Corrections to slides and a reminder for midterm 1

• Slide IDC3-35:

$$\max_{\{(P_1, P_2, \cdots, P_n): \sum_{n=1}^n P_n \le P\}} \left(\cdot\right)$$
$$= \max_{\{(P_1, P_2, \cdots, P_n): \sum_{n=1}^n P_n = P\}} \left(\cdot\right)$$
$$= \max_{\{(P_1, P_2, \cdots, P_n): \sum_{n=1}^n P_n = P\}} \left[\cdot\right]$$

shall be replaced by

$$\max_{\{(P_1, P_2, \cdots, P_N): \sum_{n=1}^N P_n \le P\}} \left(\cdot \right)$$
$$= \max_{\{(P_1, P_2, \cdots, P_N): \sum_{n=1}^N P_n = P\}} \left(\cdot \right)$$
$$= \max_{\{(P_1, P_2, \cdots, P_N): \sum_{n=1}^N P_n = P\}} \left[\cdot \right]$$

• Slide IDC3-36:

$$\frac{\log_2(e)}{2N} \frac{g_j^2/(\Gamma \sigma_j^2)}{1 + g_j^2/(\Gamma \sigma_j^2)} - \lambda \begin{cases} = 0, & \text{if } P_j^* > 0\\ \ge 0, & \text{if } P_j^* = 0 \end{cases}$$

shall be replaced by

$$\frac{\log_2(e)}{2N} \frac{g_j^2/(\Gamma \sigma_j^2)}{1 + g_j^2/(\Gamma \sigma_j^2)} - \lambda \begin{cases} = 0, & \text{if } P_j^* > 0\\ \leq 0, & \text{if } P_j^* = 0 \end{cases}$$

- Slide IDC3-37: $\sum_{n=1}^{n} P_j^* = P$ shall be replaced by $\sum_{j=1}^{N} P_j^* = P$.
- Slide IDC3-45: "of length $N + \nu$ " shall be replaced by "of length ν ".
- Slide IDC3-53:

• Note that the sample problems for the first **four** quizzes will be a key part of the first midterm.

Additional Six Sample Problems for Midterm 1

1. From Slide IDC2-85, we learn that the error rate for binary DPSK is $\frac{1}{2}e^{-E/(2\sigma^2)}$, where $\sigma^2 = N_0/2$.

Suppose we now have three **independent** channels, each of which uses binary DPSK transmissions. The receiver will use the majority rule to make the final decision, i.e., if two or more "+1" are reported, then "+1" will be the final decision; otherwise, "-1" is the final decision. By this design, the error rate will be

$$P_{e}(\vec{E}) = \frac{1}{8}e^{-E_{1}/(2\sigma_{1}^{2})}e^{-E_{2}/(2\sigma_{2}^{2})}e^{-E_{3}/(2\sigma_{3}^{2})} + \frac{1}{4}e^{-E_{1}/(2\sigma_{1}^{2})}e^{-E_{2}/(2\sigma_{2}^{2})}\left(1 - \frac{1}{2}e^{-E_{3}/(2\sigma_{3}^{2})}\right) + \frac{1}{4}e^{-E_{1}/(2\sigma_{1}^{2})}e^{-E_{3}/(2\sigma_{3}^{2})}\left(1 - \frac{1}{2}e^{-E_{1}/(2\sigma_{1}^{2})}\right) + \frac{1}{4}e^{-E_{2}/(2\sigma_{2}^{2})}e^{-E_{3}/(2\sigma_{3}^{2})}\left(1 - \frac{1}{2}e^{-E_{1}/(2\sigma_{1}^{2})}\right),$$

where $\vec{E} = (E_1, E_2, E_3)$.

(a) Subject to $E_1 + E_2 + E_3 = E > 0$, we wish to find the optimal power allocation that minimizes $P_e(\vec{E})$, i.e.,

$$\vec{E}^{\,\rm opt} = \arg\min_{\vec{E}\in\mathbb{Q}} P_e(\vec{E}),$$

where

$$\mathbb{Q} \triangleq \left\{ (E_1, E_2, E_3) : E_i \in \mathbb{R}^+ \text{ for } i = 1, 2, 3, \text{ and } E_1 + E_2 + E_3 = E \right\}$$

and \mathbb{R}^+ is the set of non-negative real numbers. Define

$$f(\vec{E},\lambda) = P_e(\vec{E}) + \lambda \left(E - E_1 - E_2 - E_3\right)$$

Does the following equation hold:

$$\min_{\vec{E} \in \mathbb{Q}} P_e(\vec{E}) = \min_{\vec{E} \in \mathbb{Q}} f(\vec{E}, \lambda)?$$

Justify your answer.

(b) Show that \vec{E}^* that minimizes $f(\vec{E}, \lambda)$ over $\vec{E} \in (\mathbb{R}^+)^3$ must satisfy

$$\begin{cases} e^{-E_1^*/(2\sigma_1^2)} \left[1 - \left(1 - e^{-E_2^*/(2\sigma_2^2)} \right) \left(1 - e^{-E_3^*/(2\sigma_3^2)} \right) \right] \begin{cases} = -8\sigma_1^2\lambda, & \text{if } E_1^* > 0; \\ \leq -8\sigma_1^2\lambda, & \text{if } E_1^* = 0, \\ \leq -8\sigma_1^2\lambda, & \text{if } E_1^* = 0, \end{cases} \\ e^{-E_2^*/(2\sigma_2^2)} \left[1 - \left(1 - e^{-E_1^*/(2\sigma_1^2)} \right) \left(1 - e^{-E_3^*/(2\sigma_3^2)} \right) \right] \begin{cases} = -8\sigma_2^2\lambda, & \text{if } E_2^* > 0; \\ \leq -8\sigma_2^2\lambda, & \text{if } E_2^* > 0; \\ \leq -8\sigma_2^2\lambda, & \text{if } E_2^* = 0, \end{cases} \\ e^{-E_3^*/(2\sigma_3^2)} \left[1 - \left(1 - e^{-E_1^*/(2\sigma_1^2)} \right) \left(1 - e^{-E_2^*/(2\sigma_2^2)} \right) \right] \begin{cases} = -8\sigma_3^2\lambda, & \text{if } E_3^* > 0; \\ \leq -8\sigma_3^2\lambda, & \text{if } E_3^* > 0; \\ \leq -8\sigma_3^2\lambda, & \text{if } E_3^* = 0. \end{cases} \end{cases}$$

- (c) Let $\sigma_1^2 = \sigma_2^2 = 1$ and $\sigma_3^2 = 3$. Does the best power allocation E_i^* in (b) positive for i = 1, 2, 3? Justify your answer.
- (d) Continue from (c). Does $E_1^* = E_2^* = \frac{E}{2}$ and $E_3^* = 0$ satisfy the optimality condition in (b) for some λ ?
- (e) Continue from (c). Does $E_1^* = E_2^* = \frac{E}{2}$ and $E_3^* = 0$ minimize $P_e(\vec{E})$ among all $\vec{E} \in \mathbb{Q}$? Justify your answer.

Solution.

- (a) Yes because $P_e(\vec{E}) = f(\vec{E}, \lambda)$ for every $\vec{E} \in \mathbb{Q}$.
- (b) Taking the derivatives of $f(\vec{E}, \lambda)$ with respective to E_1 yields

$$\begin{aligned} \frac{\partial f(\vec{E},\lambda)}{\partial E_1} &= -\frac{1}{16\sigma_1^2} e^{-E_1/(2\sigma_1^2)} e^{-E_2/(2\sigma_2^2)} e^{-E_3/(2\sigma_3^2)} \\ &\quad -\frac{1}{8\sigma_1^2} e^{-E_1/(2\sigma_1^2)} e^{-E_2/(2\sigma_2^2)} \left(1 - \frac{1}{2} e^{-E_3/(2\sigma_3^2)}\right) \\ &\quad -\frac{1}{8\sigma_1^2} e^{-E_1/(2\sigma_1^2)} e^{-E_3/(2\sigma_3^2)} \left(1 - \frac{1}{2} e^{-E_2/(2\sigma_2^2)}\right) \\ &\quad +\frac{1}{16\sigma_1^2} e^{-E_2/(2\sigma_2^2)} e^{-E_3/(2\sigma_3^2)} e^{-E_1/(2\sigma_1^2)} - \lambda \\ &= -\frac{1}{8\sigma_1^2} e^{-E_1/(2\sigma_1^2)} \left(e^{-E_2/(2\sigma_2^2)} + e^{-E_3/(2\sigma_3^2)} - e^{-E_2/(2\sigma_2^2)} e^{-E_3/(2\sigma_3^2)}\right) - \lambda \\ &= -\frac{1}{8\sigma_1^2} e^{-E_1/(2\sigma_1^2)} \left[1 - \left(1 - e^{-E_2/(2\sigma_2^2)}\right) \left(1 - e^{-E_3/(2\sigma_3^2)}\right)\right] - \lambda \end{aligned}$$

and

$$\frac{\partial^2 f(\vec{E},\lambda)}{\partial E_1^2} = \frac{1}{16\sigma_1^4} e^{-E_1/(2\sigma_1^2)} \left[1 - \left(1 - e^{-E_2/(2\sigma_2^2)}\right) \left(1 - e^{-E_3/(2\sigma_3^2)}\right) \right] > 0.$$

This shows that $f(\vec{E}, \lambda)$ is convex with respect to E_1 and hence the optimal power allocation should satisfy

$$-\frac{1}{8\sigma_1^2}e^{-E_1^*/(2\sigma_1^2)} \left[1 - \left(1 - e^{-E_2/(2\sigma_2^2)}\right) \left(1 - e^{-E_3/(2\sigma_3^2)}\right)\right] - \lambda \begin{cases} = 0, & \text{if } E_1^* > 0; \\ \ge 0, & \text{if } E_1^* = 0, \end{cases}$$

Equivalently,

$$e^{-E_1^*/(2\sigma_1^2)} \left[1 - \left(1 - e^{-E_2/(2\sigma_2^2)} \right) \left(1 - e^{-E_3/(2\sigma_3^2)} \right) \right] \begin{cases} = -8\sigma_1^2\lambda, & \text{if } E_1^* > 0; \\ \leq -8\sigma_1^2\lambda, & \text{if } E_1^* = 0, \end{cases}$$

We can similarly obtain

$$e^{-E_2^*/(2\sigma_2^2)} \left[1 - \left(1 - e^{-E_1/(2\sigma_1^2)} \right) \left(1 - e^{-E_3/(2\sigma_3^2)} \right) \right] \begin{cases} = -8\sigma_2^2\lambda, & \text{if } E_2^* > 0; \\ \leq -8\sigma_2^2\lambda, & \text{if } E_2^* = 0, \end{cases}$$

and

$$e^{-E_3^*/(2\sigma_3^2)} \left[1 - \left(1 - e^{-E_1/(2\sigma_1^2)} \right) \left(1 - e^{-E_2/(2\sigma_2^2)} \right) \right] \begin{cases} = -8\sigma_3^2\lambda, & \text{if } E_3^* > 0; \\ \leq -8\sigma_3^2\lambda, & \text{if } E_3^* = 0. \end{cases}$$

(c) Suppose $E_i^* > 0$ for i = 1, 2, 3. Let $A_i^* = e^{-E_i^*/(2\sigma_i^2)}$. Then, we must have

$$\begin{cases} A_1^* [1 - (1 - A_2^*)(1 - A_3^*)] = -8\sigma_1^2 \lambda = -8\lambda \\ A_2^* [1 - (1 - A_1^*)(1 - A_3^*)] = -8\sigma_2^2 \lambda = -8\lambda \\ A_3^* [1 - (1 - A_1^*)(1 - A_2^*)] = -8\sigma_3^2 \lambda = -24\lambda \end{cases}$$

Then, we shall find a feasible solution of A_1^* , A_2^* and A_3^* lying in (0, 1]. Let $A_1^* = A_2^* = A^*$ and derive

$$\begin{aligned} -24\lambda &= 3A^*[1 - (1 - A^*)(1 - A_3^*)] = A_3^*[1 - (1 - A^*)^2] \\ \Rightarrow & A^*(3A^* + A_3^* - 2A^*A_3^*) = 0 \\ \Rightarrow & (A^* - 0.5)(A_3^* - 1.5) = 0.75 \\ \Rightarrow & 0 < A_3^* = \frac{0.75}{A^* - 0.5} + 1.5 \le 1 \text{ and } 0 < A^* < 0.5 \\ \Rightarrow & 0 > A^* \ge -1 \text{ and } 0 < A^* < 0.5, \end{aligned}$$

which implies one of E_1^* , E_2^* and E_3^* must be zero. Note: Taking $A_3^* = 1$ (i.e., $E_3^* = 0$) yields

$$-24\lambda = 3A^* \ge 1 - (1 - A^*)^2 \Rightarrow A^*(A^* + 1) \ge 0.$$

Hence, any A^* in (0, 1] satisfy the above inequality.

(d) With $E_1^* = E_2^* = \frac{E}{2}$ and $E_3^* = 0$, the optimality condition becomes

$$\begin{cases} e^{-E/4} = -8\lambda \\ e^{-E/4} = -8\lambda \\ 1 - (1 - e^{-E/4})^2 \le -24\lambda \end{cases}$$

It is clear that we can set $\lambda = -\frac{1}{8}e^{-E/4}$, and this λ trivially satisfies the third condition because

$$1 - (1 - e^{-E/4})^2 \le 3e^{-E/4} \Leftrightarrow -1 \le e^{E/4}$$

(e) Yes because with $\lambda = -\frac{1}{8}e^{-E/4}$,

$$f(\frac{E}{2}, \frac{E}{2}, 0) \le \min_{\vec{E} \in \mathbb{Q}} P_e(\vec{E}) = \min_{\vec{E} \in \mathbb{Q}} f(\vec{E}, \lambda) \le \min_{\vec{E} \in (\mathbb{R}^+)^3} f(\vec{E}, \lambda) = f(\frac{E}{2}, \frac{E}{2}, 0, \lambda) = f(\frac{E}{2}, \frac{E}{2}, 0).$$

Note: This is an extension of the derivation in Slides IDC3-35~IDC3-37, which results in the famous water filling principle. Such derivation is based on the following general Lagrange argument:

For given $\mathbb{Q} \subset \mathbb{R}^+$ and f(x), Lagrange defines $f_{\lambda}(x)$ such that $f_{\lambda}(x) = f(x)$ for all $x \in \mathbb{Q}$. Then, Lagrange claims that:

1.
$$\max_{x \in \mathbb{Q}} f(x) = \max_{x \in \mathbb{Q}} f_{\lambda}(x) \le \max_{x \in \mathbb{R}^{+}} f_{\lambda}(x) = f_{\lambda}(x_{\lambda}^{*})$$

2. If $(\exists \lambda) \ x_{\lambda}^{*} \in \mathbb{Q}$, then $f_{\lambda}(x_{\lambda}^{*}) = f(x_{\lambda}^{*}) \le \max_{x \in \mathbb{Q}} f(x) \le f_{\lambda}(x_{\lambda}^{*})$; hence, $\max_{x \in \mathbb{Q}} f(x) = f_{\lambda}(x_{\lambda}^{*}) = f(x_{\lambda}^{*})$.

2. For discrete multitones described in Slide IDC3-40 with N = 4 and $\nu = 1$, the input-output relation can be described as

$$\boldsymbol{x} = \begin{bmatrix} x[3] \\ x[2] \\ x[1] \\ x[0] \end{bmatrix} = \begin{bmatrix} 1 & h_1 & 0 & 0 \\ 0 & 1 & h_1 & 0 \\ 0 & 0 & 1 & h_1 \\ h_1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s[3] \\ s[2] \\ s[1] \\ s[0] \end{bmatrix} + \begin{bmatrix} w[3] \\ w[2] \\ w[1] \\ w[0] \end{bmatrix} = \mathbb{H}_{\text{circulant}} \boldsymbol{s} + \boldsymbol{w}.$$

(a) Find the diagonal matrix Λ such that $\mathbb{H}_{\text{circulant}} = \mathbb{Q}^{\dagger} \Lambda \mathbb{Q}$, where

$$\mathbb{Q} = \frac{1}{2} \begin{bmatrix} e^{-j\frac{9}{2}\pi} & e^{-j3\pi} & e^{-j\frac{3}{2}\pi} & 1\\ e^{-j3\pi} & e^{-j2\pi} & e^{-j\pi} & 1\\ e^{-j\frac{3}{2}\pi} & e^{-j\pi} & e^{-j\frac{1}{2}\pi} & 1\\ 1 & 1 & 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -j & -1 & j & 1\\ -1 & 1 & -1 & 1\\ j & -1 & -j & 1\\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Hint: $\mathbb{QH}_{\text{circulant}} = \Lambda \mathbb{Q}$ and note that Λ is a function of h_1 .

(b) Now if we transform the system to

$$oldsymbol{X} \quad ig(= \mathbb{Q}oldsymbol{x} = \Lambda \mathbb{Q}oldsymbol{s} + \mathbb{Q}oldsymbol{w}ig) \quad = \Lambdaoldsymbol{S} + oldsymbol{W}.$$

Determine the four transmission symbols \boldsymbol{s} corresponding to

$$\boldsymbol{S} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \text{ and } \begin{bmatrix} -1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$

Hint: $\boldsymbol{s} = \mathbb{Q}^{\dagger} \boldsymbol{S}$.

Solution.

(a) From $\mathbb{QH}_{\text{circulant}} = \Lambda \mathbb{Q}$, we obtain

$$\begin{cases} -j & -1 & j & 1 \\ -1 & 1 & -1 & 1 \\ j & -1 & -j & 1 \\ 1 & 1 & 1 & 1 \end{cases} \begin{bmatrix} 1 & h_1 & 0 & 0 \\ 0 & 1 & h_1 & 0 \\ 0 & 0 & 1 & h_1 \\ h_1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \lambda_3 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & \lambda_0 \end{bmatrix} \begin{bmatrix} -j & -1 & j & 1 \\ -1 & 1 & -1 & 1 \\ j & -1 & -j & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{cases} \lambda_3 = 1 + jh_1 \\ \lambda_2 = 1 - h_1 \\ \lambda_1 = 1 - jh_1 \\ \lambda_0 = 1 + h_1 \end{cases}$$

Note: From (a), it is apparent that λ_3 , λ_2 , λ_1 and λ_0 are all functions of h_1 . Thus, we need not to separately estimate each of them, nor to estimate all of them. As an example, we can fix S[2] = -1 as a pilot tone for the estimation of h_1 (i.e., λ_2), and use S[3], S[1] and S[0] to carry information. This provides another advantage of discrete multitones.

Please note that N is usually much larger than ν (e.g., $N = 4 > \nu = 1$ in this problem; a specific example is for WLAN, $NT_s = 3.2\mu s$, while $\nu T_s = 0.8\mu s$ for long guard-interval (GI) and $\nu T_s = 0.4\mu s$ for short GI), and $\lambda_1, \lambda_2, \ldots, \lambda_N$ are only a function of h_1, \ldots, h_{ν} . So, in principle, it suffices to place ν pilot tones for the determination of h_1, \ldots, h_{ν} if the noise is nullified.

(b) By

$$\boldsymbol{s} = \frac{1}{2} \begin{bmatrix} j & -1 & -j & 1 \\ -1 & 1 & -1 & 1 \\ -j & -1 & j & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \boldsymbol{S},$$

we obtain

Note: After performing discrete Fourier transform (DFT), the equally distributed transmission powers of the four components can be "concentrated" into one comment. For example, $\mathbf{S} = [-1, -1, \dots, -1]$ (of length N) will be transformed to $\mathbf{s} = [0, 0, 0, -N]$. This causes a problem in the transmission of \mathbf{s} because the transmitter must have the capability to emit a very large signal with amplitude N. How

to reduce the peak-to-average power ratio of the DFT signal, therefore, becomes a practically important research topic.

3. Below are two non-coherent receivers. Are the two (y_I, y_Q) pairs respectively obtained by the two quadratic receivers below identical? Justify your answer.

Solution. For the structure on the left, it is clear that

$$y_I = \int_0^T x(t) \cos(2\pi f_c t) dt$$
 and $y_Q = \int_0^T x(t) \sin(2\pi f_c t) dt$

For the structure on the right, the impulse response of the two filters are

$$h_I(\tau) = \cos(2\pi f_i(T-\tau)) \cdot \mathbf{1}\{0 \le \tau \le T\} \text{ and } h_Q(\tau) = \sin(2\pi f_i(T-\tau)) \cdot \mathbf{1}\{0 \le \tau \le T\},\$$

which implies the two inputs of the samplers should be equal to

$$\int_{-\infty}^{\infty} x(\tau) h_I(t-\tau) d\tau = \int_{-\infty}^{\infty} x(\tau) \cos(2\pi f_i(T-(t-\tau))) \cdot \mathbf{1}\{0 \le t-\tau \le T\} d\tau$$

and

$$\int_{-\infty}^{\infty} x(\tau) h_Q(t-\tau) d\tau = \int_{-\infty}^{\infty} x(\tau) \sin(2\pi f_i(T-(t-\tau))) \cdot \mathbf{1}\{0 \le t-\tau \le T\} d\tau.$$

Accordingly, sampling at time t = T gives

$$y_I = \int_0^T x(\tau) \cos(2\pi f_i (T - (T - \tau))) d\tau = \int_0^T x(\tau) \cos(2\pi f_i \tau) d\tau$$

and

$$y_Q = \int_0^T x(\tau) \sin(2\pi f_i (T - (T - \tau))) d\tau = \int_0^T x(\tau) \sin(2\pi f_i \tau) d\tau.$$

Thus, the two (y_I, y_Q) pairs respectively obtained by the two receivers are identical.

4. (a) Suppose the transmitter uses binary FSK signaling scheme, where f_1 and f_2 denote the two frequencies for information bits 0 and 1, respectively. Let f_1 and f_2 be a multiple of 1/T, and let $x(t) = \sqrt{\frac{2E}{T}} \cos(2\pi f_1 t + \theta) + w(t)$, where w(t) is a zero-mean additive white Gaussian noise process with one-sided power spectrum density N_0 .

For the quadratic receiver below, represent $x_{I,1}$, $x_{Q,1}$, $x_{I,2}$ and x_{Q_2} in terms of E, θ , w_1 , w_2 , w_3 and w_4 , where

$$w_1 = \int_0^T w(t) \cdot \sqrt{\frac{2}{T}} \cos(2\pi f_1 t) dt, \quad w_2 = \int_0^T w(t) \cdot \sqrt{\frac{2}{T}} \sin(2\pi f_1 t) dt$$

and

(b) Prove that w₁ and w₂ are independent.
Hint: By definition of zero-mean Gaussian random process w(t), the projections w₁ and w₂ are two dimensional zero-mean Gaussian random variables. Thus, w₁ and w₂ are independent if, and only if, E[w₁w₂] = E[w₁]E[w₂] = 0.

Solution.

(a) $(x_{Q,1} \text{ and } x_{Q,2} \text{ are corrected, as indicating in color red.})$

$$x_{I,1} = \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_1 t + \theta) + w(t) \right) \sqrt{\frac{2}{T}} \cos(2\pi f_1 t) dt$$

$$= \frac{\sqrt{E}}{T} \int_0^T 2\cos(2\pi f_1 t + \theta) \cos(2\pi f_1 t) dt + \int_0^T w(t) \sqrt{\frac{2}{T}} \cos(2\pi f_1 t) dt$$

$$= \frac{\sqrt{E}}{T} \int_0^T [\cos(4\pi f_1 t + \theta) + \cos(\theta)] dt + w_1$$

$$= \sqrt{E} \cos(\theta) + w_1$$

$$\begin{aligned} x_{Q,1} &= \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_1 t + \theta) + w(t) \right) \sqrt{\frac{2}{T}} \sin(2\pi f_1 t) dt \\ &= \frac{\sqrt{E}}{T} \int_0^T 2\cos(2\pi f_1 t + \theta) \sin(2\pi f_1 t) dt + \int_0^T w(t) \sqrt{\frac{2}{T}} \sin(2\pi f_1 t) dt \\ &= \frac{\sqrt{E}}{T} \int_0^T [\sin(4\pi f_1 t + \theta) - \sin(\theta)] dt + w_2 \\ &= -\sqrt{E} \sin(\theta) + w_2 \end{aligned}$$

$$\begin{aligned} x_{I,2} &= \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_1 t + \theta) + w(t) \right) \sqrt{\frac{2}{T}} \cos(2\pi f_2 t) dt \\ &= \frac{\sqrt{E}}{T} \int_0^T 2 \cos(2\pi f_1 t + \theta) \cos(2\pi f_2 t) dt + \int_0^T w(t) \sqrt{\frac{2}{T}} \cos(2\pi f_2 t) dt \\ &= \frac{\sqrt{E}}{T} \int_0^T [\cos(2\pi (f_1 + f_2)t + \theta) + \cos(2\pi (f_1 - f_2)t + \theta)] dt + w_3 \\ &= w_3 \end{aligned}$$

$$\begin{aligned} x_{Q,2} &= \int_0^T \left(\sqrt{\frac{2E}{T}} \cos(2\pi f_1 t + \theta) + w(t) \right) \sqrt{\frac{2}{T}} \sin(2\pi f_2 t) dt \\ &= \frac{\sqrt{E}}{T} \int_0^T 2 \cos(2\pi f_1 t + \theta) \sin(2\pi f_2 t) dt + \int_0^T w(t) \sqrt{\frac{2}{T}} \sin(2\pi f_2 t) dt \\ &= \frac{\sqrt{E}}{T} \int_0^T [\sin(2\pi (f_2 + f_1)t + \theta) + \sin(2\pi (f_2 - f_1)t - \theta)] dt + w_4 \\ &= w_4 \end{aligned}$$

(b)

$$E[w_{1}w_{2}] = E\left[\left(\int_{0}^{T}w(t)\cdot\sqrt{\frac{2}{T}}\cos(2\pi f_{1}t)dt\right)\left(\int_{0}^{T}w(s)\cdot\sqrt{\frac{2}{T}}\sin(2\pi f_{1}s)ds\right)\right]$$

$$= \frac{2}{T}\int_{0}^{T}\int_{0}^{T}E\left[w(t)w(s)\right]\cos(2\pi f_{1}t)\sin(2\pi f_{1}s)\right]dtds$$

$$= \frac{2}{T}\int_{0}^{T}\int_{0}^{T}\frac{N_{0}}{2}\delta(t-s)\cos(2\pi f_{1}t)\sin(2\pi f_{1}s)dtds$$

$$= \frac{N_{0}}{T}\int_{0}^{T}\cos(2\pi f_{1}s)\sin(2\pi f_{1}s)ds$$

$$= \frac{N_{0}}{2T}\int_{0}^{T}\sin(4\pi f_{1}s)ds$$

$$= 0$$

Note: We can similarly prove w_1 , w_2 , w_3 and w_4 are independent.

5. Below is the functional diagram of the V.32 16-QAM Hybrid amplitude/phase modulation scheme:

(a) Assume $I_{1,-1} = I_{2,-1} = 1$. Give the sequence of 16QAM symbols (indicated by their coordinates) corresponding to

$$(Q_{1,0}Q_{2,0}Q_{3,0}Q_{4,0}Q_{1,1}Q_{2,1}Q_{3,1}Q_{4,1}Q_{1,2}Q_{2,2}Q_{3,2}Q_{4,2}) = (1001\ 1010\ 0000)$$

(b) Suppose there is a 30° phase difference between the transmitter and the receiver, i.e.,

$$\begin{bmatrix} a_{\text{receive}} \\ b_{\text{receive}} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} a_{\text{transmit}} \\ b_{\text{transmit}} \end{bmatrix}$$

By using the nearest Euclidean distance criterion, recover the transmitted information sequence $(Q_{1,0}Q_{2,0}Q_{3,0}Q_{4,0}Q_{1,1}Q_{2,1}Q_{3,1}Q_{4,1}Q_{1,2}Q_{2,2}Q_{3,2}Q_{4,2})$ from the rotated 16QAM symbols.

Hint: The nearest Euclidean distance decision can be made separately on x-axis and y-axis over the 16QAM constellation with thresholds -2, 0 and 2.

(c) Re-do (b) if the phase difference between the transmitter and the receiver is changed to 90° phase difference, i.e.,

$$\begin{bmatrix} a_{\text{receive}} \\ b_{\text{receive}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{\text{transmit}} \\ b_{\text{transmit}} \end{bmatrix}$$

Solution.

(a)

n	$I_{1,n-1}I_{2,n-1}$	$Q_{1,n}Q_{2,n}$	phase change	$I_{1,n}I_{2,n}$	$Q_{3,n}Q_{4,n}$	16QAM symbol n
0	11	10	180	00	01	(-3, -1)
1	00	10	180	11	10	(1,3)
2	11	00	90	10	00	(-1, 1)

(b)

$$\begin{bmatrix} \frac{-3\sqrt{3}+1}{2} \\ \frac{-3-\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix} \rightarrow \begin{bmatrix} -3 \\ -3 \end{bmatrix}, \quad \begin{bmatrix} \frac{\sqrt{3}-3}{2} \\ \frac{1+3\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 \\ 3 \end{bmatrix},$$

and

$$\begin{bmatrix} \frac{-\sqrt{3}+1}{2} \\ \frac{-1+\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Therefore,

n	16QAM symbol n	$I_{1,n}I_{2,n}$	$Q_{3,n}Q_{4,n}$	$I_{1,n-1}I_{2,n-1}$	phase change	$Q_{1,n}Q_{2,n}$
0	(-3, -3)	00	11	11	180	10
1	(-1, 3)	10	01	00	270	11
2	(-1, 1)	10	00	10	0	01

and

$$(\hat{Q}_{1,0}\hat{Q}_{2,0}\hat{Q}_{3,0}\hat{Q}_{4,0}\hat{Q}_{1,1}\hat{Q}_{2,1}\hat{Q}_{3,1}\hat{Q}_{4,1}\hat{Q}_{1,1}\hat{Q}_{2,1}\hat{Q}_{3,1}\hat{Q}_{4,1}) = (1011\,1101\,0100)$$

where the red-color numbers indicate the errors during transmission. Note: So, a 30° phase difference, if not being calibrated to zero, causes many transmission errors in both $Q_{1,n}Q_{2,n}$ and $Q_{3,n}Q_{4,n}$ positions.

$$\begin{bmatrix} 1\\ -3 \end{bmatrix} = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} -3\\ -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1\\ -3 \end{bmatrix}, \quad \begin{bmatrix} -3\\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1\\ 3 \end{bmatrix} \rightarrow \begin{bmatrix} -3\\ 1 \end{bmatrix},$$
$$\begin{bmatrix} -1\\ -1 \end{bmatrix} = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1\\ -1 \end{bmatrix}.$$

Therefore,

and

n	16QAM symbol n	$I_{1,n}I_{2,n}$	$Q_{3,n}Q_{4,n}$	$I_{1,n-1}I_{2,n-1}$	phase change	$Q_{1,n}Q_{2,n}$
0	(1, -3)	01	01	11	270	11
1	(-3, 1)	10	10	01	180	10
2	(-1, -1)	00	00	10	90	00

and

 $(\hat{Q}_{1,0}\hat{Q}_{2,0}\hat{Q}_{3,0}\hat{Q}_{4,0}\hat{Q}_{1,1}\hat{Q}_{2,1}\hat{Q}_{3,1}\hat{Q}_{4,1}\hat{Q}_{1,1}\hat{Q}_{2,1}\hat{Q}_{3,1}\hat{Q}_{4,1}) = (1101\ 1010\ 0000)$

where red-color numbers indicate the errors during transmission.

Note: So, a 90° phase difference, if not being calibrated to zero, causes no transmission errors in $Q_{3,n}Q_{4,n}$ positions, and also causes no transmission errors in $Q_{1,n}Q_{2,n}$ positions **except** the very first one (unless we properly adjust $I_{1,-1}I_{2,-1}$ to 10).

6. The functional blocks of the transmitter and the receiver of a DPSK signaling scheme is given as follows:

(a) Suppose $x(t) = -(-1)^{d_k} \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \theta) + w(t)$, where θ is an unknown phase difference between the transmitter oscillator and receiver oscillator, and w(t) is a zero-mean additive Gaussian noise process with one-sided power spectrum density N_0 . Given that f_c is a multiple of $1/T_b$, show that

$$\begin{cases} x_{I,k} = -(-1)^{d_k} \sqrt{E_b} \cos(\theta) + w_{I,k}; \\ x_{Q,k} = -(-1)^{d_k} \sqrt{E_b} \sin(\theta) + w_{I,k}, \end{cases}$$

where

$$w_{I,k} = \sqrt{\frac{2}{T_b}} \int_0^{T_b} w(t) \cos(2\pi f_c t) dt$$
 and $w_{Q,k} = -\sqrt{\frac{2}{T_b}} \int_0^{T_b} w(t) \sin(2\pi f_c t) dt.$

If $f_c = (2\ell - 1)/(4T_b)$ for some integer $\ell \ge 1$, does the above relation of x_{I_k} and x_{Q_k} remain valid?

- (b) If $f_c = (2\ell 1)/(4T_b)$ for some integer $\ell \ge 1$, are the two random variables $w_{I,k}$ and $w_{Q,k}$ independent of each other?
- (c) (Just for your reference and not a part of the midterm) It is clear from the receiver functional diagram that the receiver makes decision based on the rule:

$$x_{I,k-1}x_{I,k} + x_{Q,k-1}x_{Q,k} \underset{b_k = 1}{\overset{b_k = 0}{\leq}} 0$$

Is it a maximum-likelihood (ML) decision rule based on the expectation over a uniformly distributed θ over $[-\pi, \pi)$, provided f_c is a multiple of $1/(2T_b)$? Justify your answer.

Hint: For a known θ , a maximum-likelihood decision rule should be derived based on

$$\hat{b}_k = \arg\max_{0 \le b_k \le 1} \Pr(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k} | b_k).$$

Solution.

(a)

$$\begin{aligned} x_{I,k} &= \int_{0}^{T_{b}} \left[-(-1)^{d_{k}} \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c}t + \theta) + w(t) \right] \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{c}t) dt \\ &= -(-1)^{d_{k}} \frac{2\sqrt{E_{b}}}{T_{b}} \int_{0}^{T_{b}} \cos(2\pi f_{c}t + \theta) \cos(2\pi f_{c}t) dt + \sqrt{\frac{2}{T_{b}}} \int_{0}^{T_{b}} w(t) \cos(2\pi f_{c}t) dt \\ &= -(-1)^{d_{k}} \frac{\sqrt{E_{b}}}{T_{b}} \int_{0}^{T_{b}} \left[\cos(4\pi f_{c}t + \theta) + \cos(\theta) \right] dt + w_{I,k} \\ &= -(-1)^{d_{k}} \frac{\sqrt{E_{b}}}{T_{b}} \int_{0}^{T_{b}} \cos(4\pi f_{c}t + \theta) dt - (-1)^{d_{k}} \sqrt{E_{b}} \cos(\theta) + w_{I,k} \\ &= -(-1)^{d_{k}} \frac{\sqrt{E_{b}}}{4\pi f_{c}T_{b}} \sin(4\pi f_{c}t + \theta) \Big|_{0}^{T_{b}} - (-1)^{d_{k}} \sqrt{E_{b}} \cos(\theta) + w_{I,k} \\ &= -(-1)^{d_{k}} \frac{\sqrt{E_{b}}}{4\pi f_{c}T_{b}} \left[\sin(4\pi f_{c}T_{b} + \theta) - \sin(\theta) \right] - (-1)^{d_{k}} \sqrt{E_{b}} \cos(\theta) + w_{I,k}, \end{aligned}$$

and

$$\begin{aligned} x_{Q,k} &= \int_{0}^{T_{b}} \left[-(-1)^{d_{k}} \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c}t + \theta) + w(t) \right] \left(-\sqrt{\frac{2}{T_{b}}} \sin(2\pi f_{c}t) \right) dt \\ &= (-1)^{d_{k}} \frac{2\sqrt{E_{b}}}{T_{b}} \int_{0}^{T_{b}} \sin(2\pi f_{c}t) \cos(2\pi f_{c}t + \theta) dt - \sqrt{\frac{2}{T_{b}}} \int_{0}^{T_{b}} w(t) \sin(2\pi f_{c}t) dt \\ &= (-1)^{d_{k}} \frac{\sqrt{E_{b}}}{T_{b}} \int_{0}^{T_{b}} \left[\sin(4\pi f_{c}t + \theta) + \sin(-\theta) \right] dt + w_{Q,k} \\ &= (-1)^{d_{k}} \frac{\sqrt{E_{b}}}{T_{b}} \int_{0}^{T_{b}} \sin(4\pi f_{c}t + \theta) dt - (-1)^{d_{k}} \sqrt{E_{b}} \sin(\theta) + w_{Q,k} \\ &= -(-1)^{d_{k}} \frac{\sqrt{E_{b}}}{4\pi f_{c}T_{b}} \cos(4\pi f_{c}t + \theta) \Big|_{0}^{T_{b}} - (-1)^{d_{k}} \sqrt{E_{b}} \sin(\theta) + w_{Q,k} \\ &= -(-1)^{d_{k}} \frac{\sqrt{E_{b}}}{4\pi f_{c}T_{b}} \left[\cos(4\pi f_{c}T_{b} + \theta) - \cos(\theta) \right] - (-1)^{d_{k}} \sqrt{E_{b}} \sin(\theta) + w_{Q,k}. \end{aligned}$$

Both of the first terms in (1) and (2) equal zero as long as $2f_cT_b$ is an integer. However, if $f_c = (2\ell - 1)/(4T_b)$, then

$$\begin{cases} x_{I,k} = -(-1)^{d_k} \sqrt{E_b} \cos(\theta) + w_{I,k}; \\ x_{Q,k} = -(-1)^{d_k} \sqrt{E_b} \sin(\theta) + w_{I,k}, \end{cases}$$

is no longer true.

Note: If $\theta = 0$, then the first term in (1) can be zero when $4\pi f_c T_b$ is a multiple of π (i.e., $4f_c T_b$ is an integer). On the other hand, if $\theta = \frac{\pi}{2}$, then the first term in (2) can be zero when $4\pi f_c T_b$ is a multiple of π (i.e., $4f_c T_b$ is an integer). However, θ can only be either 0 or $\frac{\pi}{2}$ (but not both), so we require $2f_c T_b$ to be an integer.

(b) Since

$$E[w_{I,k}] = E\left[\sqrt{\frac{2}{T_b}} \int_0^{T_b} w(t) \cos(2\pi f_c t) dt\right] = \sqrt{\frac{2}{T_b}} \int_0^{T_b} E[w(t)] \cos(2\pi f_c t) dt = 0$$

and

$$E[w_{Q,k}] = E\left[-\sqrt{\frac{2}{T_b}} \int_0^{T_b} w(t)\sin(2\pi f_c t)dt\right] = -\sqrt{\frac{2}{T_b}} \int_0^{T_b} E[w(t)]\sin(2\pi f_c t)dt = 0,$$

and since they are joint Gaussian distributed, we have that $w_{I,k}$ and $w_{Q,k}$ are independent if, and only if, $E[w_{I,k}w_{Q,k}] = 0$. We then derive

$$\begin{split} E[w_{I,k}w_{Q,k}] &= E\left[\left(\sqrt{\frac{2}{T_b}} \int_0^{T_b} w(t)\cos(2\pi f_c t)dt\right) \left(-\sqrt{\frac{2}{T_b}} \int_0^{T_b} w(s)\sin(2\pi f_c s)ds\right)\right] \\ &= -\frac{2}{T_b} \int_0^{T_b} \int_0^{T_b} E[w(t)w(s)]\cos(2\pi f_c t)\sin(2\pi f_c s)dtds \\ &= -\frac{2}{T_b} \int_0^{T_b} \int_0^{T_b} \frac{N_0}{2} \delta(t-s)\cos(2\pi f_c t)\sin(2\pi f_c s)dtds \\ &= -\frac{1}{T_bN_0} \int_0^{T_b}\cos(2\pi f_c t)\sin(2\pi f_c t)dt \\ &= -\frac{1}{2T_bN_0} \int_0^{T_b}\sin(4\pi f_c t)dt \\ &= \frac{1}{8T_bN_0\pi f_c}\cos(4\pi f_c t)|_0^{T_b} \\ &= \frac{1}{8T_bN_0\pi f_c}[\cos(4\pi f_c T_b) - 1], \end{split}$$

which equals zero as long as $2f_cT_b$ is an integer. However, if $f_c = (2\ell - 1)/(4T_b)$ for some integer $\ell \ge 1$, then $w_{I,k}$ and $w_{Q,k}$ are no longer independent.

Note: You shall learn from this problem that if f_c is not a multiple of $1/(2T_b)$, not only the first terms of the "projections" in (1) and (2) do not equal zeros (nevertheless, they could be very small when f_c is much larger than $1/(2T_b)$) but also the resultant additive noises are no longer independent. The latter could also deteriorate the system performance. (c) Knowning

$$\begin{cases} -(-1)^{b_k} = [-(-1)^{d_k}][-(-1)^{d_{k-1}}] \\ x_{I,k-1} = -(-1)^{d_{k-1}}\sqrt{E_b}\cos(\theta) + w_{I,k-1}; \\ x_{Q,k-1} = -(-1)^{d_{k-1}}\sqrt{E_b}\sin(\theta) + w_{I,k-1}; \\ x_{I,k} = -(-1)^{d_k}\sqrt{E_b}\cos(\theta) + w_{I,k}; \\ x_{Q,k} = -(-1)^{d_k}\sqrt{E_b}\sin(\theta) + w_{I,k}, \end{cases}$$

we derive

$$f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k} | b_k = 0)$$

$$= f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k} | (d_{k-1}, d_k) = (0, 1) \text{ or } (1, 0))$$

$$= \frac{1}{2} f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k} | (d_{k-1}, d_k) = (0, 1))$$

$$+ \frac{1}{2} f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k} | (d_{k-1}, d_k) = (1, 0)),$$

where the last equality is due to that subject to $B \cup C = \emptyset$,

$$Pr(A|B \cup C) = \frac{Pr(A \cap (B \cup C))}{Pr(B \cup C)}$$

=
$$\frac{Pr((A \cap B) \cup (A \cap C))}{Pr(B \cup C)}$$

=
$$\frac{Pr(A \cap B) + Pr(A \cap C)}{Pr(B) + Pr(C)}$$

=
$$\frac{Pr(B)}{Pr(B) + Pr(C)} Pr(A|B) + \frac{Pr(C)}{Pr(B) + Pr(C)} Pr(A|C).$$

Similarly,

$$f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k}|b_k = 1)$$

$$= \frac{1}{2} f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k}|(d_{k-1}, d_k) = (0, 0))$$

$$+ \frac{1}{2} f(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k}|(d_{k-1}, d_k) = (1, 1)),$$

As a result, for a known $\theta,$

$$\begin{split} \hat{b}_{k} &= \arg \max_{0 \leq b_{k} \leq 1} \Pr(x_{I,k-1}, x_{Q,k-1}, x_{I,k}, x_{Q,k} | b_{k}) \\ &= \arg \max \left\{ e^{-\frac{(x_{I,k-1} + \sqrt{E_{b}} \cos(\theta))^{2} + (x_{Q,k-1} + \sqrt{E_{b}} \sin(\theta))^{2} + (x_{I,k} - \sqrt{E_{b}} \cos(\theta))^{2} + x_{Q,k} - \sqrt{E_{b}} \sin(\theta))^{2}}{2\sigma^{2}} \\ &+ e^{-\frac{(x_{I,k-1} - \sqrt{E_{b}} \cos(\theta))^{2} + (x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta))^{2} + (x_{I,k} + \sqrt{E_{b}} \cos(\theta))^{2} + x_{Q,k} + \sqrt{E_{b}} \sin(\theta))^{2}}{2\sigma^{2}} \\ &+ e^{-\frac{(x_{I,k-1} - \sqrt{E_{b}} \cos(\theta))^{2} + (x_{Q,k-1} + \sqrt{E_{b}} \sin(\theta))^{2} + (x_{I,k} + \sqrt{E_{b}} \cos(\theta))^{2} + x_{Q,k} - \sqrt{E_{b}} \sin(\theta))^{2}}{2\sigma^{2}} \\ &+ e^{-\frac{(x_{I,k-1} - \sqrt{E_{b}} \cos(\theta))^{2} + (x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta))^{2} + (x_{I,k} - \sqrt{E_{b}} \cos(\theta))^{2} + x_{Q,k} - \sqrt{E_{b}} \sin(\theta))^{2}}{2\sigma^{2}} \\ &+ e^{-\frac{(x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta))^{2} + (x_{I,k} - \sqrt{E_{b}} \cos(\theta))^{2} + x_{Q,k} - \sqrt{E_{b}} \sin(\theta))^{2}}{\sigma^{2}} \\ &+ e^{-\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}}{\sigma^{2}} \\ &+ e^{\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}}{\sigma^{2}} \\ &+ e^{\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}}{\sigma^{2}} \\ &+ e^{\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}}{\sigma^{2}} \\ &+ e^{\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}}{\sigma^{2}} \\ &+ e^{\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}}{\sigma^{2}} \\ &+ e^{\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta) - x_{I,k} \sqrt{E_{b}} \cos(\theta) - x_{Q,k} \sqrt{E_{b}} \sin(\theta)}} \\ &= \arg \max \left\{ e^{-\frac{x_{I,k-1} - \sqrt{E_{b}} \cos(\theta) - x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta)} - \frac{x_{I,k} - \sqrt{E_{b}} \cos(\theta) + x_{Q,k} \sqrt{E_{b}} \sin(\theta)}{\sigma^{2} - \sqrt{E_{b}} - \sigma^{2}} \sqrt{E_{b}}} \right\} \\ &= \arg \max \left\{ \cosh \left(\frac{\sqrt{E_{b} \cos(\theta) + x_{Q,k-1} - \sqrt{E_{b}} \sin(\theta)}{\sigma^{2} - \sqrt{E_{b}} - \sigma^{2}} \cos(\theta - \phi_{v}) \right), \cosh \left(\frac{\sqrt{E_{b} \cos(\theta) + x_{Q,k} - \sqrt{E_{b}} \cos(\theta)}}{\sigma^{2} - \cos(\theta - \phi_{v})} \right), \cosh \left(\frac{\sqrt{E_{b} \cos(\theta) - x_{Q,k}$$

where

$$\begin{cases} u_{I} = x_{I,k-1} + x_{I,k}; \\ u_{Q} = x_{Q,k-1} + x_{Q,k}; \\ v_{I} = x_{I,k-1} - x_{I,k}; \\ v_{Q} = x_{Q,k-1} - x_{Q,k}, \end{cases} \text{ and } \begin{cases} \phi_{v} = \arctan(v_{Q}/v_{I}); \\ \phi_{u} = \arctan(u_{Q}/u_{I}). \end{cases}$$

Taking the expectation with respect to a uniformly distributed θ over $\theta \in [-\pi, \pi)$

yields

$$\begin{aligned} \hat{b}_{k} &= \arg \max \left\{ E_{\theta} \left[\cosh \left(\frac{\sqrt{E_{b}(v_{I}^{2} + v_{Q}^{2})}}{\sigma^{2}} \cos(\theta - \phi_{v}) \right) \right], \\ & E_{\theta} \left[\cosh \left(\frac{\sqrt{E_{b}(u_{I}^{2} + u_{Q}^{2})}}{\sigma^{2}} \cos(\theta - \phi_{u}) \right) \right] \right\} \\ &= \arg \max \left\{ E_{\theta} \left[\cosh \left(\frac{\sqrt{E_{b}(v_{I}^{2} + v_{Q}^{2})}}{\sigma^{2}} \cos(\theta) \right) \right], \\ & E_{\theta} \left[\cosh \left(\frac{\sqrt{E_{b}(u_{I}^{2} + u_{Q}^{2})}}{\sigma^{2}} \cos(\theta) \right) \right] \right\} \\ &= \arg \max \left\{ \underbrace{v_{I}^{2} + v_{Q}^{2}, \underbrace{u_{I}^{2} + u_{Q}^{2}}_{b_{k} = 1}} \right\}, \end{aligned}$$

which from Slide IDC2-84 confirms that

$$\begin{aligned} b_k &= 0\\ x_{I,k-1}x_{I,k} + x_{Q,k-1}x_{Q,k} & \underset{b_k}{\leq} 0\\ b_k &= 1 \end{aligned}$$

is an "expectation-based" maximum-likelihood (ML) decision rule.