1. A general noise figure formula for a balanced load system is given below:

$$(F-1) = (F_1-1) + \frac{1}{G_1}(F_2-1) + \frac{1}{G_1G_2}(F_3-1) + \cdots$$

- (a) (30%) Suppose three devices respectively have power gains $G_a = 1$, $G_b = 10$ and $G_c = 100$ and NFs $F_a = F_b = F_c$. Find the cascaded sequence of the three devices that **minimizes** the overall noise figure F. You shall provide either derivation or argument about why your cascaded sequence minimizes the overall noise figure.
- (b) (30%) Re-do (a) by finding the cascaded sequence of the three devices that **maximizes** the overall noise figure F.
- (c) (40%) What are the resulting noise figures in (a) and (b) if $F_a = F_b = F_c = 2$?

Solution.

(a) Since

$$(F-1) = (F_a - 1) + \frac{1}{G_1}(F_a - 1) + \frac{1}{G_1G_2}(F_a - 1) = (F_a - 1)\left(1 + \frac{1}{G_1} + \frac{1}{G_1G_2}\right), (1)$$

it is clear that G_1 should be made as large as possible, and G_2 should be the second largest. Thus, the cascaded sequence of the three devices, which minimizes the overall noise figure, is cba.

- (b) Again, from the formula in (1), we shall make G_1 as small as possible, and G_2 should be the second smallest. Thus, the cascaded sequence of the three devices, which maximizes the noise figure, is abc.
- (c) For (a), we have $(F_1 1) = (F_a 1) \times 1.011 = 1.011$ since $G_1 = 100$ and $G_2 = 10$. For (b), we have $(F_1 - 1) = (F_a - 1) \times 2.1 = 2.1$ since $G_1 = 1$ and $G_2 = 10$.

Note: If $F_a = F_b = F_c = 1$ (i.e., ideal devices are designed and built), then the cascaded order has nothing to do with the performance. However, for non-ideally constructed devices, we do favor putting a high-gain device in front. As you can see, by cascading devices in an improper order, the noise figure can be doubled.