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Introduction
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Introduction

o Error correction versus error detection
n There is an alternative system approach to achieve 

reliable transmission other than forward error correction 
(FEC).

n By the system structure, it is named automatic-repeat 
request (ARQ), which is a combination of error 
detection and noiseless feedback.
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Introduction

o Classifications of ARQ
n ARQ with stop-and-wait strategy

o After the transmission of a codeword, the transmitter stops and 
waits for the feedback before moving onto the next block of 
message bits.

n Continuous ARQ with pullback
o The transmitter continues its transmissions until a 

retransmission request is received, at which point it stops and 
pulls back to the incorrectly transmitted codeword.

n Continuous ARQ with selective repeat
o Only retransmit the codewords that are incorrectly transmitted.
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Linear Block Codes

o Linear code
n A code is linear if any two codewords in the code can 

be added in modulo-2 arithmetic to produce a third 
codeword in the code.

n The codewords of a linear code can always be obtained 
through a “linear” operation in the sense of modulo-2 
arithmetic.
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Linear Block Codes

o For a linear code, there exists a k-by-n generator matrix G
such that

o Generator matrix G is said to be in the canonical form if its 
k rows are linearly independent.
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What will happen if one row is linearly dependent on other rows?

Suppose

Then
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Hence, the number of distinct code words is at most 2k-1 (not the anticipated 2k).
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Linear Block Codes

o Parity-check matrix H
n The parity-check matrix of a canonical generator matrix 

is an (n-k)-by-n matrix satisfying 

where the columns of H are linearly independent. 
n Then, the codewords (or error-free receptions) should 

satisfy (n-k) parity-check equations.
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Linear Block Codes

o Syndrome s
n The receptions may be erroneous (with error pattern e).

n With the help of parity-check matrix, we obtain
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Linear Block Codes

o In short, syndromes are all possible symptoms that possibly happen at 
the output of parity-check examination.
n Similar to the disease symptoms that can be observed and examined 

from outside the body.
n Based on the symptoms, the doctors diagnose (possibly) what 

disease occurs inside the body. 
o Based on the symptoms, the receiver “diagnoses” which bit is erroneous 

(i.e., ill) based on the symptoms (so that the receiver can correct the “ill” 
bit.)
n Notably, the syndrome only depends on the error pattern, and is 

completely independent of the transmitted codeword.
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Linear Block Codes

o Properties of syndromes
n Syndrome depends only on the error pattern, and not on 

the transmitted code word.

n All error patterns that differ by (at least) a code word 
have the same syndrome s.
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1. All elements in a coset have the same syndrome since

2. There are 2k elements in a coset since 

3. Cosets are disjoint.

i.e., coset elements are the same iff two codewords are the 
same. 

4. The number of cosets is 2n-k, i.e., the number of syndromes  
is 2n-k.
Thus, syndromes (with only (n-k) unknowns) cannot uniquely 
determine the error pattern (with n unknowns).

0. It suffices to fix the error pattern e and vary the codewords
when determining the coset. 
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Linear Block Codes

o Systematic code
n A code is systematic if the message bits are a part of the 

codewords.
n The remaining part of a systematic code is called parity 

bits.

n Usually, message bits are transmitted first because the 
receiver can do “direct hard decision” when “necessary”.
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Linear Block Codes

o For a systematic code,

n Example. (n, 1) repetition codes 

and
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Linear Block Codes

o Error correcting capability of a linear block code
n Hamming distance (for “0”- “1” binary sequences)

n Minimum (pair-wise) Hamming distance dmin
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n Operational meaning of the minimum (pair-wise) 
Hamming distance

There exists at least a 
pair of codewords, of 
which the distance is dmin.

n Minimum distance decoder
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n Based on the minimum distance decoder, if the received 
vector and the transmitted codeword differ at most 

namely, if the number of 1’s in the (true) error pattern is at 
most this number, then no error in decoding decision is 
obtained.

n If the received vector and the transmitted codeword
differ at t positions, where 

then erroneous decision is possibly made (such as when the 
transmitted codeword is one of the pairs with distance dmin.)
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n We therefore name this quantity the error correcting 
capability of a code (not limited to linear block codes). 

n The error correcting capability of a linear block code 
can be easily determined by the minimum Hamming 
weight of codewords. (This does not apply for non-
linear codes!)

n By linearity, 
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Linear Block Codes

o Syndrome decoding for (n, k) linear block codes
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Linear Block Codes

Find the element in coset(rHT), who has the minimum weight.
This element is usually named the coset leader.
The coset leader in each coset is fixed and known before the reception of r.

o Syndrome decoding using standard array for an (n, k) block 
code

= 0

syndrome rHT
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Linear Block Codes

o Example: (7,4) Hamming codes
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Linear Block Codes

o Decoding table
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Linear Block Codes

o Appendix: The notion of perfect code
n (7, 4) Hamming code is a binary perfect code.

All of the 27 = 128 
binary sequences are 
confined with the 24 = 
16 non-overlapping 
balls of radius 1,

For (7,4) Hamming code, 
the coset leaders form a 
perfect ball (of radius 1).
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Linear Block Codes

o Dual code

n Every (n, k) linear block code with generator matrix G
and parity-check matrix H has an (n, n-k) dual code 
with generator matrix H and parity-check matrix G.
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Polynomial Codes/Cyclic Codes

o Polynomial expression of a linear code
n Polynomial code: A special type of linear codes.

o Represent a code [c0, c1, …, cn-1] as a code 
polynomial of degree n-1

where X is called the indeterminate.
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Polynomial Codes/Cyclic Codes

n Generator polynomial (of a polynomial code)

n The code polynomial (of a polynomial code) includes 
all polynomials of degree (n-1), which can be divided 
by g(X), and hence can be expressed as



o Example of a (6, 3) polynomial code
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Polynomial Codes/Cyclic Codes
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Polynomial Codes/Cyclic Codes

o Property of a polynomial code
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Polynomial Codes
/Cyclic Codes

o Example of a (6, 3) 
polynomial code 
(Continue)

encode encode
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o Encoder for systematic polynomial codes

Polynomial 
Codes/Cyclic Codes



o Example of the usual long division

multiply
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Temporary quotientTemporary remainder



multiply
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Temporary quotientTemporary remainder

……. repeat this procedure until the last term is shifted into the shift register…..
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o An alternative realization of the long division (with the shift 
register containing not the remainder but the “lower power 
coefficients”)
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On for first k clocks 
Off for the remaining (n-k) clocks

Down for 
first k clocks 
Up for the 
remaining 
(n-k) clocks
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After k clocks, 

D D D D D

g1 g2 gn-k-1

codewordparity bits

On for g1=1
Off for g1=0
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Polynomial 
Codes/Cyclic Codes

o Decoder for polynomial codes
n How to find the syndrome polynomial s(X) of 

polynomial codes with respect to the received word 
polynomial r(X)?
o Recall that syndromes are all symptoms that possibly 

happen at the output of parity-check examination. 
o If there is no error in transmission, r(X) mod g(X) = 0. 

Indeed, s(X) = r(X) mod g(X).
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Polynomial Codes/Cyclic Codes

n Relation of syndrome polynomial s(X), error polynomial 
e(X) and received vector polynomial r(X) for systematic
polynomial codes.
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Polynomial Codes/Cyclic Codes

n Relation of syndrome polynomial s(X), error polynomial 
e(X) and received vector polynomial r(X) for general
polynomial codes.



© Po-Ning Chen@ece.nctu IDC7-42

Polynomial Codes/Cyclic Codes

Syndrome calculator

D D D D D

g1gn-k-1

On for g1=1
Off for g1=0gn-k-2

Received bits
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Polynomial Codes
/Cyclic Codes

o Example of a (6, 3) 
polynomial code 
(Continue)

encode encode
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Polynomial Codes/Cyclic Codes

o The decoding of a systematic code is to simply add the 
coset leader, corresponding to the syndrome polynomial, to 
the received vector polynomial. 
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Polynomial Codes/Cyclic Codes

o Definition of cyclic codes
n Cyclic property: Any cyclic shift of a codeword is also 

a codeword.
n Linearity property: Any sum of two codewords is also 

a codeword.

o A cyclic code is also a polynomial code.
n See Theorem 5.3 in Shu Lin and Daniel J. Costello, Jr, 

Error Control Coding, 2nd edition, Prentice Hall, 1983



© Po-Ning Chen@ece.nctu IDC7-47

Polynomial Codes/Cyclic Codes

o A cyclic code is a special type of polynomial codes with g(X) dividing 
(Xn+1).

o Proof: Suppose c(X) is a non-zero code polynomial.

Then
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A polynomial code is cyclic iff its generator polynomial divides Xn+1.

Therefore, 

A cyclic codeword must contain at least two 1’s, i.e., (100…000) 
cannot be a codeword of a cyclic code (except trivially g(X) = 1). 
Therefore, i in the above proof must be smaller than n. 
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Polynomial Codes/Cyclic Codes

o Parity-check polynomial of cyclic codes
n After proving that g(X) must divide Xn+1, we can define 

the parity-check polynomial of a cyclic code as

where h(X) is a polynomial of degree k with h0 = hk = 1.
n Since the degrees of g(X) and h(X) are respectively n-k

and k-1, and gn-k = hk = 1, we may induce that
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Polynomial Codes/Cyclic Codes

n Multiplying both sides by a(X) yields:
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Observation.

The parity-check matrix arranges its entries according to the coefficients of 
the parity-check polynomial in reverse order as contrary to the generator 
matrix arranges its entries according to the coefficients of the generator 
polynomial.
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Polynomial Codes/Cyclic Codes

o Remarks
n The generator matrix and parity-check matrix derived 

previously are not for systematic codes.
n We can manipulate these two matrices by adding their 

elements of selective rows so as to make them 
“systematic”.
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Polynomial Codes/Cyclic Codes

o Examples: Hamming code and Maximum-length code

n Irreducible polynomial: A polynomial that cannot be 
further factored.
o All three of the above are irreducible.

n Primitive polynomial: An irreducible polynomial of 
degree m, which divides Xn + 1 for n = 2m- 1 but does 
not divides Xn + 1 for n < 2m- 1.
o All three irreducible polynomials are primitive.
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Polynomial Codes/Cyclic Codes

n Example of cyclic codes: (7, 4, 3) Hamming code 
o Any cyclic code generated by a primitive polynomial 

is a Hamming code of minimum pairwise distance 3.
n Example of cyclic codes: (2m - 1, m, 2m-1) maximum-

length code
o The maximum-length code is a dual code of 

Hamming codes.
o In other words, it is a cyclic code with primitive 

parity-check polynomial.
o It is a code of minimum distance 2m-1 .



o It is named the maximum-length code because the 
codeword length for m information bits has been 
pushed to the maximum (or equivalently, the number 
of codewords for code of length n has been pushed to 
the minimum). For example,
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So, there are in total 7 code words if c is originally 
nonzero. Adding the all-zero codeword gives 8 = 23

codewords. This makes the (7, 3) maximum-length code.



o So, the nonzero codeword in a maximum-length 
code must be a circular shift of any other nonzero 
codeword.
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n Example of cyclic codes: Cyclic redundancy check (CRC) 
codes
o Cyclic codes are extremely well-suited for error 

detection owing to the simplicity of its implementation, 
and its superior error-detection capability. 

o Binary (n, k, dmin) CRC codes can detect:
n all contiguous error bursts of length n - k or less.
n 2n-k+1-4 of contiguous error bursts of length n-k+1
n all combinations of dmin-1 or fewer errors
n all error patterns with an odd number of errors if the 

generator polynomial g(X) has an even number of 
nonzero coefficients. 
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n Example of cyclic codes: Bose-Chaudhuri-Hocquenghem
(BCH) codes

n A special type of BCH codes: Primitive (n, k, dmin) 
BCH codes with parameters satisfying

n (n, k, 3) Hamming code can be described as BCH 
codes.

n The table in the next slide illustrates the generator 
polynomial g(X) of some binary BCH codes.
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n = block length
k = number of message bits
t = number of errors that are guaranteed correctable
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Convolutional Codes

o For block codes, the encoding and decoding must perform 
in a block-by-block basis. Hence, a big buffer for the entire 
message block and codeword block is required.

o Instead, for the convolutional codes, since the inputs and 
outputs are governed through a convolution operation of 
“finite-order” filter, only a buffer of size equal to the filter 
order is demanded. 
n “Convolution” is defined based  on modulo-2 arithmetic 

operations.
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Convolutional Codes

(n, k, m) = (2, 1, 2) convolutional code
Note that here, n is not the codeword length, k is not the message length, and m is not the 
minimum distance between codewords. See the next slide for their definitions.

Buffer two bits at a time

D D Interleaver

path 1

path 2

input
output
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Convolutional Codes

o (n, k, m) convolutional codes
n k input bits will produce n output bits.
n The most recent m “k-message-bit input blocks” will be 

recorded (buffered).
n The n output bits will be given by a linear combination of the 

buffered input bits.
n Constraint length K of a convolutional code

o It is the number of k-message-bit shifts, over which a single k-
message-bit block influences the encoder output. 

o In other words, the encoder output depends on the current input 
message block and the previous K - 1 input message blocks.

o Based on the definition, constraint length = m+1.
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Convolutional Codes

n Effective code rate of a convolutional code
o In practice, km zeros are often appended at the end of 

an information sequence to clear the shift register 
contents.

o Hence, kL message bits will produce n(L+m) output 
bits.

o The effective code rate is therefore given by:

o Since L is often much larger than m,
n k/n is named the code rate of a convolutional code. 
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Convolutional Codes

o Polynomial expression of convolutional codes
n Example (Slide IDC 7-63)

o D is used instead of X because the flip-flop (i.e., one 
time-unit delay) is often denoted by D.
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Convolutional Codes

Buffer two bits at a time

D D Interleaver
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Convolutional Codes

o Graphical expressions of convolutional 
codes
n Code tree

n Code trellis

generate the same “next code symbol”

11
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b
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d
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d
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b

c

d
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Convolutional Codes

n Code trellis (continue)

Append two zeros to clear 
the shift-register contents

Solid line : 0
Dashed line : 1 
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Convolutional Codes

n State diagram
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00
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Maximum Likelihood Decoding 
of Convolutional Codes

o Likelihood function (i.e., probability function)

o Maximum-likelihood decoding

o For equal prior probability, ML decoding minimizes the 
error rate.
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Maximum Likelihood Decoding 
of Convolutional Codes

o Minimum distance decoding
n For an additive noise,



n Example (of distance function): AWGN

n Example (of distance function): BSC
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Maximum Likelihood Decoding 
of Convolutional Codes
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Maximum Likelihood Decoding 
of Convolutional Codes

o Viterbi algorithm (for minimum distance decoding over 
code trellis)
n Optimality

One survivor path (solid 
line) for each 
intermediate node

2

3
2

2

1
2

2

2

32
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Solid line = information 0
Dashed line = information 1

Assume that the all-zero 
sequence is transmitted.
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It is possible that the ML 
codeword or the
minimum distance 
codeword is not equal to 
the transmitted codeword.

Solid line = information 0
Dashed line = information 1

Assume that the all-zero 
sequence is transmitted.
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Maximum Likelihood Decoding 
of Convolutional Codes

o Free distance of convolutional codes
n Under binary symmetric channels (BSCs), a 

convolutional code with free distance dfree can correct t
errors iff dfree is greater than 2t.

n Question: How to determine dfree?
n Answer: By signal-flow graph.
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State diagram

00
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State diagram

Signal graph
Exponent of D = Hamming weight on the branch
Exponent of L = Length of the branch

Input 100 generates a codeword of 
length 3 (branches) with weight 5.

Input 10100 generates a codeword
of length 5 (branches) with weight 6.

Example.

00 (L)

10 (DL)

10 (DL)

11 (D2L)

01 (DL) 01 (DL)

d

b ca0 a1
11 (D2L)

00

00

10

10

11 11

01 01

d

b c

a

A zero-weight input 
generates a zero-
weight code pattern.
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00 (L)

10 (DL)

10 (DL)

11 (D2L)

01 (DL) 01 (DL)

d

b ca0 a1
11 (D2L)



© Po-Ning Chen@ece.nctu IDC7-82



© Po-Ning Chen@ece.nctu IDC7-83

Maximum Likelihood Decoding 
of Convolutional Codes

o Since the distance transfer function T(D, 1) = D5 + 2 D6 + 4 
D7 + … enumerates the number of codewords that are a given 
distance apart, it follows that 

o A convolutional code may be subject to catastrophic error 
propagation.
n Catastrophic error propagation = A finite number of 

transmission errors may cause infinite number of decoding 
errors.

n A code with potential catastrophic error propagation is named 
a catastrophic code.
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A non-zero-weight 
input generates a 
zero-weight code 
pattern.
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n Alternative definition of catastrophic codes: A code for which an 
infinite weight input causes a finite weight output 
o In terms of the state diagram, a catastrophic code will have a 

loop corresponding to a nonzero input for which all the output 
bits are zeros.

n It can be proved that a systematic convolutional code cannot be 
catastrophic.

n Unfortunately, the free distance of systematic convolutional codes 
is usually smaller than that of nonsystematic convolutional codes.
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Maximum free distances attainable for convolutional codes of rate 1/2.
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Maximum Likelihood Decoding 
of Convolutional Codes
o Asymptotic coding gain

n Hard decision decoding
o Section 6.3 (cf. Slide IDC 1-30) has established that for 

BPSK transmission, the hard-decision error for each code 
bit is given by:

o The error of convolutional codes (particularly at high 
SNR) is dominated by the “two codewords” whose 
pairwise Hamming distance is equal to dfree.

o Thus, the (code)word error rate (WER) can be analyzed 
via an equivalent binary symmetric channel (BSC) with 
crossover probability p.
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(cf. the next slide)
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For your information, assuming dfree is odd, we derive



n Soft decision decoding (can be analyzed via an equivalent
binary-input additive white Gaussian noise channel)
o WER of convolutional codes (particularly at high SNR) is 

dominated by the “two codewords” whose pairwise 
Hamming distance is equal to dfree. 
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n Based on the decision rule
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o Asymptotic coding gain (here, asymptotic = at high SNR) Ga
n The performance gain due to coding (i.e., the 

performance gain of a coded system against an uncoded
system)
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o Asymptotic coding gain (at high SNR)
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o Asymptotic coding gain (at high SNR)

Error
(log-scale)

Ga

uncoded

coded


