive integer greater than 1. Axioms i) and ii) respectively
imply
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where n,m = 1, 2, 3, · · · . Now using (3), we can show by induction on k that
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for all non-negative integers k.

Now for any positive integer r, there exists a non-negative integer k such that
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Hence, since I( 1
n
) > I(1) = 0,
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On the other hand, by the monotonicity of the logarithm, we obtain
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Since n is fixed, and r can be made arbitrarily large, we can let r → ∞ to get:

I
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where c = I(1/2)/ logb(2) > 0. This completes the proof of the claim.

Step 2: Claim. I(p) = −c · logb(p) for positive rational number p, where c > 0 is a
constant.

Proof: A positive rational number p can be represented by a ratio of two integers, i.e.,
p = r/s, where r and s are both positive integers. Then Axiom ii) yields that
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which, from Step 1, implies that
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= c · logb s− c · logb r = −c · logb p.

Step 3: For any p ∈ [0, 1], it follows by continuity and the density of the rationals in the
reals that

I(p) = lim
a↑p, a rational

I(a) = lim
b↓p, b rational

I(b) = −c · logb(p).

4


