Corrections to slides and a reminder for midterm 1

e Slide IDC3-35:
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e Slide IDC3-36:
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e Slide IDC3-37: Z Pr = P shall be replaced by Z Pr=P.
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e Slide IDC3-45: “of length N + v” shall be replaced by “of length v/”.

e Slide IDC3-53:
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shall be replaced by



e Note that the sample problems for the first four quizzes will be a key part of the first
midterm.

Additional Six Sample Problems for Midterm 1

1. From Slide IDC2-85, we learn that the error rate for binary DPSK is %e_E/@"Q), where
0'2 = N0/2

Suppose we now have three independent channels, each of which uses binary DPSK
transmissions. The receiver will use the majority rule to make the final decision, i.e., if two
or more “+1” are reported, then “+1” will be the final decision; otherwise, “—1" is the
final decision. By this design, the error rate will be
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where E = (Eb EQ, Eg)

(a) Subject to By + Es + E3 = E > 0, we wish to find the optimal power allocation that
minimizes P.(E), i.e.,

E° = argmin P,(E),
E€Q

where
Q£ {(Ey, Es, E5) : E; € R for i =1,2,3, and Ey + E» + E3 = E}
and RT is the set of non-negative real numbers. Define
F(E,\) = PAE) + \(E — Ey — Ey — E).
Does the following equation hold:

min P.(E) = min f(E, \)?
EcQ EcQ
Justify your answer.
(b) Show that E* that minimizes f(E,\) over E € (RT)3 must satisfy
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(c) Let 07 = 02 = 1 and 03 = 3. Does the best power allocation E} in (b) positive for
1 =1,2,37 Justify your answer.

(d) Continue from (c). Does Ef = E5 = £ and Ej = 0 satisfy the optimality condition
in (b) for some A?

(e) Continue from (c). Does Ef = E3 = £ and Ej = 0 minimize P.(E) among all E € Q?
Justify your answer.

Solution.

(a) Yes because P,(E) = f(E,\) for every E € Q.
(b) Taking the derivatives of f(E,\) with respective to Ey yields

(BN 1 poee

. = —E2/(203) ,—E3/(20%)
OE 1607 ¢ e
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L ey | (1 Bareed) | (1 _ Esieed) || _ )
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O2f(E,\) L e . 2
3 _ - (207) 1—(1— —E2/(203) 1 — —E3/(20%) > 0.
OE? 1601° ‘ ‘

and

This shows that f (E ,A) is convex with respect to F; and hence the optimal power
allocation should satisfy

_ L emead || (1 - emread ) (1 gmsieod) | Z ) [T 0 ET>0:
802 >0, if Bf =0,

Equivalently,

_ 2 ; * .
o Eie) |1 _ (1 _ g mieed) (1 _ pmieep || ) = 8o1A HEET>0;
< 802\, if Bf =0,
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We can similarly obtain

_ 2 : * .
o3 /20}) [1 - (1 _ e—&/@a%)) <1 _ e—wm@ﬂ = 8o, B >0

and

_ 2 ; * .
o~ F3/(203) [1 _ (1 _ 6—&/(%%)) (1 _ 6—@/(%5))} = —8o3A, if E5 > 0;
< 802\, if B} = 0.

(c) Suppose Ef >0 fori=1,2,3. Let A* = e Fi/(20) Then, we must have

A1 — (1 — A3)(1 — A3)] = —802A= —8)\
A3l — (1 — AD)(1 — A5)] = —802A= —8)\
A3l — (1 — AD)(1 — A3)] = —802A= —24)

Then, we shall find a feasible solution of A}, A} and Aj lying in (0, 1]. Let A} = A} =
A* and derive

—24)\ = 3A%[1 — (1 — A")(1 — A)] = A3[1 — (1 — A*)?]
= A*(BA* 4 A5 — 24" A =0
= (A" —0.5)(A; —1.5) = 0.75

0.75

= 0>A">—-1land 0 < A" <0.5,

which implies one of Ef, E and Ej must be zero.
Note: Taking Af =1 (i.e., £ = 0) yields

—24\=34*>1— (1 - A")? = A" (A" +1) > 0.

Hence, any A* in (0, 1] satisfy the above inequality.
d) With Ef = B3 = £ and EX = 0, the optimality condition becomes
1 2 2 3

e B/t = _8)\

e B/ = 8\

1— (1—e 247 < 24\
It is clear that we can set A = —%G_E /4 and this \ trivially satisfies the third condition
because

1— (1—e B <3e P —1 < P/



(e) Yes because with A = —Le #/4)

i

Nl
Nlis

,0) < min P,(E) = min f(E,\) < min f(E,\) = f(£,
EcQ EeQ Ee(RT)?

Nl

707)‘):][(%7

Sl

) , O) .
Note: This is an extension of the derivation in Slides IDC3-35~IDC3-37, which results
in the famous water filling principle. Such derivation is based on the following general
Lagrange argument:

For given Q C R* and f(z), Lagrange defines f,(x) such that f\(z) = f(z) for
all x € Q. Then, Lagrange claims that:

I max flz) = max flz) < max fi(z) = fa(a3)
2. If (3N) x5 € Q, then fr(z}) = f(a3) < max f(z) < fa(z}); hence, max f(x) =
fa(ay) = f(x3)

2. For discrete multitones described in Slide IDC3-40 with N = 4 and v = 1, the input-output
relation can be described as

x[3] 1 hy 0 0] [s[3 wl3]
z[2] 0 1 hy O0f [s]2] w|2]

T T o 0 1 hy| s T {wy)| T e -
x[0] hy 0 0 1] |s[0] wl0]

(a) Find the diagonal matrix A such that Heean: = QTAQ, where

s I LA LA | - -1 4 1

Ll fe B e eum o1l 1|1 1 S1 1
@_5 e i3T emim edizm 1| 2|5 -1 —j 1
1 1 1 1 1 1 1 1

Hint: QHrcuwant = AQ and note that A is a function of h;.

(b) Now if we transform the system to
X (=Qzx=AQs+Qw) =AS+W.

Determine the four transmission symbols s corresponding to

—1 —1 —1 —1
|1 -1 +1 -1
S = BT RN Y R and 1
—1 +1 +1 +1

Hint: s = QfS.



Solution.

(a) From @Hcirculant = A@, we obtain

i —1 j 111 h 0 0 N 0 0 07— -1 4 1
-1 1 -1 1 0 1 hy O - 0 X 0 O -1 1 -1 1
i -1 —j 1| ]lo 0o 1 0 0 A O] |j -1 —j 1
| 1 1 1 1 hi 0 O 1 0 0 0 X 1 1 1 1
)\3:1+jh1
A=1—hy
=
A =1 jhy
\)\0:1+h1

Note: From (a), it is apparent that Az, Ay, A\; and Ag are all functions of hy. Thus,
we need not to separately estimate each of them, nor to estimate all of them. As
an example, we can fix S[2] = —1 as a pilot tone for the estimation of hy (i.e., \a),
and use S[3], S[1] and S[0] to carry information. This provides another advantage of
discrete multitones.

Please note that N is usually much larger than v (e.g., N = 4 > v = 1 in this
problem; a specific example is for WLAN, NT, = 3.2us, while vT; = 0.8us for long

guard-interval (GI) and vTy = 0.4us for short GI), and A\, g, ..., Ay are only a
function of hy, ..., h,. So, in principle, it suffices to place v pilot tones for the
determination of hq, ..., h, if the noise is nullified.
By
g -1 =1
1{-1 1 -1 1
Tyl -1 o1
1 1 1 1
we obtain
S s S s S s S s
-1 0 -1 1—7 -1 0 —1 1
—1 0 -1 0 +1 2 -1 1
1 0 +1) | |14 ~1| | |0 ~1 1
-1 —2 +1 0 +1 0 +1 -1

Note: After performing discrete Fourier transform (DFT), the equally distributed
transmission powers of the four components can be “concentrated” into one com-
ment. For example, S = [—1,—1,...,—1] (of length N) will be transformed to
s =[0,0,0, —N]. This causes a problem in the transmission of s because the trans-
mitter must have the capability to emit a very large signal with amplitude N. How



to reduce the peak-to-average power ratio of the DF'T signal, therefore, becomes a
practically important research topic.

3. Below are two non-coherent receivers. Are the two (yr,yg) pairs respectively obtained by
the two quadratic receivers below identical? Justify your answer.

T yr y? Filter matched yr y?
/ dt  — ( )2 : to cos(2x fit) —\—- ( )2 L
0 0<t<T
¢ cos(2n fit) £ )
0 Or = 0 V2 | &
T YQ 7 2
dt  |— 2 Filter matched Yo Y,
% ./ﬂ O to sin(2x fit) —\—' ( )2 il
sin(2w f;t) -l

Solution. For the structure on the left, it is clear that

T T
Yy = / x(t) cos(2mfot)dt and yo = / x(t) sin(2m f.t)dt.
0 0
For the structure on the right, the impulse response of the two filters are
hi(T) =cos2nfi(T — 7)) - 1{0 <7 < T} and hg(r) =sin(2n f;(T — 7)) - 1{0 < 7 < T},

which implies the two inputs of the samplers should be equal to

/00 x(T)h(t — 7)dT = /00 x(r)cos2nfi(T — (t —7))) - {0 <t —7 < T}dr

oo —0o0

and

/00 z(T)ho(t — 7)dr = /00 () sin2r f;(T — (t —71))) - 1{0 <t — 7 < T}dr.

oo —0o0

Accordingly, sampling at time ¢t = T gives

yI:/o x(7) cos(2m f;(T — (T—T)))dT:/O x(7) cos(2m f;T)dT

and
Yo = /o o(7)sin2r fiy(T — (T — 7)))dr = /o x(7) sin(27 fi7)dT.

Thus, the two (yr,yg) pairs respectively obtained by the two receivers are identical.



(a) Suppose the transmitter uses binary FSK signaling scheme, where f; and fy denote

the two frequencies for information bits 0 and 1, respectively. Let f; and f; be a
multiple of 1/T', and let z(t) = /2E cos(2m fit + 6) + w(t), where w(t) is a zero-mean
additive white Gaussian noise process with one-sided power spectrum density V.

For the quadratic receiver below, represent 1, g1, 72 and ¢, in terms of F,
0, wy, wy, wz and wy, where

wy = /Tw(t) 4/ % cos(2mfit)dt, wy = /Tw(t) 4/ % sin(27 fit)dt
0 0
r /2 r /2
wy = / w(t) - T cos(2mfot)dt, w4 = / w(t) - T sin (27 fot )dt.
0 0

T rra 71
f dt F—>{ Squarer
0

and

Zcos(2m fit) 2

T Q1 o1
f dt > Squarer
0

- y/3sin@nit)

T 12 T7o
f dt —>{ Squarer
0

2 cos(2r fot) @

T Q2
f dt > Squarer
0

\/g sin(27 fot)

(b) Prove that w; and wq are independent.

Hint: By definition of zero-mean Gaussian random process w(t), the projections w;
and wy are two dimensional zero-mean Gaussian random variables. Thus, w; and w»
are independent if, and only if, E[wjwsy] = Efw;]Ews] = 0.

Solution.



(a) (zg1 and zq o are corrected, as indicating in color red.)

T = /OT ( % cos(2m fit + 0) + w(t)) \/gcos(Qﬂflt)dt

- g /OT 2 cos(2m f1t + 0) cos(2m f1t)dt + /OT w(t) \/%cos(%rﬁt)dt

T
= g /0 [cos(4m f1t + 0) + cos(0)]dt + w,

= VEcos() + w,

To1 = /OT < % COS(27Tf1t + 0) + w(t)) \/%Siﬂ(?ﬂflt)dt

VE [T . 4 [2 .
= — ™1 9 {27 1 d — SIN( &7 [ d
= /O 2 cos(2m fit + ) sin(2 ft)t+/0 w(t) TS (27 fat)dt

— g /OT[sin(47rf1t + 0)—sin(0)]dt + wy

= —VEsin(6) + w,

Tra = /OT ( /? cos(2m fit +6) + w(t)) \/%cos(%rfgt)dt

T T
_ g /0 2 cos(2r fut + 0) cos(2 fot )t + /0 w(t)\/%cos@wfgt)dt

- g /OT[COS(27T(f1 + fo)t +0) + cos(2m(fy — fo)t + 0)]dt + ws

= w3

Tgo = /0 <\ / ? cos(2mfit +6) + w(t)) \/gsin(%rfgt)dt

2 cos(2m f1t + 0) sin(27 fot)dt + /T w(t) \/gsin(%rfgt)dt
0

T
= /0 [sin(27(fo + f1)t + 0) + sin(27w(fo — f1)t—0)]dt + wy



Elwiws] = E < /OTw(t)-\/%cos(zwflt)dt> < /OTw(s)-\/gsin(wals)ds>]
_ % /0 ' /0 "B [w(t)w(s)] cos(2n fuf) sin(2x fus)] dids
_ % /0 ' OT %5@-s)cos(zwflt)sin(zwfls)dtds
_ % /O " con(2r 1) sin(2n fu5)ds
_ % /O " in(dr fus)ds
= 0

Note: We can similarly prove wq, ws, w3 and w, are independent.

5. Below is the functional diagram of the V.32 16-QAM Hybrid amplitude/phase modulation
scheme:

Quadrant code: 10 | Quadrant code: 11
@2

. ;
T S
011 1001 1110 1M1

Least significant bit Q4,n 44' . a2l . . 7
Q3 5 | @, x-coordinate of 16QAM 1,0110 1 OPO 13 00 1 ,1 01 G
0 B xgp.:: PR I P .
2n ——{  Table- - |, b, y-coordinate of 16QAM mdiol . -
. ) lookup I, e ; m 0000 | 0100 01 w
Most significantbit @1n —|  ROM " 3 3
3 !
L4 _IL.J S (Zie Doy Dhase change :’ “ ;3d.i'2_ z i
el [F1n Quadrant code T 90 «_ 0011 _@010[ 0101 0111,
_._ 0 1 0 !
Differential Encoder 11 (]) ?8 e T,
(T = symbol period) ! Quadrant code: 00 Quadrant code: 01

(a) Assume I; _; = I 1 = 1. Give the sequence of 16QQAM symbols (indicated by their
coordinates) corresponding to

(Q1,0Q2,0Q3,0Q4,0 Q1,1Q2,1Q3,1Q 4,1 Q1,2Q2,2Q32Q42) = (10011010 0000)
(b) Suppose there is a 30° phase difference between the transmitter and the receiver, i.e.,
|:0Jreceive:| _ @ _% |:atransmit:|
breceive 1 V3 btransmit .
2 2

10



By using the nearest Euclidean distance criterion, recover the transmitted infor-

mation sequence (Q1,0Q2,0Q3,00Q41,0 @Q1,10Q21Q310Q41 Q1,2Q220Q32Q42) from the rotated
16QAM symbols.

Hint: The nearest Euclidean distance decision can be made separately on z-axis and
y-axis over the 16QAM constellation with thresholds —2, 0 and 2.

(¢) Re-do (b) if the phase difference between the transmitter and the receiver is changed
to 90° phase difference, i.e.,

|:areceive:| _ |:0 - 1:| |:atransmit:|
breceive 1 0 btransmit .
Solution.

(a)

n ‘ Ly1lon1 Qi1nQ2, phasechange I1,l5, Q3,Qs, 16QAM symbol n
0 11 10 180 00 01 (—3,—1)

1 00 10 180 11 10 (1,3)

2 11 00 90 10 00 (-1,1)

—3v/3+1 V3 1 V3-3 V3 1
2 2 2| |3 -3 2 2 2| |1 —1
—3-V3 1 V3| -1 -3’ 143V/3 1 V3113 317
2 2 2 2 2 2
and
—V/3+1 V31 1 1
2 _ |2 2| |7 |
—1+v3 1 V3 [ 1 } { 1 } .
2 2 2
Therefore,
n ‘ 16QAM symbol n I ,1s,, Q3,Qsn Ilin-1l2,—1 phase change 1,02,
0 (—3,-3) 00 11 11 180 10
1 (—1,3) 10 01 00 270 11
2 (—=1,1) 10 00 10 0 01
and

(Q1,0Q2,0Q3,0@4,0@1,1Qz,lQ3,1Q4,1Q1,1Q2,1Q3,1Q4,1) = (10111101 0100)

where the red-color numbers indicate the errors during transmission.

Note: So, a 30° phase difference, if not being calibrated to zero, causes many trans-
mission errors in both Qi ,Q2,, and Qs ,Q4,, positions.

11



and
—1] _o —1][-1] _, [
-1 |1 0 1 —1
Therefore,
n | 16QAM symbol n L1 ,l, Q3nQin Iin-1l5,-1 phase change @Q1,Q2,
0 1,-3) 01 01 11 270 11
1 (=3,1) 10 10 01 180 10
2 (—1,-1) 00 00 10 90 00
and

(Q1,0Q2,0Q3,0Q4,0Q1,1Q2,1Q3,1Q4,1Q1,1Q2,1Q3,1Q4,1) = (11011010 0000)

where red-color numbers indicate the errors during transmission.

Note: So, a 90° phase difference, if not being calibrated to zero, causes no transmis-
sion errors in Q3 ,Q4,, positions, and also causes no transmission errors in Q)1 ,Q2.
positions except the very first one (unless we properly adjust I; 115 ;1 to 10).

6. The functional blocks of the transmitter and the receiver of a DPSK signaling scheme is
given as follows:

dr = dr—1 D by ar = —(—1)%

D e
k-1 H

Delay 5: 2
T, '\ 1T, cos(2m fet)

0, dp,=1

Transmitted phase =
P T, d;‘; =10

12



(a)

f.);r_:O
Y =& pm1bk +Top-1%0, S 0

T X1k My =1
@ / dt ()
* 1 L pawry Joe

Delay

x() | \/sz cos(2m f.t) T, G_Dl. i I

0
T XQ’ k
/ dt (X)
0

®
_ L Delay j
- \/szsin(Qﬂfct) i) XQk-1

Suppose z(t) = —(—1)‘1’%/2%" cos(2m fot + 0) + w(t), where 6 is an unknown phase
difference between the transmitter oscillator and receiver oscillator, and w(t) is a

zero-mean additive Gaussian noise process with one-sided power spectrum density
Ny. Given that f, is a multiple of 1/}, show that

Trg = —(=1)%\/Ey cos(9) + Wy k;
l’QJg = —(—1)dk\/Eb sm(é’) —f- wjyk,

where

Tb Tb
Wik = \| 7 / Jeos(2mfet)dt and wgr = —y/ = / ) sin(27 f.t)dt
Tb Tb

If f.=(2¢0—1)/(4T}) for some integer ¢ > 1, does the above relation of x;, and zq,
remain Valld?

If f. = (2¢ —1)/(4T},) for some integer ¢ > 1, are the two random variables wy and
wq i, independent of each other?
(Just for your reference and not a part of the midterm) It is clear from the receiver
functional diagram that the receiver makes decision based on the rule:
b, =0
Trp—1Trk +TQr-1Tor S O
b, =1

Is it a maximum-likelihood (ML) decision rule based on the expectation over a uni-
formly distributed 6 over [—m, ), provided f. is a multiple of 1/(27})? Justify your
answer.

Hint: For a known 6, a maximum-likelihood decision rule should be derived based on

b = arg max Pr(z;r—1,2Q k-1, Trk, TO.k|bk)-
0<bp<1

13



Solution.

(a)

LIk

and

xQ7k

/0va [_(—1)dk \/?cos(Qﬂ'fct +6) +w(t) \/TZCOS(QWJ@C £)di

2\/E T [2 [T
b / cos(2m f.t + 0) cos(27 f.t)dt + T / ) cos(2m ft)dt
b

—(—1 \/E) b [cos(4m ft 4 0) + cos(0)]dt + wy
—(—1 \/E)/ bcos (4r fot + 0)dt — (—1)% \/E,cos(é’)—kw[,k
—(—1)% VE, sin(47 f,t 4 6) - (=1)% /B, cos(0) + wy s
47chTb 0
1 B 4Ty 0) = s )] — (-1 Byeos®) +ura, (1)

R R R | QS

(—1)%% /OTb sin(27 f.t) cos(2m f.t + 0)dt — \/sz/OTb w(t) sin(27 f.t)dt

(—1)dk\/T_E_b K [sin(47m fot 4 0) + sin(—0)]dt + wq .k
b Jo
(~1 \/Fb K sin(47 fot + 0)dt — (—1)%+/E, sin() + wQ k
Ty
—(=1)* 47\r/fFT cos(nfet +6)|  — (=1)*/Eysin(0) + wox
ctd 0
VE,

~(=1)% e feon(dn T, +6) = cos(0)] = (=1)%/Bysin(0) + gy (2

Both of the first terms in (1) and (2) equal zero as long as 2.7}, is an integer. However,
if f. = (20 —1)/(41}), then

Trg = —(—1)d’“\/Eb cos(0) + wy k;
l’QJg = —(—1)dk\/ Eb sm(é’) —f- wjyk,

is no longer true.

14



Note: If § = 0, then the first term in (1) can be zero when 47 f.T}, is a multiple of 7
(i.e., 4f.T} is an integer). On the other hand, if 6 = 7, then the first term in (2) can
be zero when 47 f. Ty is a multiple of 7 (i.e., 4f.T} is an integer). However, € can only

™

be either 0 or 5 (but not both), so we require 2.7} to be an integer.

Tb Tb
Elwr k] |:”Tb / ) cos(2m fet dt} ”Tb / |cos(2m ft)dt =0
and
Tb Tb
Elwgx) = [ ”Tb/ ) sin(27 f.t) dt} ”Tb/ |sin(27 fot)dt = 0,

and since they are joint Gaussian distributed, we have that wy and wgqy are inde-
pendent if, and only if, E[w;zwg x| = 0. We then derive

(Y G Y )

= —— b/ Elw(t)w(s)] cos(27 ft) sin(27 f.s)dtds

Tb Tb N
= / —05 t — s) cos(2m f.t) sin(27 f.s)dtds

Since

= T /0 cos(2m f.t) sin(27 f.t)dt

I
TN /0 sin(4m f.t)dt

1 T
- —— cos(dnfut)|™
ST Nor T, cos(4m fet)l,
1
= —— [cos(dn f.Ty) — 1],
8TbN07rfC[COS( mfeTy) — 1]

which equals zero as long as 2.7}, is an integer. However, if f. = (2¢ — 1)/(4T}) for
some integer ¢ > 1, then w;; and wg j are no longer independent.

Note: You shall learn from this problem that if f. is not a multiple of 1/(27}), not only
the first terms of the “projections” in (1) and (2) do not equal zeros (nevertheless,
they could be very small when f, is much larger than 1/(27})) but also the resultant
additive noises are no longer independent. The latter could also deteriorate the system
performance.

15



(¢) Knowning
(—(=1)% = [=(=1)%][—(~1)%-1]

Tp 1 = —(—1)%=1y/Ey, cos(0) + wy —1;
o1 =—(—1)%*1y/Eysin(0) + wrg_1;
zrp = —(=1)%/Eycos(0) + wy i;

\ZL‘Q,k = —(—1)dk\/ Eb Sln(@) + W7 k>

we derive

f(@rk—1,2Q k-1, T1 % TQk|bk = 0)

= f(zrr-1,2Qk-1, %1k ok (dr-1,dr) = (0,1) or (1,0))
1
= if(xl,kfla TQ,k—15 L1k, xQ,k|(dk717 dk) = (0, 1))

1
+§f($l,k:—1axQ,k—1>$l,kafEQ,dek—ladk) = (1,0)),

where the last equality is due to that subject to BUC = (),

Pr(ANn(BUCQ))
Pr(BUC)
Pr(AnB)U(ANC(C))
Pr(BUC)
(A NB)+Pr(ANC)
)+ Pr(C)

A|B) +

Pr(A|IBUC) =

Pr(C)
Pr(B) + Pr(C)

Pr(B
Pr(B)
Br(B) + Pr0) 1 Pr(A|C).

Similarly,

F(@rh-1,2Q k-1, T1 ks Qi = 1)

1
= 5]0(1'1,197171'@,19717xl,kaxQ,k‘(dkfladk) = (an))

1
+§f($1,k—1>$Q,k—1, T, Tkl (dk—1, di) = (1, 1)),
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As a result, for a known 6,

by = arg max Pr(z;i_1,2qQr—1,Trk TQ.k|bk)
0<b,<1
_(zl’k71+4/Ebcos(Q))2+(zQ7k71+4/Ebsin(9))2+(117k74/Ebcos(G))2+zQ’k74/Ebsin(Q))Q
= argmaxsqe 202

@ k—1—VEpc0s(0)*+(2 k—1—V/Fp sin(0)+ (g 1/ Ep cos(8) >+ g +1/Ep sin())>
+e 202 s

@1ty 0s(0) 2+ (2 g k1 +y/Fp sin(0)2+ (2 g+ /By cos(0) 2 +a g +/Fy sin(0))>
e 202

_ (1 k—1—VEp cos(@))2+(xQ’k71—«/Eb sin(@))2+(x17k—«/Eb cos(@))2+acQ7k—«/Eb sin(@))2 }

+€ 202

_xl,k}—l"/Eb 608(9)—90@1@_1«/% sin(@)-&-acl,k1 /Ey, cos(@)-&-acQ#k1 / By, sin(0)
2
o

= argmax {e

zr k—1vVEp COS(Q)‘FIIJQ’k}_l\/Eb sin(@)le’kw/Eb cos(9)7zQ$k1/Eb sin(0)
+e o ,

—27 k—1VEb cos(@)—xQ’kil«/Eb sin(@)—xlyk‘ /Ey, cos(@)—xQ’k« / Ey, sin(0)
2
(e}

e

xl,kfl\/Eb cos(9)+acQ7k71\/Eb sin(@)-&-xlyk« /Ey, cos(@)-&-xQ’k« /By, sin(0)
+e o

vy cos(@)-H’Q sin(0) vr cos(9)+vQ sin(0) uy Cos(9)+uQ sin(0) wr Cos(9)+uQ sin(0) }

= argmax{e o2/ By +e o2/\/Ey , € o2/\/Ey +e o2/\/Ey

g {cosh (v; cos(jz)/?%sin(ﬁ)> cosh (ul 005(52)/4:/2;_2 sin(9)>}

Ey(vF +v3) Ey(uj + u)

= argmax { cosh g cos(0 — ¢,) | , cosh g cos(0 — ¢y,)

where
Uy = X1 -1+ Trk;
UQ = TQ k-1 + TQk; and ¢, = arctan(vg /vy);
U = Trg-1— 1k ¢ = arctan(ug/ur).
VQ = TQ,k—1 — TQ,k,

Taking the expectation with respect to a uniformly distributed 6 over 6 € [—m, )
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yields

Ey(vi +v3)
by = argmax< Ey |cosh 5 cos(0 — ¢,)
o

Ey(u? + ué)

Ey |cosh p cos(6 — ¢y)

Ey(vf 4 v)
= argmax { Fjy |cosh

5 cos(f) | |,
o

Ey(uj + ug)

Ey |cosh g cos(6)

= argmax { v] + vy, u] +ug, },
—— N —
bp=0 br=1
which from Slide IDC2-84 confirms that

b, =0
Trp1Trk +TQr-120r S O
b, =1

is an “expectation-based” maximum-likelihood (ML) decision rule.
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