
Corrections:

• Slide IDC8-14:

Distance square
Signals Code signals to “all-zero” signals
01 00 00 010 001 010 000 000 d21 + d20

...
...

...

should be corrected as

Distance square
Signals Code signals to “all-zero” signals
01 00 00 010 001 010 000 000 2d21 + d20

...
...

...

• Slide IDC8-38 should be immediately after Slide IDC 8-32.

• Slide IDC 8-33 (or Slide IDC 8-34 after moving Slide IDC 8-38 ahead):

P (S4|S3) =




...
...

...
P (b|c) = P (m4− 1)

...
...

...

should be

P (S4|S3) =




...
...

...
P (b|c) = P (m4=1)

...
...

...

• Slide IDC 8-36 (or Slide IDC 8-37 after moving Slide IDC 8-38 ahead): Change 10-123 to
8-33. Change the first 10-126 to 8-32 & 8-33. Change the second 10-126 to 8-36.

• Slide IDC 8-39 (or Slide IDC 8-38 after moving the original Slide IDC 8-38 ahead): l1 and
l2 should be l̃1 and l̃2.

• Slide IDC 8-52:

P 1
j =

p1j
∏

k∈Bit(j)

Q1
k,j

p1j
∏

k∈Bit(j)

Q1
k,j + p1j

∏
k∈Bit(j)

Q1
k,j

should be

P 1
j =

p1j
∏

k∈Bit(j)

Q1
k,j

p1j
∏

k∈Bit(j)

Q1
k,j + (1− p1j)

∏
k∈Bit(j)

(1−Q1
k,j)

1

Additional sample problems for the final exam

1. (Continue from Additional Sample Problem 2 for the Final Exam (Part I))

(a) From the list of all codewords, show that the convolutional code so constructed is a
linear code.

(b) Is this convolutional code a cyclic code? Justify your answer.

(c) Is this convolutional code a polynomial code? Justify your answer.

(d) What is the minimum pairwise Hamming distance dH,min of this linear code?

(e) What is the minimum pairwise Euclidean distance square d2E,min of the equivalent

antipodally coded signals, provided
√
E(−1)c is transmitted?

Solution.

(a) We can choose three linearly independent codewords among the eight codewords be-
low:

message codeword

m0m1m2 c
(1)
0 c

(2)
0 c

(1)
1 c

(2)
1 c

(1)
2 c

(2)
2 c

(1)
3 c

(2)
3 c

(1)
4 c

(2)
4

000 00 00 00 0000
001 00 00 11 10 11
010 00 11 10 11 00
011 00 11 01 01 11
100 11 10 11 00 00
101 11 10 00 10 11
110 11 01 01 11 00
111 11 01 10 01 11

and confirm that 


000
001
010
011
100
101
110
111





11101100000011101100
0000111011



3×10︸ ︷︷ ︸

generator
matrix

=




0000000000
0000111011
0011101100
0011010111
1110110000
1110001011
1101011100
1101100111




holds and hence this convolutional code is a linear code.

(b) The answer is negative because, for example, not all circular shifts of codeword
0000111011 are codewords.

(c) If the answer were positive, then the code polynomial must satisfy

c(X) = (a0 + a1X + a2X
2) (1 + g1X + · · ·+ g6X

6 +X7)︸ ︷︷ ︸
g(X)

for some g(X). By this definition, we know when a1 = a2 = 0, c(X) = g(X).
Apparently from the table in (a), when a0a1a2 = m0m1m2 = 100, c(X) = 1 + X +
X2 +X4 +X5 does not fulfill the requirement.

2

Note: Note that we require g0 = g7 = 1 for g(X). Thus, reordering a0a1a2 =
m2m1m0 = 100 or even setting a0a1a2 = m1m0m2 = 100 also cannot result in a
legitimate g(X).

(d) From (a), the minimum weight (i.e., the number of 1s) of non-zero codewords is 5.

(e) Continueing from (d), we derive

d2E,min = ‖
√
E(−1)0000000000,

√
E(−1)0000111011‖2

= dH,min

(√
E − (−

√
E)
)2

= 4E dH,min

= 20E

Note: From Slide IDC 7-91, we have an upper error bound for the solf-decision de-
coding as

e
−dH,free

E
N0 = e

− d2E,free
4N0

where the equality follows from d2E,min = 4E dH,min. This formula is exactly what we
obtain in Slide IDC 8-10.

2. Continue from Problem 1. For a linear code, the optimal error performance can be obtained
by assuming that the all-zero codeword is transmitted, i.e.,

Pe =
∑
c∈C

Pr(c) Pr(ĉ �= c|c) = Pr(ĉ �= 0000000000|c = 0000000000),

where ĉ is the optimal decoding decision when c is transmitted. Index the codewords, as
well as the corresponding coded signals, as follows:

c1 00 00 00 00 00 s1 +
√
E,+

√
E,+

√
E,+

√
E,+

√
E,+

√
E,+

√
E,+

√
E,+

√
E,+

√
E

c2 00 00 11 10 11 s2 +
√
E,+

√
E,+

√
E,+

√
E,−√

E,−√
E,−√

E,+
√
E,−√

E,−√
E

c3 00 11 10 11 00 s3 +
√
E,+

√
E,−√

E,−√
E,−√

E,+
√
E,−√

E,−√
E,+

√
E,+

√
E

c4 00 11 01 01 11 s4 +
√
E,+

√
E,−√

E,−√
E,+

√
E,−√

E,+
√
E,−√

E,−√
E,−√

E

c5 11 10 11 00 00 s5 −√
E,−√

E,−√
E,+

√
E,−√

E,−√
E,+

√
E,+

√
E,+

√
E,+

√
E

c6 11 10 00 10 11 s6 −√
E,−√

E,−√
E,+

√
E,+

√
E,+

√
E,−√

E,+
√
E,−√

E,−√
E

c7 11 01 01 11 00 s7 −√
E,−√

E,+
√
E,−√

E,+
√
E,−√

E,−√
E,−√

E,+
√
E,+

√
E

c8 11 01 10 01 11 s8 −√
E,−√

E,+
√
E,−√

E,−√
E,+

√
E,+

√
E,−√

E,−√
E,−√

E

From the union bound in Slide IDC 2-59, we have

Pr(ŝ = s2|s = s1) ≤ Pr(ŝ �= s1|s = s1)

= Pr(ŝ = s2 or s3 or · · · or s8|s = s1)

≤
8∑

i=2

Pr(ŝ = si|s = s1)

Represent the lower and upper bound in terms of the cdf of the standard normal Φ(·).

3

Hint: From Slides IDC 1-60 (or Slide IDC 7-91 and Problem 1(e)),

Pr(ŝ = si|s = s1) = Φ


−
√

‖si − s1‖2
2N0


 .

Solution. The code contain four non-zero codewords of weight 5, two non-zero codewords
of weight 6, and one non-zero codeword of weight 7. Thus,

Pr(ŝ = s2|s = s1) = Φ

(
−
√

10
E

N0

)
≤ Pe

≤
8∑

i=2

Pr(ŝ = si|s = s1)

= 4Φ

(
−
√

10
E

N0

)
+ 2Φ

(
−
√

12
E

N0

)
+ Φ

(
−
√

14
E

N0

)

Note: The dominant pairwise error derived in Slide IDC 7-91 is actually a lower bound of
the optimal error probability.

3. Determine dE,free via the signal diagram in Slide IDC 8-13.

Solution. For the determination of dE,free, we only need to consider the smaller distance
between the two on a branch. For example, Dd22−d20 ;Dd20 can be simplified to Dd20 since

d20 = 2−
√
2 < d22 − d20 = 4− (2−

√
2) = 2 +

√
2.

Note that the output 000 due to input 00 should be ignored.

We then list the four equations to be solved jointly.


b = Dd21L · a0 + L · c
c = Dd20L · b+Dd20L · d
d = Dd20L · b+Dd20L · d
a1 = Dd21L · c+Dd22L · a0︸ ︷︷ ︸

‘1’ should
be ignored!

With c = d, the four equations are reduced to

b = Dd21L · a0 + L · c
c = Dd20L · b+Dd20L · c = Dd20L ·

(
Dd21L · a0 + L · c

)
+Dd20L · c

a1 = Dd21L · c+Dd22L · a0
From the equation in the middle, we get

c =
Dd21+d20L2

1−Dd20L2 −Dd20L
· a0

4

Consequently,

a1 = Dd21L · c+Dd22L · a0
= Dd21L ·

(
Dd21+d20L2

1−Dd20L2 −Dd20L
· a0
)

+Dd22L · a0

=

(
D2d21+d20L2

1−Dd20(L2 + L)
+Dd22

)
L · a0

=
(
D2d21+d20L2

[
1 +Dd20(L2 + L) +D2d20(L2 + L)2 + · · ·

]
+Dd22

)
L · a0.

The lowest order term Dd22L indicates that there exists dE,free = d2 with one branch tran-
sition.

Note: From the derivation, we also know that the second largest “distance deviation”
from the all-zero coded signal is d =

√
2d21 + d20 that can be achieved with three branch

transitions.

4. Consider the 4-state Ungerboeck trellis coded modulation below.

Fill in the eight output 8-PSK signals corresponding to the inputs indicated.

Solution. See Slide IDC 8-7.

5

5. (a) In the dotted box below, what is the set of transitions B3,4(0) ⊂ S3×S4 corresponding
to symbol 0?

(b) The BCJR algorithm intends to minimize a particular bit error such as the one from
level 3 to level 4. The decision is based on the log-likelihood ratio

l(4) = log

∑
(S3,S4)∈B3,4(1)

P (S3, S4, r)∑
(S3,S4)∈B3,4(0)

P (S3, S4, r)

The technique is to decompose P (S3, S4, r) into the product of α(S3), β(S4) and
γ(S3, S4), where α(S3) is only a function of the portion of the received vector before
level 3, β(S4) is only a function of the portion of the received vector after level 4, and
γ(S3, S4) is only a function of the portion of the received vector between levels 3 and
4. Please complete the following derivation.

P (S3, S4, r
N
1) = P (S3, S4, r61︸︷︷︸

past

, r87︸︷︷︸
now

, rN9︸︷︷︸
future

)

= P (rN9 |·, ·, ·, ·)P (·, ·, ·, ·)
= P (rN9 |·)P (·, ·, ·, ·)

(Explain why we can simplify the first term.)

= P (rN9 |·)P (·, ·)P (S4, r
8
7|·, ·)

= P (rN9 |·)P (·, ·)P (S4, r
8
7|·)

(Explain why we can simplify the last term.)

Indicate which part the α-function is, which part the β-function is, and which part
the γ-function is.

(c) The computation of α and β functions can be done recursively, provided that γ func-

6

tion is given. Please complete the recursive derivation below.

α(S3) = P (S3, r
6
1)

=
∑

S2∈{a,b,c,d}
P (S2, S3, r

4
1, r

6
5)

=
∑

S2∈{a,b,c,d}
P (S2, ·)P (S3, ·|S2, ·)

=
∑

S2∈{a,b,c,d}
P (S2, ·)P (S3, ·|S2)

=
∑

S2∈{a,b,c,d}
α(S2)γ(S2, S3)

and

β(S4) = P (rN9 |S4)

=
∑

S5∈{a,b,c,d}
P (S5, r

10
9 , rN11|S4)

=
∑

S5∈{a,b,c,d}
P (·|S4, S5, ·)P (S5, ·|S4)

=
∑

S5∈{a,b,c,d}
P (·|S5)P (S5, ·|S4)

=
∑

S5∈{a,b,c,d}
β(S5)γ(S4, S5)

Solution.

(a) B3,4(0) = {(a, a), (b, c), (c, a), (d, c)}
(b)

P (S3, S4, r
N
1) = P (S3, S4, r61︸︷︷︸

past

, r87︸︷︷︸
now

, rN9︸︷︷︸
future

)

= P (rN9 |S3, S4, r
6
1, r

8
7)P (S3, S4, r

6
1, r

8
7)

= P (rN9 |S4)P (S3, S4, r
6
1, r

8
7)

(Because (S3, r
6
1, r

8
7) → S4 → rN9 forms a Markov chain.)

(P (rN9 |S4) is only a function of the “future” received vector rN9
and state S4; thus, it can be served as the desired β-function.)

= P (rN9 |S4)P (S3, r
6
1)P (S4, r

8
7|S3, r

6
1)

= P (rN9 |S4)P (S3, r
6
1)P (S4, r

8
7|S3)

(Because r61 → S3 → (S4, r
8
7) forms a Markov chain.)

(P (S3, r
6
1) is only a function of “past” r61 and state S3;

thus, we obtain the desired α-function.)

(P (S4, r
8
7|S3) is only a function of “now” r87 and states S3, S4;

thus, we obtain the desired γ-function.)

7

(c) See Slides IDC 8-32 and IDC 8-33.

Note: The decomposition of γ-function into the product of “systematic” part, “parity”
part and “prior” part is also important, and shall be included in your preparation of
the final exam.

6. (a) What is the code rate of an (n, tc, tr) regular low-density parity-check code?

(b) For a given parity-check matrix

H(n−k)×n =



1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0




4×6

draw Forney’s factor graph (or bipartite graph) with six variable nodes and four check
nodes.

(c) The Gallager Sum-Product Algorithm can be described as follows.

Step 1. Initialization. Set P 1
i,j = p1j = P (cj = 1|rj) for 0 ≤ i ≤ 2.

Step 2. Check Node Update (Horizontal Step). Perform

Q1
i,j =

1

2


1 + ∏

k∈Check(i)\{j}
(2P 1

i,k − 1)




where Check(i) is the set of indices of variable nodes that connect to check node
i.

Step 3. Variable Node Update (Vertical Step). Perform

P 1
i,j =

p1j
∏

k∈Bit(j)\{i}
Q1

k,j

p1j
∏

k∈Bit(j)\{i}
Q1

k,j + (1− p1j)
∏

k∈Bit(j)\{i}
(1−Q1

k,j)

where Bit(j) is the set of indices of check nodes that connect to variable node j.

Step 4. Decision. Compute

P 1
j =

p1j
∏

k∈Bit(j)

Q1
k,j

p1j
∏

k∈Bit(j)

Q1
k,j + (1− p1j)

∏
k∈Bit(j)

(1−Q1
k,j)

and

ĉj =

{
1, if P 1

j > 1
2

0, if P 1
j < 1

2

Step 5. Termination. If ĉHT = 0, the algorithm stops;
else set p1j = P 1

j and go to Step 2.

8

Suppose the all-zero codeword is transmitted (where we map {0, 1} to {1,−1}) and
initially, we have

p1j = P ((−1)cj = 1|rj) = 0.9 for 1 ≤ j ≤ 5

and
p10 = P ((−1)c0 = 1|r0) = 0.1.

What are the values of Q1
0,0, Q

1
1,0 and Q1

2,0, Q
1
3,0?

(d) Perform the decision step to find P 1
0 using the result in (c).

Solution.

(a) k
n
= 1− tc

tr

(b)

(c) Initially, we have 


P 1
0,0 P 1

1,0 P 1
2,0 P 1

3,0

P 1
0,1 P 1

1,1 P 1
2,1 P 1

3,1

P 1
0,2 P 1

1,2 P 1
2,2 P 1

3,2

P 1
0,3 P 1

1,3 P 1
2,3 P 1

3,3

P 1
0,4 P 1

1,4 P 1
2,4 P 1

3,4

P 1
0,5 P 1

1,5 P 1
2,5 P 1

3,5


 =




0.1 0.1 0.1 0.1
0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9




Also, we know Check(0)={0, 2, 4}, Check(1)={0, 3, 5}, Check(2)={1, 2, 5} and Check(3)={1, 3, 4}.
This gives

Q1
0,0 =

1

2


1 + ∏

k∈Check(0)\{0}
(2P 1

0,k − 1)


 =

1

2


1 + ∏

k∈{2,4}
(2P 1

0,k − 1)


 = 0.82

Q1
1,0 =

1

2


1 + ∏

k∈Check(1)\{0}
(2P 1

1,k − 1)


 = 0.82

Q1
2,0 =

1

2


1 + ∏

k∈Check(2)\{0}
(2P 1

2,k − 1)


 = 0.756

and

Q1
3,0 =

1

2


1 + ∏

k∈Check(3)\{0}
(2P 1

2,k − 1)


 = 0.756

9

Note: Q1
0,0 represents the probability that check 0 is satisfied (i.e., check0 = 1) given

(−1)c0 = 1.

(d) With Bit(0)={0, 1}, we have

P 1
0 =

p10
∏

k∈Bit(0)

Q1
k,0

p10
∏

k∈Bit(0)

Q1
k,0 + (1− p10)

∏
k∈Bit(0)

(1−Q1
k,0)

=
0.1 · 0.82 · 0.82

0.1 · 0.82 · 0.82 + 0.9 · 0.18 · 0.18
≈ 0.698

Note: Initially, we have p10 = 0.1; after the first iteration, this probability is raised to
0.698 (refined based on the probabilistic messages or beliefs from the other nodes).

10

