
Problems for Midterm 1

1. Define the inner product of two signals as

〈φ1(t), φ2(t)〉 �
∫ T

0

φ1(t)φ
∗
2(t)dt.

(a) (8%) Given that 2(f1 + f2)T is an integer, what is the smallest non-zero value of
|f1 − f2| such that

φ1(t) =

√
2

T
cos(2πf1t) and φ2(t) =

√
2

T
cos (2πf2t)

are orthogonal?

(b) (8%) Show that the projections of a zero-mean white noise process w(t) onto two
orthonormal basis φ1(t) and φ2(t) are uncorrelated.

Hint: Rw(τ) = E[w(t+ τ)w∗(t)] = N0

2
δ(τ). Note that in this sub-problem, w(t), φ1(t)

and φ2(t) are generally complex-valued functions.

Hint: By definition, w1 and w2 are uncorrelated if E[w1w
∗
2] = E[w1]E[w∗

2].

Solution.

(a)

〈φ1(t), φ2(t)〉
=

2

T

∫ T

0

cos(2πf1t) cos (2πf2t) dt

=
2

T

∫ T

0

cos(2π(f1 + f2)t) + cos(2π(f1 − f2)t)

2
dt

=
sin(2π(f1 + f2)T )

2π(f1 + f2)T︸ ︷︷ ︸
=0 because 2(f1+f2)T integer

+
sin(2π(f1 − f2)T )

2π(f1 − f2)T

=
sin(2π(f1 − f2)T )

2π(f1 − f2)T

Hence, the smallest non-zero value of |f1 − f2| such that

φ1(t) =

√
2

T
cos(2πf1t) and φ2(t) =

√
2

T
cos (2πf2t)

are orthogonal is 2|f1 − f2|T = 1, which implies |f1 − f2| = 1
2T
.

(b) Let w1 = 〈w(t), φ1(t)〉 and w2 = 〈w(t), φ2(t)〉. By definition, w1 and w2 are uncorre-
lated if E[w1w

∗
2] = E[w1]E[w∗

2] = 0, where the last equality holds because w(t) is a
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zero-mean process. Hence, we derive

E[w1w2] = E [〈w(t), φ1(t)〉 · (〈w(t), φ2(t)〉)∗]

= E

[(∫ T

0

w(t)φ∗
1(t)dt

)
·
(∫ T

0

w(s)φ∗
2(s)ds

)∗]

=

∫ T

0

∫ T

0

E [w(t)w∗(s)]φ∗
1(t)φ2(s)dtds

=

∫ T

0

∫ T

0

N0

2
δ(t− s)φ∗

1(t)φ2(s)dtds

=
N0

2

∫ T

0

φ∗
1(t)φ2(t)dt

=
N0

2
〈φ2(t), φ1(t)〉

= 0

2. (12%) Consider a binary FSK signaling scheme defined by

s(t) =

∞∑
n=−∞

g(t− nTb) cos

(
2πfct+

n−1∑
k=−∞

Ikπh+ Inπh

(
t− nTb

Tb

))
, (1)

where

g(t) =

{
1, 0 ≤ t < Tb;

0, otherwsie.

We have learned that phase-continuity is guaranteed by the formulation in (1) if In ∈ {±1}.
Is phase-continuity still valid if we allow In ∈ {±1,±3}? Justify your answer.

Hint: Discontinuity can only occur at t = nTb; thus, we require

lim
t↑nTb

s(t) = lim
t↓nTb

s(t)

for arbitrary In−1 and In and for arbitrary integer n. Note that t ↑ nTb means that t
approaches nTb from below, and t ↓ nTb means that t approaches nTb from above.

Solution. For phase-continuity, we observe that discontinuity can only occur at t = �Tb;
thus, we require limt↑�Tb

s(t) = limt↓�Tb
s(t). Derive

lim
t↑�Tb

s(t)

= lim
t↑�Tb

∞∑
n=−∞

g(t− nTb) cos

(
2πfct +

n−1∑
k=−∞

Ikπh+ Inπh

(
t− nTb

Tb

))

= cos

(
2πfc�Tb +

�−2∑
k=−∞

Ikπh+ I�−1πh

(
�Tb − (�− 1)Tb

Tb

))
(i.e., n = �− 1)

= cos

(
2πfc�Tb +

�−1∑
k=−∞

Ikπh

)
,
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and

lim
t↓�Tb

s(t) = s(�Tb)

=
∞∑

n=−∞
g(t− nTb) cos

(
2πfct +

n−1∑
k=−∞

Ikπh+ Inπh

(
t− nTb

Tb

))∣∣∣∣∣
t=�Tb

= cos

(
2πfc�Tb +

�−1∑
k=−∞

Ikπh

)
(i.e., n = �).

Thus, the FSK scheme in (1) fulfills phase-continuity no matter what In is.

3. For digital communications, we can ignore completely the waveforms and work on the
system design over the projections (i.e., over the signal constellation). Suppose a N -
dimensional constellation is constructed. A system designer chooses two constellation
points s1 and s2 for binary transmission over the AWGN channel. The additive noise
vector n has the pdf

1

(2πσ2)N/2
exp

{
−‖n‖2

2σ2

}
.

(a) (8%) Complete the optimal decision rule below by filling in the quantity inside paren-
theses for the received vector x = s + n,

〈x, s1 − s2〉
s2 is trasmitted

≶
s1 is transmitted

( )

where s is either s1 or s2 with equal probability.

Hint: MAP decision rule:

ŝMAP = max
m=1,2

1

(2πσ2)N/2
exp

{
−‖x− sm‖2

2σ2

}
= min

m=1,2
‖x− sm‖2.

(b) (8%) Suppose

x =



x1

x2

x3

x4


 , s1 =



a1
a2
0
0


 , s2 =



0
0
a1
a2


 , n =



n1

n2

n3

n4




are four dimensional vectors, and the receiver can only observe

�21 � x2
1 + x2

2 and �22 � x2
3 + x2

4.

The receiver thus adopts the decision rule as:

�21

s2 is trasmitted

≶
s1 is transmitted

�22
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Complete the derivation of the probability of erroneous decision given s = s1 below:

Pr[�21 ≤ �22|s = s1] = Pr

(
x2
1 + x2

2 ≤ x2
3 + x2

4

)
with



x1 ∼ N (a1, σ

2)

x2 ∼ N (a2, σ
2)

x3 ∼ N (0, σ2)

x4 ∼ N (0, σ2)

= Pr

(√
x2
1 + x2

2 ≤ �2

)
with



x1 ∼ N (a1, σ

2)

x2 ∼ N (a2, σ
2)

�2 Rayleigh with E[�22] = 2σ2

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

(x1−a1)
2

2σ2 e−
(x2−a2)

2

2σ2

(∫ ∞
√

x2
1+x2

2

�2
σ2

e−
�22
2σ2 d�2

)
dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

(x1−a1)
2

2σ2 e−
(x2−a2)

2

2σ2

(
e−

x21+x22
2σ2

)
dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

2x21−2a1x1+a21+2x22−2a2x2+a22
2σ2 dx1dx2

= · · ·

Hint: The pdf of �2 �
√

n2
3 + n2

4 is �2
σ2 e

− �22
2σ2 for �2 ≥ 0.

Solution.

(a) ŝMAP = s1 if ‖x− s1‖2 ≤ ‖x− s2‖2, and ŝMAP = s2, otherwise. Derive

‖x− s1‖2 ≤ ‖x− s2‖2
⇔ ‖x‖2 + ‖s1‖2 − 2〈x, s1〉 ≤ ‖x‖2 + ‖s2‖2 − 2〈x, s2〉
⇔ ‖s1‖2 − ‖s2‖2 ≤ 2〈x, s1〉 − 2〈x, s2〉 = 2〈x, s1 − s2〉

Consequently, the optimal decision rule is

〈x, s1 − s2〉
s2 is trasmitted

≶
s1 is transmitted

‖s1‖2 − ‖s2‖2
2

(b)

Pr[�21 ≤ �22|s = s1] = · · ·
=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

2x21−2a1x1+a21+2x22−2a2x2+a22
2σ2 dx1dx2

=
1

2
e−

(a21+a22)

4σ2

∫ ∞

−∞

∫ ∞

−∞

1

πσ2
e−

(x1− 1
2 a1)

2

σ2 e−
(x2− 1

2a2)
2

σ2 dx1dx2

=
1

2
e−

(a21+a22)

4σ2

(
=

1

2
e−

‖s1‖2
4σ2

)
.

4. Below is the functional diagram of the V.32 16-QAM Hybrid amplitude/phase modulation
scheme:
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(a) (8%) Assume I1,−1 = I2,−1 = 1. Give the sequence of 16QAM symbols (indicated by
their coordinates) corresponding to

(Q1,0Q2,0Q3,0Q4,0 Q1,1Q2,1Q3,1Q4,1 Q1,2Q2,2Q3,2Q4,2) = (1001 1010 0000)

(b) (8%) Suppose there is a 90◦ phase difference between the transmitter and the receiver,
i.e., [

areceive
breceive

]
=

[
0 −1

1 0

] [
atransmit

btransmit

]
.

By using the nearest Euclidean distance criterion, recover the transmitted infor-
mation sequence (Q1,0Q2,0Q3,0Q4,0Q1,1Q2,1Q3,1Q4,1Q1,2Q2,2Q3,2Q4,2) from the rotated
16QAM symbols.

Hint: The nearest Euclidean distance decision can be made separately on x-axis and
y-axis over the 16QAM constellation with thresholds −2, 0 and 2.

Solution.

(a)

n I1,n−1I2,n−1 Q1,nQ2,n phase change I1,nI2,n Q3,nQ4,n 16QAM symbol n
0 11 10 180 00 01 (−3,−1)
1 00 10 180 11 10 (1, 3)
2 11 00 90 10 00 (−1, 1)

(b) [
1
−3

]
=

[
0 −1

1 0

] [−3
−1

]
→

[
1
−3

]
,

[−3
1

]
=

[
0 −1
1 0

] [
1
3

]
→

[−3
1

]
,

and [−1
−1

]
=

[
0 −1
1 0

] [−1
1

]
→

[−1
−1

]
.

Therefore,

n 16QAM symbol n I1,nI2,n Q3,nQ4,n I1,n−1I2,n−1 phase change Q1,nQ2,n

0 (1,−3) 01 01 11 270 11
1 (−3, 1) 10 10 01 180 10
2 (−1,−1) 00 00 10 90 00
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and

(Q̂1,0Q̂2,0Q̂3,0Q̂4,0Q̂1,1Q̂2,1Q̂3,1Q̂4,1Q̂1,1Q̂2,1Q̂3,1Q̂4,1) = (1101 1010 0000)

where red-color numbers indicate the errors during transmission.

5. Suppose we now have three independent channels with transmission powers P1, P2 and
P3, respectively. The transmission rates attainable are governed by the Shannon capacity
formula as:

1

2
log2

(
1 +

Pi

σ2
i

)
for i = 1, 2, 3,

where σ2
i is the noise power of the ith channel. The sum rate is thus equal to

R(�P ) =
3∑

i=1

1

2
log2

(
1 +

Pi

σ2
i

)
,

where �P = (P1, P2, P3).

(a) (8%) Subject to P1 + P2 + P3 = P > 0, we wish to find the optimal power allocation

that maximizes R(�P ), i.e.,

�P opt = argmax �P∈QR(�P ),

where

Q �
{
(P1, P2, P3) : Pi ∈ R+ for i = 1, 2, 3, and P1 + P2 + P3 = P

}
and R+ is the set of non-negative real numbers. Define

f(�P , λ) = R(�P ) + λ
(
P − P1 − P2 − P3

)
.

Does the following equation hold:

max
�P∈Q

R(�P ) = max
�P∈Q

f(�P , λ)?

Justify your answer.

(b) (8%) Instead of working on max�P∈Q f(�P , λ), we turn to the determination of the

power allocation that maximizes its upper bound max �P∈(R+)3 f(
�P , λ). The necessary

condition for an optimizer �P ∗ to maximize f(�P , λ) over �P ∈ (R+)3 must satisfy

∂f(�P , λ)

∂Pi

{
= 0, if P ∗

i > 0

≤ 0, if P ∗
i = 0

Explain why we need to introduce the inequality condition ∂f(�P ,λ)
∂Pi

≤ 0 when P ∗
i = 0.

Hint: f(�P , λ) is concave with respect to each Pi, and you may draw a picture to
explain what happens when P ∗

i = 0.
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(c) (8%) From (b), we know that the optimal power allocation that achieves max �P∈(R+)3 f(
�P , λ)

satisfies

σ2
i + P ∗

i

{
= K = log2(e)

6λ
, if P ∗

i > 0

≥ K if P ∗
i = 0.

(2)

Let σ2
1 = σ2

2 = 1 and σ2
3 = 3, and let P = 2. Argue that P ∗

1 = P ∗
2 = 1 and P ∗

3 = 0

maximizes R(�P ) among all �P ∈ Q.

You shall give the value of K (equivalently, λ) if you think (P ∗
1 , P

∗
2 , P

∗
3 ) = (1, 1, 0)

satisfies (2).

Hint: max
�P∈Q

R(�P ) = max
�P∈Q

f(�P , λ) ≤ max
�P∈(R+)3

f(�P , λ)

Solution.

(a) Yes because R(�P ) = f(�P , λ) for every �P ∈ Q (regardless of λ chosen).

(b) Since R(�P ) is concave with respect to each Pi, its optimizer may occur at an Pi < 0
as shown in the below figure.

In such case, a feasible maximizer is P ∗
i = 0 and the derivative at this point is non-

positive.

(c) With K = 2 (= log2(e)
6λ

), we have

σ2
1 + P ∗

1 = 1 + 1 = 2, if P ∗
1 = 1 > 0

σ2
2 + P ∗

2 = 1 + 1 = 2, if P ∗
2 = 1 > 0

σ2
3 + P ∗

3 = 3 + 0 ≥ 2 if P ∗
3 = 0.

Therefore,

(
with λ = log2(e)

12
,

)

max
�P∈Q

R(�P ) = max
�P∈Q

f(�P , λ) ≤ max
�P∈(R+)3

f(�P , λ) = f((1, 1, 0), λ).

Since f((1, 1, 0), λ) = R(1, 1, 0) as �P = (1, 1, 0) ∈ Q, we obtain

R(1, 1, 0) ≤ max
�P∈Q

R(�P )

(
= max

�P∈Q
f(�P , λ) ≤ max

�P∈(R+)3
f(�P , λ) = f((1, 1, 0), λ)

)
= R(1, 1, 0).

Consequently, R(1, 1, 0) = max�P∈QR(�P ).

6. The block diagram of a discrete transmission using guard period to avoid ISI is pictured
as follows.
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(a) (8%) Suppose ν = 2, N = 4 and s[0] = 1+ j, s[1] = 1− j, s[2] = 1+ j, s[3] = −1− j.
Give the values of s[−1] and s[−2] such that output x[0], x[1], x[2], x[3] become a
circular convolution of input s[0], s[1], s[2], s[3] and channel impulse response h[0]= 1,
h[1]= h1, h[2]= h2, i.e.,

x =



x[3]
x[2]
x[1]
x[0]


 =



1 h1 h2 0
0 1 h1 h2

h2 0 1 h1

h1 h2 0 1





s[3]
s[2]
s[1]
s[0]


+



w[3]
w[2]
w[1]
w[0]


 = Hcirculants+w.

(b) (8%) A circulant matrix satisfies QHcirculant = ΛQ, where

Λ =



λN−1 0 0 · · · 0
0 λN−2 0 · · · 0
0 0 λN−3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ0




and

Q =
1√
N



e−j 2π

N
(N−1)(N−1) · · · e−j 2π

N
2(N−1) e−j 2π

N
(N−1) 1

e−j 2π
N

(N−1)(N−2) · · · e−j 2π
N

2(N−2) e−j 2π
N

(N−2) 1
...

. . .
...

...
...

e−j 2π
N

(N−1) · · · e−j 2π
N

2 e−j 2π
N 1

1 · · · 1 1 1


 .

Prove that

Q




0
...
0
hν

hν−1
...
h0




︸ ︷︷ ︸
�h

=
1√
N



λN−1

λN−2
...
λ0


 .

In other words, the eigenvalues λN−1, λN−2, . . ., λ0 are the N -point discrete Fourier
transform of hν , hν−1, . . ., h0.
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Hint: �h is the last column of Hcirculant, where

Hcirculant =




h0 h1 h2 · · · hν−1 hν 0 · · · 0
0 h0 h1 · · · hν−2 hν−1 hν · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 h0 h1 · · · hν

hν 0 0 · · · 0 0 h0 · · · hν−1
...

...
...

. . .
...

...
...

. . .
...

h1 h2 h3 · · · hν 0 0 · · · h0



.

Solution.

(a) s[−1] = s[3] = −1− j and s[−2] = s[2] = 1 + j.

(b) From QHcirculant = ΛQ, and noting that the last column of
√
NQ is an all-one column,

we obtain

Q




0
...
0
hν

hν−1
...
h0




︸ ︷︷ ︸
�h

=
1√
N
Λ



1
1
...
1




The proof is completed by noting that

Λ



1
1
...
1


 =



λN−1

λN−2
...
λ0


 .
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