Part 7 Linear Block Codes,
Polynomial Codes/Cyclic Codes,
Convolutional Codes, and
Viterb1 Decoding
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Introduction

Error correction versus error detection

B There 1s an alternative system approach to achieve
reliable transmission other than forward error correction
(FEC).

B By the system structure, it 1s named automatic-repeat

request (ARQ), which 1s a combination of error
detection and noiseless feedback.
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Introduction

[1 Classifications of ARQ
B ARQ with stop-and-wait strategy

[ After the transmission of a codeword, the transmitter stops and

waits for the feedback before moving onto the next block of
message bits.

B Continuous ARQ with pullback

[J The transmitter continues its transmissions until a
retransmission request is received, at which point it stops and
pulls back to the incorrectly transmitted codeword.

B Continuous ARQ with selective repeat

[ Only retransmit the codewords that are incorrectly transmitted.
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Linear Block Codes

Linear code

B A code 1s linear 1f any two codewords 1n the code can
be added in modulo-2 arithmetic to produce a third
codeword 1n the code.

B The codewords of a linear code can always be obtained

through a “linear” operation 1n the sense of modulo-2
arithmetic.
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Linear Block Codes

For a linear code, there exists a k-by-n generator matrix G
such that

where code bits ¢ = [cg, 1, ..., Cr1]
message bits m = [mqg, my, ..., Mg_1]

(Here, we use modulo-2 addition and modulo-2 multiplication.)

Generator matrix G 1s said to be in the canonical form if its
k rows are linearly independent.
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@

What will happen if one row is linearly dependent on other rows?

i 90,0 go,1 90,2 9go,n—1 |
g1,0 gi1 gi1,2 9d1.n—-1
[CO < Cn—l] = [m() mk_l} g2.,0 g2.1 g2,2 92.n—1
| 9k—1,0 9k-1,1 YGk—1,2 9k—1,n—1
Suppose
a [90,0 9o, 90,n—1] +b [9170 Jgi,1 91,n—1] = [92,0 921 - gz,n—ﬂ
Then
[ 90,0 go.1 Jgon—1 |
g1.,0 gi1 9d1.n—1
cn_l] = [mo mk_l} agoo +bgi0 ago1 + bgi agon—1 + bg1,n—1
| 9k-10 Jk—1,1 Jk—1,n—1 |
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9o,0 9o,1
g1,0 g1,
— a
= Pno m; Mg M3z - rnk_l] go,0 +bg1,0 ago,1 +bg1,1
gk—1,0 gk—-1,1
go,0 go.,1 gon—1
g1,0 g1,1 91,n—1
- [ﬁ"bo mi mg My - mk_l] 93,0 93,1 g3,n—1
| k—1,0 Gk—1,1 9k—1,n—1]

where mg = mg + msa and mq = my + msb.

Hence, the number of distinct code words is at most 24! (not the anticipated 2%).

go,n—1
91,n—1
ago.n—1 +bg1 n—1

9k—1,n—-1

(k—1)xn
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Linear Block Codes

Parity-check matrix H

B The parity-check matrix of a canonical generator matrix
1s an (n—k)-by-n matrix satisfying

H 1xn Gk = On_r)xh

nxk

where the columns of H are linearly independent.

B Then, the codewords (or error-free receptions) should
satisfy (n—k) parity-check equations.

— Cl><nHZ;><(n_k) — mlkaanHzx(n_k) — le(n—k)

© Po-Ning Chen@ece.nctu IDC7-9



Linear Block Codes

Syndrome s

B The receptions may be erroneous (with error pattern e).

r=c+e, “+"7 =exclusive or,

1. 1if an error has occurred at the 7th location:
€, = ,
' 0. otherwise

B With the help of parity-check matrix, we obtain

Sixin-t) = TixcnHuxnor) = CixnHux (oo + €1xn oy nopy

L T
— elannX(n—k)
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Linear Block Codes

[0 In short, syndromes are all possible symptoms that possibly happen at
the output of parity-check examination.

B Similar to the disease symptoms that can be observed and examined
from outside the body.

B Based on the symptoms, the doctors diagnose (possibly) what
disease occurs inside the body.

[0 Based on the symptoms, the receiver “diagnoses” which bit is erroneous

(i.e., 1ll) based on the symptoms (so that the receiver can correct the “ill”
bit.)

B Notably, the syndrome only depends on the error pattern, and 1s
completely independent of the transmitted codeword.
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Linear Block Codes

Properties of syndromes

B Syndrome depends only on the error pattern, and not on
the transmitted code word.
Six(n—k) = TlanZX(n_@ — CanHz;x(n—k) + eanHz:x(n—k)
= elanZx(n—k)

B All error patterns that differ by (at least) a code word
have the same syndrome s.

coset(81x(n—k)) = {len + €1xn : for some codeword cjxn,
and for some error pattern e;xn

- . T
satisfying S1x(n—k) = elannx(n—k)}
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0. It suffices to fix the error pattern e and vary the codewords
when determining the coset.

1. All elements 1n a coset have the same syndrome since
cH' =0
2. There are 2% elements in a coset since
€+ Cc,=e+cC; = C =,

1.e., coset elements are the same 1ff two codewords are the
same.

3. Cosets are disjoint.

4. The number of cosets is 2”7, i.e., the number of syndromes
is 277K,
Thus, syndromes (with only (n—k) unknowns) cannot uniquely
determine the error pattern (with » unknowns).
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Linear Block Codes

Systematic code

B A code 1s systematic if the message bits are a part of the
codewords.

B The remaining part of a systematic code 1s called parity

bits.
b;, 1 =0,1,....,.n—Fk—1 parity bits
C, = . .
Mi—(n—k), ! =n—kn—~k+1...,n—1 message bits

B Usually, message bits are transmitted first because the
receiver can do “direct hard decision” when “necessary”.
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Linear Block Codes

For a systematic code,

G = ka(n—k) Iki| and H = |:In—k P%;L—k)xk

where 1, is the k-by-£ identity matrix.

B Example. (n, 1) repetition codes

Pixpn-n=111 -+ 1]

\

\

"
all ones
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Linear Block Codes

Error correcting capability of a linear block code

B Hamming distance (for “0”- “1” binary sequences)

n
dy(w.v) = Z(ju.,- + v;), “4+7 = exclusive or.
=1

B Minimum (pair-wise) Hamming distance d,;,

dpin =  min  du(c;, c;)
C;,C; EC,CZ'#CJ'
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B Operational meaning of the minimum (pair-wise)
Hamming distance

There exists at least a
pair of codewords, of
which the distance 1s d, ;..

B Minimum distance decoder

decision = arg mig du(r, c)
cE
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B Based on the minimum distance decoder, 1f the received
vector and the transmitted codeword differ at most

[

namely, 1f the number of 1’s in the (true) error pattern 1s at
most this number, then no error in decoding decision 1s
obtained.

B [f the received vector and the transmitted codeword
differ at ¢ positions, where

1

t > b(dmin — 1)J

then erroneous decision 1s possibly made (such as when the
transmitted codeword 1s one of the pairs with distance d,,;,..)
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B We therefore name this quantity the error correcting
capability of a code (not limited to linear block codes).

[

B The error correcting capability of a linear block code
can be easily determined by the minimum Hamming
weight of codewords. (This does not apply for non-
linear codes!)

wy(uw) = dy(u, 0) :Z u; +0) = Zuz
i=1
B By linearity,

(V ¢; and ¢; € C) there exists ¢ € C such that wy(er) = du(c;, ¢;)

= dmin = min diy(e;,c;) = min wg(e
— ci,c; €C,c;#c; ( v J) ceC,c#0 ( )
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Linear Block Codes

Syndrome decoding for (n, k) linear block codes

decision arg min dg(r, ¢)

ceC
= argmindy(r + ¢,0)( = arg min dy(r + e+ 7r,0))

eC e+reC \ —
= arg min dyg(e,0) + 7« — \
ecr+C - \
= ar min  wgler+r \
geEcoset('rHT) 6 )~ ~~~~~ \
R \
e=Wr-+c
r=c+e= \
cCcC=e-—+r7T
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Linear Block Codes

Syndrome decoding using standard array for an (n, k) block
code
Ci1=() C9 soe C; Cok
C1 + €9 Coy + €9 C; + € Cok + €39
C1 + €3 Cos + €3 C; + €3 Cok + €3
syndrome rH’
Cc) + €; C2 + €; Ci+ €; Cox + €5
C1+€yn—k €32+ €yn—k -+~ C; + €9n—k Cok + €on—k

Find the element in coset(#rH’), who has the minimum weight.
This element 1s usually named the coset leader.

The coset leader in each coset 1s fixed and known before the reception of r.
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Linear Block Codes

Example: (7,4) Hamming codes

1 1 0 1 0 0 0]
O 1 1 0 1 0 0O
G = I 11 001 0
1 01 0 0 0 1.
. o -~ 7
P k
-1 0 0 1 0 1 17
H=| 010 1 1 1 0
0 0 1 0 1 1 14
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Linear Block Codes

Decoding table
syndrome coset leader r = [1100010]

000 0000000 T
100 1000000 = rH" = [001]
001 0010000
ol oo TC T TTE
11 0000010 = [1100010] -+ [OOIOOOO]
101 0000001 = [1110010]
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Linear Block Codes

For (7,4) Hamming code,

Appendix: The notion of perfect code

the coset leaders form a
perfect ball (of radius 1).

B (7,4) Hamming code 1s a binary perfect code.

All of the 27 =128
binary sequences are
confined with the 24 =
16 non-overlapping

balls of radius 1,
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Linear Block Codes

Dual code
H(n k) XnGZXk — (n k)xk
= GanHz:x(n—k) — I:Ikxnézx(n—k) = Ok (n—r)

B Every (n, k) linear block code with generator matrix G
and parity-check matrix H has an (n, n—k) dual code
with generator matrix H and parity-check matrix G.
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Polynomial Codes/Cyclic Codes

Polynomial expression of a linear code

B Polynomial code: A special type of linear codes.

Represent a code [cy, ¢y, ..., ¢,_1] as a code
polynomial of degree n—1

C<X) :C0+01X+02X2+..._|_Cn_1Xn—1

where X 1s called the indeterminate.

© Po-Ning Chen@ece.nctu IDC7-26



Polynomial Codes/Cyclic Codes

B Generator polynomial (of a polynomial code)
g(X) =1+ ng -+ 92X2 4+ e+ gn_k_an—k—l 4 Xn_k

B The code polynomial (of a polynomial code) includes
all polynomials of degree (n—1), which can be divided
by g(X), and hence can be expressed as

c(X) = a(X)g(X)
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Polynomial Codes/Cyclic Codes

Example of a (6, 3) polynomial code

C(X) = (CLO +&1X+&2X2)(1+91X—|—g2X2 —|—X3)

code for g1 = g5 = 1

[1 Giog2 1 0
[Co C1 C2 C3 (4 05}:[060 aq Clz} 0O 1 g1 g2 1
{0 0 1 g1 ¢

So, the polynomial code is a special type of linear codes.

Ao1A2 CoC1C2C3CyCx

000 000000
001 001111
010 O11110
011 010001
100 111100
101 110011
110 100010
111 101101
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Polynomial Codes/Cyclic Codes

Property of a polynomial code

Let ¢(X) be the code polynomial corresponding to a(X),
i.e., c¢(X) =a(X)g(X).
= X" ka(X) = g(X) - g(X) + r(X)

where the degree of remainder r(X) is less than n — k.

= ¢(X) = X" *a(X) —r(X) = q(X)g(X) is an alternative
way to represent code polynomials.

= The last £k bits of ¢(X) should be exactly the same as a(X).
As a result, ¢(X) is a systematic code.
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code for g1 = g» = 1

. dod1q2 CpC1C2C3C4C5 | AoU1ly  CpC1C2C3C4Cx
Polynomial Codes |, 000000 000 000000
/Cyclic Codes 011 010001 001 001111
I 110 100010 encade 010 encode 011110

Example of'a (6, 3) | 101 110011 h 011 ﬂ 010001
polynomial code 100 111100 100 111100
(Continue) 111 101101 101 110011
010 011110 110 100010
001 001111 111 101101

E(X) — Xg(&0+a1X—|—CL2X2)
—X?(ag + a1 X + a; X?) mod (1 + g1 X + g X* + X?°)

1 g1 10 1 0 O]
0 @ & & G Gl=la a w]| e 1+ g2 gitg 010
1+92 grtgtoge 14+g 0 0 1

So, the polynomial code can be made equivalent to a systematic linear code.
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Notably, they are two “equivalent” polynomial coding systems
i) ¢(X) = a(X)g(X): Not necessarily systematic

. ii) ¢(X) = q(X)g(X): Systematic

Polynomial Here we talk about the encoder for ¢(X).

Codes/Cyclic Codes

Encoder for systematic polynomial codes

(X)) = X" Fa(X)+r(X)
= X" "a(X) +[X""a(X) mod g(X)]

N——— ™~ ~~ d
degrees n—k to n—1 degrees 0 to n—k—1
[Co * Cnoke1 Cnk *** Cpno1] = |Ug ** Up_p_1 Ao - Ap_1]
How to find the remainder (ug u; -+ Unp—g—1) of X”_ka(X)

divided by g(X)?

X"k a(X) = q(X)g(X) + u(X)
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Example of the usual long division
XB4+ XM X104 X7+ X4+ X?+ X +1divided by X6+ X5+ X4+ X3 +1

multiply ,2~ "~~~ - X7
'/ /

2
)Y ——

|§13+ 0 + X1+ X104 04 0}X7+ 0 +0+X*+X°+0+X+1

(X24+ 0+ 0 +0+04+ 0K 0

X0+ X° 4+ X4+ X341

1 X3 X+ X° ){6
1 X3 X1 X° )‘{6
lemporary remainder Temporary quotient
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multiply -

/
4

X+ X+ X+ X541

T

\
‘X13+\0 + X1 Wi 04+ 04+4X"+0+0+X*+X3+0+X+1
\
13 12
XV + X

11+X10+O+0+X7

[

X2+ 0+ 0 +0+0+ 00

X12_|_X11_|_X10_|_X9_|_ O_I_ 0 _I_XG

[X11—|—X10+X9+0—|—0—|—X6]

.... repeat this procedure until the last term 1s shifted into the shift register.....

1 X3 X4 X° X6
7 N e I N e 0 HV N A (0 N RV N s A
U U ANV ANV ANV ANV

1 X3 X4 X3 X6

v v v v X6
LD LD LD D vo LA viol— D v =
o X o o\ 72mnd BN & 72 RSl mna & 72mns PG mna & 7y 6 —

lemporary remainder Temporary quotient
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XB 4L XU XL X744 X441 X34 X 41 divided by X604+ X4+ X4+ X341

1 X3 X4 & X6
‘/"\ » O »(P— 0 (P 0 :/"\ » 0 :/"\ » 0 :/"\ » O >
ANV ANV N N N N

— XB4+ 0 + X4 X041 0 + 0 X"+ 0 4 0 +X*+X3+ 0 +X+1

1 X3 X4 X? X6
D D D D R - ‘
o ' —o— " o —o— C o/ o g

— 0 + 0 + 0 + 0 4+ 0 + 0 +X +X°+X°4+ 0 + 0 +X°+X+1

quotient

Remainder = X% + X?
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An alternative realization of the long division (with the shift
register containing not the remainder but the “lower power
coefficients”)

;X7

XOp X0 X X341 [ KB O X+ X4 04+ 0+ X"+ 04+ 0 4+X*+X°+0 +X+1

XT(XO 4+ X5 4 X4 4 X34 1) = X1 +[X12—|—X11—|—X10—|— 0 \—\I:\O\ —|—X7]

1 X Xt X0 X
Jo et a0 L o Lo e o e
g SN Ve 4N N o & P
\\\\ X13J
X3 X4 X5 \\\ XG
\‘ :X7
. D D b b B [oheh
"X 0~ O o XN o)X D 'é(m N
0 1
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X7 _|_X6

XOp XP 4+ XA+ X411 [ X+ 0 H X+ X4 04+ 04+ X"+ 0+ 0 +X+X°+0 +X+1
XP4+ 0 040 +X°4 0+ X7 4 X°

1 X? X4 X0 xo
‘ : X D D b by D
| X =P 0 =P —] 0 D =P —{x X P
\\\\ 0 _1
1 X3 X+ X5\, X6
‘ D A R D . D . D
" X=X o O o X 0 —(

¢ L
D
T
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X7 _|_X6 _|_X5

X0+ X4+ X4+ X341

XB4+ 0 + XU /X 04+ 04+X"+0+0+X4+X3+0+X+1
X13—|—0—|—X11 X10\0—|—X8—|—X7—|—X6—|—X5

1 X3 X* X5 6
; N D D D D D
" X=X o O o X o gl P
\\\\ Xll_‘

1 X X! S
; D A R D D D D
" X X o X o X o 4\ 'éfm \‘r/
X—

IDC7-37
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On for first k clocks
Off for the remaining (n—k) clocks

N~

On for g,=1 K
off. =
forei g1 82 En-k-1

0
UO/L U1/L U2 un—k—Z/L Up—k—1
» D N » D :\U » D -—-=—> D > > D 9

parity bits . codeword
apdy * - Ap—20k—1 =
Down for
c(X) = X”_ka(X) + u(X) first k clocks
n—k n—k Up for the
- QX CL(XZ —I_LX a(X) mod g(X)l remaining
degrees ntk to n—1 degrees OTO n—k—1 (n_k) clocks
After k clocks,

¢(X)g(X) = e(X)
— ak_an_l 4+ ... 4 aOXn_k %un—k—an_k_l + ..+ Ug }
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Notably, they are two “equivalent” polynomial coding systems
i) ¢(X) = a(X)g(X): Not necessarily systematic

. ii) ¢(X) = q(X)g(X): Systematic

Polynomial Here we talk about the encoder for ¢(X).

Codes/Cyclic Codes

Decoder for polynomial codes

B How to find the syndrome polynomial s(X) of
polynomial codes with respect to the received word
polynomial 7(X)?

Recall that syndromes are all symptoms that possibly
happen at the output of parity-check examination.

If there 1s no error 1n transmission, 7(X) mod g(X) = 0.

Indeed, s(X) = r(X) mod g(X).

X" a(X) = ¢(X)g(X) + u(X)
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Polynomial Codes/Cyclic Codes

B Reclation of syndrome polynomial s(X), error polynomial
e(X) and received vector polynomial »(X) for systematic

polynomial codes.
r(X) =
Also, r(X) =

¢-(X)g(X) + 5(X)
c(X) + e(X)
where e(X) is the error polynomial

q(X)g(X) + e(X)

= 5(X) =7r(X) mod g(X) = e(X) mod g(X)

= e(X) = ¢.(X)g(X) + s(X)

© Po-Ning Chen@ece.nctu
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Polynomial Codes/Cyclic Codes

B Reclation of syndrome polynomial s(X), error polynomial

e(X) and received vector polynomial »(X) for general
polynomial codes.

r(X) = ¢(X)g(X) +
Also, r(X) = ¢(X)+e(X)
where e(X) is the error polynomial

— a(X)g(X) +(X)

s(X)

= 5(X) =7r(X) mod g(X) = e(X) mod g(X)

= e(X) = ¢.(X)g(X) + s(X)
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Polynomial Codes/Cyclic Codes

K On for g,=1 K

O =0
En-k-1 \gn-k.z .. s 81
A N P N

Syndrome calculator

Received bits
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code for g1 = g» = 1

, Goq1q92 CoC1C2C3C4C5 | QpA1Q2  CpC1CaC3C4Ch
Polynomial Codes 000 000000 000 000000
/Cyclic Codes 011 010001 001 001111
I 110 100010 encade 010 encode 011110

Example of'a (6, 3) | 101 110011 h 011 ﬂ 010001
polynomial code 100 111100 100 111100
(Continue) 111 101101 101 110011
010 011110 110 100010
001 001111 111 101101

E(X) — Xg(&0—|—CL1X—|—CL2X2)
—X?(ag + a1 X + a; X?) mod (1 + g1 X + g X* + X?°)

1 g1 gJs 1 0 O]
o & & 0 G G| =[a a1 a 92 1+ 9192 g+g 010
g1+ 92 1+g2t+gg2 1492 0 0 1

So, the polynomial code can be made equivalent to a systematic linear code.
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1 11100 1 0 0 1 1 0]
Gsxg= |1 00 0 1 0| Hse=1(0 1010 1 Sixs = €1xcHg, 5
0100 0 1] 00110 0

€0€1€2€3€4€5 505152 €0g€1€2€3€4€5 505152 €0g€1€2€3€4€5 505152 €€1€2€3€4€C5 505152
000000 000 010000 010 100000 100 110000 110
000001 010 010001 000 100001 110 110001 100
000010 100 010010 110 100010 000 110010 010
000011 110 010011 100 100011 010 110011 000
000100 111 010100 101 100100 011 ‘110100 001
000101 101 010101 111 100101001 110101 011
000110 011 010110 001 100110 111 110110 101
000111 Q0L 010111 011 100111 101 110111 111
001000 001 011000 011 101000 101 111000 111
001001 011 011001 001 101001 111 111001 101
001010 101 011010 111 101010 001 111010 011
001011 111 011011 101 101011 011 111011 001!
001100 110 011100 100 101100 010 111100 000
001101 100 011101 110 101101 000 111101 010
001110 010 011110 000 101110 110 111110 100
001111 000 011111 010 101111 100 111111 110
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Polynomial Codes/Cyclic Codes

The decoding of a systematic code 1s to simply add the
coset leader, corresponding to the syndrome polynomial, to
the received vector polynomial.
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Polynomial Codes/Cyclic Codes

Definition of cyclic codes

B Cyclic property: Any cyclic shift of a codeword 1s also
a codeword.

B Linearity property: Any sum of two codewords 1s also
a codeword.

A cyclic code 1s also a polynomial code.

B Sce Theorem 5.3 in Shu Lin and Danziel J. Costello, Jr,
Error Control Coding, 2nd edition, Prentice Hall, 1983
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Polynomial Codes/Cyclic Codes

[0 A cyclic code is a special type of polynomial codes with g(X) dividing
(X™+1).

[0 Proof: Suppose c(X) is a non-zero code polynomial.
Let 7 be the index satisfying

Ch—1 =Cp—2 = """ =Cpn—jt1 = Oand ¢,_; =1
Then

X'e(X) = X"i(co + e X+ Fep X
X'+ X T 4 e, X
= Chi +Croi1 X+~ ¢, 1. X1
teo X' + e X 4+, X!
ten i X"+ D)+ i XX+ D)+ o XTTHX" 4+ 1)
= X))+ (X" +1)
where ¢(¥)(X) is a codeword due to cyclic property.
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Because c¢(X) and ¢ (X) are both code polynomials,
there exist a(X) and a'¥ (X) satisfying

c(X) = a(X)g(X) and cV(X) = al?(X)g(X).

Therefore,
(X"+1) = X'¢X)—-c9(X)
= X'a(X)g(x) — a"(X)g(X)
= [X'a(X) = a"(X)]g(X)

= ¢(X) must divide (X" + 1).
[]
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Polynomial Codes/Cyclic Codes

Parity-check polynomial of cyclic codes

B After proving that g(X) must divide X"+1, we can define
the parity-check polynomial of a cyclic code as

g(X)h(X) mod (X" 4+1) = 0

where A(X) 1s a polynomial of degree k with 2y = h;, = 1.

B Since the degrees of g(X) and 4(X) are respectively n—k
and k-1, and g, ,= h,= 1, we may induce that

g(X)h(X) = X" 4+ 1
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Polynomial Codes/Cyclic Codes

B Multiplying both sides by a(X) yields:

a(X)g(X)(X) = c(X)h(X)
= X"a(X) +  a(X)

N—— ——"
degrees n to n+k—1  degrees 0 to k—1

= Coeflicients of ¢(X)h(X) equal zeros for degrees k ton — 1
jt+k
jZCih;ﬂ_J‘_i:OfGYOS]’Sn—k‘—l

1=
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1 0 0 0]
Ry_q 1 0 0
hp—o hi—1 1 0
— [CO C1 Cn—l] hl hg hg 0
1 hi  ho 0
0 1 hq 0
L0 0 0 e A
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[ 1 0 0 -+ O]
i1 1 0O --- 0
hi_o hg_qy 1 -+ 0
= [Co C1 - Cn—l] hl hg h3 s 0
1 hi  hs 0
0 1 hq 0
000 1
— chanx(n—k) — le(n—k)
(1 hpy hg—s -+ by 1 0 - 0]
0 1 hp_1 +++ hy hy 1 -« 0
H(n—k:)Xn — |0 0 1 ]’Lg hg hl cee 0
_O 0 0 e 00 O .- 1_ (k) xm
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I g1 92 “+ Gn-k-1 1 0 e 0

0 1 o1 Gn-k-2 Gn-k-1 1 e 0

Recall that Gy, = o 0 1 - gn—k-3 Gn-tk-2 Gn-t-1 --- 0
_O * s O s e gn—Qk gn—2k+1 o« o P 1_ .

Also recall that kaanx(n—k) = Opx(n—k)

Observation.

The parity-check matrix arranges its entries according to the coefficients of
the parity-check polynomial in reverse order as contrary to the generator
matrix arranges its entries according to the coefficients of the generator
polynomial.
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Polynomial Codes/Cyclic Codes

Remarks

B The generator matrix and parity-check matrix derived
previously are not for systematic codes.

B We can manipulate these two matrices by adding their
elements of selective rows so as to make them
“systematic’.
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Polynomial Codes/Cyclic Codes

|
Examples: Hamming code and Maximum-length code

X' +1=(X*+ X+ DX’ + X +1D(X +1)

B Irreducible polynomial: A polynomial that cannot be
further factored.

All three of the above are irreducible.

B Primitive polynomial: An irreducible polynomial of
degree m, which divides X"+ 1 for n = 2" — 1 but does

not divides X"+ 1 forn < 2" — 1.
All three 1irreducible polynomials are primitive.
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Polynomial Codes/Cyclic Codes

B Example of cyclic codes: (7, 4, 3) Hamming code

Any cyclic code generated by a primitive polynomial
1s a Hamming code of minimum pairwise distance 3.

B Example of cyclic codes: (2" — 1, m, 2~1) maximum-
length code

The maximum-length code 1s a dual code of
Hamming codes.

In other words, it 1s a cyclic code with primitive
parity-check polynomial.

It is a code of minimum distance 2! .
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It 1s named the maximum-length code because the
codeword length for m information bits has been
pushed to the maximum (or equivalently, the number
of codewords for code of length n has been pushed to
the minimum). For example,

if (cg.c1.....cg) 1s a codeword.
(co.C1.....Cp)
(c1.¢9,...,Co)

then (c2.¢3,....¢1) are all codewords.
(cg. CouennsCs)

So, there are 1n total 7 code words 1f ¢ 1s originally
nonzero. Adding the all-zero codeword gives 8 = 2°
codewords. This makes the (7, 3) maximum-length code.
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So, the nonzero codeword in a maximum-length
code must be a circular shift of any other nonzero
codeword.
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B Example of cyclic codes: Cyclic redundancy check (CRC)
codes

Cyclic codes are extremely well-suited for error

detection owing to the simplicity of its implementation,
and 1ts superior error-detection capability.

Binary (n, k, d,,;,) CRC codes can detect:

B all contiguous error bursts of length n — k or less.

B 214 of contiguous error bursts of length n—k+1
B all combinations of d_;,—1 or fewer errors
]

all error patterns with an odd number of errors if the
generator polynomial g(X) has an even number of
nonzero coefficients.

Code Generator Polynomial g( X') n—k
CRC-12 code 14+ X+ X2+ X4+ X1 4 X112 12
CRC-16 code 14+ X2+ X 4 X6 16

CRC-ITU code 14+ X°+ X124 X6 16
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B Example of cyclic codes: Bose-Chaudhuri-Hocquenghem
(BCH) codes

B A special type of BCH codes: Primitive (n, k, d,;,)
BCH codes with parameters satisfying

(n = 2m -1
k > n—mt
< dmin Z 20+ 1
m > 3
\t < (Qm_l)/Q

B (n, k, 3) Hamming code can be described as BCH
codes.

B The table in the next slide illustrates the generator
polynomial g(X) of some binary BCH codes.
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n k1 Generator Polynomial

7T 4 1 011
15 11 1 011
15 7 2 001
15 5 3 10 111
31 26 1 101
31 21 2 11 001
31 16 3 1 000 111 111
31 11 5 101 100 010 011 101
31 6 7|11 001 011 O11 110 101 111

n = block length
k = number of message bits

t = number of errors that are guaranteed Correctable

X3+ X"+ X0+ X441
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Convolutional Codes

For block codes, the encoding and decoding must perform
in a block-by-block basis. Hence, a big buffer for the entire
message block and codeword block 1s required.

Instead, for the convolutional codes, since the inputs and
outputs are governed through a convolution operation of
“finite-order” filter, only a buffer of size equal to the filter
order 1s demanded.

B “Convolution” i1s defined based on modulo-2 arithmetic
operations.
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Convolutional Codes

Buffer two bits at a time

path 1

. output
input o » D - » D —o Interleaver >
\4
(n, k, m) = (2, 1, 2) convolutional code
Note that here, 7 is not the codeword length, & is not the message length, and m 1s not the
minimum distance between codewords. See the next slide for their definitions.
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Convolutional Codes

(n, k, m) convolutional codes

B /input bits will produce » output bits.

B The most recent m “k-message-bit input blocks” will be
recorded (buffered).

B The n output bits will be given by a linear combination of the
buffered input bits.
B C(Constraint length K of a convolutional code

[] It is the number of A-message-bit shifts, over which a single k-
message-bit block influences the encoder output.

[ In other words, the encoder output depends on the current input
message block and the previous K — 1 input message blocks.

[] Based on the definition, constraint length = m+1.
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Convolutional Codes

B Effective code rate of a convolutional code

In practice, km zeros are often appended at the end of
an information sequence to clear the shift register
contents.

Hence, kL message bits will produce n(L+m) output
bits.

The effective code rate 1s therefore given by:
kL

n(L + m)
Since L is often much larger than m, R ~ k/n.
B //n 1s named the code rate of a convolutional code.

R =
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Convolutional Codes

Polynomial expression of convolutional codes
B Example (Slide IDC 7-63)

D 1s used 1nstead of X because the flip-flop (i.e., one
time-unit delay) 1s often denoted by D.

g (D) = 14D+ D?
¢ (D) = 1+ D?
m(D) =1+ D’ + D*
W(p
)(p

(DYm(D) =1+ D+ D*+ D® + D°
(D)Ym(D) =1+ D*+ D? + D* + D° 4+ D°
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Convolutional Codes

|
¢)(D) =D +D*+ D2+ D +1

Buffer two bitsb€ 9\

» D -8 » D — Interleaver —

11001 —
m(D) = D* + D3 {1

A(D)y=D°+Df +D*+ D3+ D?+1

¢ =(11,10,11,11,01,01,11)
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L=

CICS

7 Lol
,/ 0 11
4 4 -———1 C
Convolutional Codes AR S
/ -===1 d
L X4 e 10
. . . s 11
Graphical expressions of convolutional R T
COdCS // 11 L_(l)%_ b
m Cod Tt
ode tree o lo?é ;
’ _ PRt -
m = (10011) SN RN
/s 11: l 10 :
= (11,10,11,11,01,01,11)~ | PRI
e ; i ET]
S 1~ _10
V4 - 1 C
B Code trellis s e
/’ JPtoad 11 Lo d
e POt 11 1
(100mgmy . ..) L o hna
(000m3m4 . . .) 01 ll__(l)%_ b
01 "
0
generate the same “next code symbol” St
B
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Convolutional Codes

B Code trellis (continue)

10 ¢
01 ¢
11 d
Level 0 L+2
Solid line : 0 Append two zeros to clear
Dashed line : 1 the shift-register contents
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Convolutional Codes

B State diagram 10
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Maximum Likelithood Decoding
of Convolutional Codes

Likelihood function (1.e., probability function)

p(r|c), where r = ¢ + n.

Maximum-likelihood decoding

C = IEEELCX]?(’I”‘|C)

For equal prior probability, ML decoding minimizes the
error rate.
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Maximum Likelithood Decoding
of Convolutional Codes

Minimum distance decoding

B For an additive noise,

¢ = max p(r|c)

= max q(r — c), where ¢ is the distribution of n
cE

= min d(r, c)

if ¢(r — ¢) is a monotonely decreasing function of d(r, ¢).
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Maximum Likelithood Decoding
of Convolutional Codes

B Example (of distance function): AWGN 7 =c+n

S B g
! (2o 2)N/2 P 202

d(r.c) =[|r — ¢l
B Example (of distance function): BSC 7 =c®n
q(n) — pwH<n)(1 _ p>N—wH(n)

d(r,c) = wg(r @ c)
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Maximum Likelithood Decoding
of Convolutional Codes

Viterbi algorithm (for minimum distance decoding over
code trellis)

B Optimality

One survivor path (solid
line) for each
intermediate node
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Received
sequence

Assume that the all-zero
sequence 1s transmitted.

d(r,c) = wg(r @ c)

Solid line = information 0
Dashed line = information 1

Received
sequence

Received
sequence
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Received
sequence

Received
sequence

N
‘\ 2\\ 3
\ \
\ \
\

\\3 \\\\ 3

2 \\ \\
\ \

v 3 v 3

A A
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It is possible that the ML Assume that the all-zero

codeword or the sequence 1s transmitted.
minimum distance
codeword is not equal to d(r’ C) = Wy (r i c)

the transmitted codeword.

Solid line = information 0
Dashed line = information 1

Received Received

sequence sequence
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Maximum Likelithood Decoding
of Convolutional Codes

Free distance of convolutional codes

B Under binary symmetric channels (BSCs), a
convolutional code with free distance ds.. can correct ¢
errors 1ff dg.. 1s greater than 27.

B Question: How to determine ds...?

B Answer: By signal-flow graph.
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\
1 AN
\ 7
\/
a ) d
o1, 01
b ,'
y 10
b/‘%"_\ .
C
11 11
d
a

State diagram
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A zero-weight input
generates a zero-

— weight code pattern.

State diagram

e\ ::: 01 (DL) //

10 (DL)
7\

/I
\

\
\V4
’

/
d

01 (DL)

A
/,/ 10 (DL)
2 1O b \ ¢ 11 (L),
S
00 (L)
Signal graph

Exponent of D = Hammivr)g weight on the branch
Exponent of L = Length of the branch
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b = D2L-ag+1L-¢ )
c = DL-0+DL-d a; D> L° .
d = DL-b+DL-d >:>a—0—1_DL(1+L)(Seethenextshde)
a, = D?L-c O
J LA
\/d
L 2 | .3
| B 1—|—33—|—£17 T 01(DL)/// 01 (DL)
1
a . 2 11O) b ¢ 1L(D2D),
= — = D°L*) [DL(1+L)]

1=0
— D5L3_|_D6(L4_|_L5)_|_D7(L5_|_2L6_|_L7)_|_

\ AN

100(agbca ) (L*) — codewdyd of weight 5

N
1100(agbdcay ) (L*) — codeword of weight 6

10100 (agbebeay ) (L°) — codeword of weight 6
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DL -ay+ L -¢
DL-b+ DL -d
DL-b+ DL -d
D*L - ¢

DL-b+ DL -d

d = DL-(D?L-ay+L-d)+ DL -a
ap = D?L-d

_ [ (1=DL-DI*d = DL
ai = D2L-d

= (1 — DL — DL?)a;d = D°Land

D°L
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Maximum Likelithood Decoding
of Convolutional Codes

Since the distance transfer function 7(D, 1) =D> +2 D% + 4
D’ + ... enumerates the number of codewords that are a given
distance apart, 1t follows that

= dgee = O 10 the previous example.

A convolutional code may be subject to catastrophic error
propagation.

B Catastrophic error propagation = A finite number of
transmission errors may cause infinite number of decoding

CITOTS.

B A code with potential catastrophic error propagation is named
a catastrophic code.
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00 A non-zero-weight

0 O input generates a
LA zero-weight code
\
01 o q pattern.
11
Level 00 (L)
7\
[
\
path 1 V4
¢ (D)=D+D?* g c
1 10 (DL),'/ 01 (DL)
A
;. 11(DL)
> 2 _0_1 _(D)L)_ _b \’ ¢ 10(DL) a,
11 (D2L)

path 2

A zero-weight input
o, generates a zero-
m = (1111111...) — weight code pattern.

m(D)=1+D+D?*+D%+...
= (D) = ¢V (D)m(D)=D
= c2(D)=1

¢ = (01, 10,00, 00, 00, 00, 00, . . .)
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B Alternative definition of catastrophic codes: A code for which an
infinite weight input causes a finite weight output

[ In terms of the state diagram, a catastrophic code will have a
loop corresponding to a nonzero input for which all the output
bits are zeros.

B [t can be proved that a systematic convolutional code cannot be
catastrophic.

B Unfortunately, the free distance of systematic convolutional codes
is usually smaller than that of nonsystematic convolutional codes.

Constraint length Systematic Nonsystematic

2 3 3
3 | 3
4 1 6
5 5 7
6 6 8
7 6 10
8 7 10

Maximum free distances attainable for convolutional codes of rate 1/2.
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Maximum Likelithood Decoding
of Convolutional Codes

Asymptotic coding gain

B Hard decision decoding

[1 Section 6.3 (cf. Slide IDC 1-30) has established that for
BPSK transmission, the hard-decision error for each code
bit is given by:

p = P(Error) = & (\ / QNEO)

[1 The error of convolutional codes (particularly at high
SNR) 1s dominated by the “two codewords” whose
pairwise Hamming distance is equal to dj...

[1 Thus, the (code)word error rate (WER) can be analyzed
via an equivalent binary symmetric channel (BSC) with
crossover probability p.
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= BEquivalently z;, = s;,, D w; for j =1,..., dfec
where s, =0,s;1 =1, and x;,w; € {0,1}
= m=argmax{P (x|sy), P (x|s1)}
= 77 = arg max {pwH(«’B)(l _ p)dfree—wH(«’fff)7 (1— p)wH(w)pdfree—wH(w)}

80 dree o 1
= wH(:B)§ £ Cifp < =
= 79 >

= Dominant pairwise error

d ree
= P (sq transmitted) P (wH(w) > f2

So transmitted)

free

+ P (s; transmitted) P (wH(:I:) <

__________________________ (-5

< exp{—duee B/ (2Ny) } = exp {—duec REL/(2Ny) }

S transmitted)

dfree/2

_______________________

e~ 12 < e for & > 4/ 2

1D (=) = 2erfc (—) < N‘%

IDC7-88




— Dominant pairwise error

P (s8¢ transmitted) P (wH(a:) > df;e S transmitted)

e

+P (s, transmitted) P (wH(:c) < S transmitted)

Aree
Pr [W1+W2+-'-+Wdﬁee> &T] :

where {W;} iid. with P(W,; =1)=1—-P(W,; =0) =p
Pr [69(W1+W2+"'+Wdfree) >69dt‘ree/2] : where 60 — (1 . p)/p

(E [eowl])dfree (pee +1— p)dfree

(&
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B Soft decision decoding (can be analyzed via an equivalent
binary-input additive white Gaussian noise channel)

[1 WER of convolutional codes (particularly at high SNR) is
dominated by the “two codewords” whose pairwise
Hamming distance 1s equal to ds...

= BEquivalently z;, = s, +w; for j = 1,.. ., dpee
where 5,0 = —VFE and s;; = VE
= m=argmax{P (x|sy), P (x|s1)}
dfree dfree
= 7 = arg max {H e~ tVEX 20" TT e(%’@)Q/Q"Q}
j=1 j=1

dfree S0

2
= I = €T - § 0 N<_dfree\/Ea dfreeo_ ) S0
Z ’ ! { N<dfree\/E) dfreeo-z) S1

0° = Ny/2 is the variance of w;
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dfree S0

B Based on the decision rule z = Z r; S0

=1 %

Dominant pairwise error = P (sg transmitted) P (z > 0 |sq transmitted )
+ P (87 transmitted) P (z < 0|s; transmitted )

— 1 /OO 1 6_(x+dfree\/E)2/2dfreeo-2dx
2 0 \/27Tdfreeo-2
0

1 O 2 2
e (JJ dfree\/E) /2dfree0 d.??

1
_|__
2 /—oo \/27Tdfreeo-2

A r— 2 2
e (QZ dfree\/E) /2dfree0 dx

[
— 00 \/271-dfreeo-2

_ (I) 0— dfree\/E _ (I) —\/Qdfreeﬂ
V dfreeo-2 NO
ko,
o (_\/QdfreeRF) S exXp {_dfreeREb/NO}
0

1 1
O (—z) = —erfc (%) < xme_xQ/z <e " for x> 1/v2m 5701




Asymptotic coding gain (here, asymptotic = at high SNR) G,

B The performance gain due to coding (i.e., the
performance gain of a coded system against an uncoded

system)
Ey, Ey,
Uncoded BPSK & | —4/2— | < exp<{ ———
( NO> = p{ NO}

Coded system exp {—Ga%}
Convolutional coded BPSK ( Aee 2\ Ey

. | Y CXp 4§ — , -
with hard-decision decoding 2 Ny
Convolutional coded BPSK ( E,

. e exp R —dyee R—
with soft-decision decoding \ Ny
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Convolutional coded BPSK
with hard-decision decoding

Convolutional coded BPSK
with soft-decision decoding

(l f ree R

)
(-7 a

Asymptotic coding gain (at high SNR)

d free R

) dB

= 10log,, (

Gy = diee 1 = 1010g,(dfec 1) dB

(

.;\"( )

“b

) uncoded

Asymptotic coding gain =

Ey
cX — | —
d NO uncoded

(

-/
Y

E, )
No coded

under the same error rate

Ey

P ~exp -G, | —
p{ (NO)coded}
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Asymptotic coding gain (at high SNR)

Error
(log-scale)

E,/N, dB
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