
Part 6 Fundamental Limits in 
Information Theory
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Introduction

o Information Theory is the fundamental theory behind 
information manipulation, including data compression and 
data transmission.
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Introduction

o For years, researchers wish to seek answers to some 
fundamental questions on information manipulation:
n What is the irreducible complexity below which an 

informational signal cannot be compressed? Entropy.
n What is the ultimate transmission rate for reliable 

communication over a noisy channel? Capacity.
n A more striking result

o If the entropy of the source is less than the capacity 
of the channel, then (asymptotic) error-free (or 
arbitrarily small error) communication over the 
channel can be achieved.
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Uncertainty, Information, and Entropy

o Uncertainty = Information
n When one gains “information”, he/she shall lose 

“uncertainty”.
n Example. Suppose a discrete random variable S takes 

value from                                       with probability 

How much information we gain if we observe the 
outcome of S (provided that we already know the 
statistics of S)?
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Uncertainty, Information, and Entropy

n Case 1: p0 = 1.
o Since we know that s0 will be observed before we 

observe it, no uncertainty loses (namely, no 
information gains) for this observation.

n Case 2: pk < 1 for every k.
o Can we quantitatively measure the “information” 

amount we gain after observing S?
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Uncertainty, Information, and Entropy

o Axioms for information (uncertainty) measure
n Monotonicity in event probability

o If an event is less likely to happen, it is more 
uncertain that the event would happen. Therefore, its 
degree of uncertainty should be higher.

n Additivity
o If S and T are two independent random variables, 

then the uncertainty loss due to the observations of 
both S and T should be equal to the sum of the 
uncertainty loss due to the observation of S and the 
uncertainty loss due to the observation of T.
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Uncertainty, Information, and Entropy

n Continuity
o A small adjustment in event probability should 

induce a small change in event uncertainty.
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Uncertainty, Information, and Entropy

o Mathematically, the three axioms are transformed to:

o It can be proved that the only function that satisfies the 
above three conditions is:
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Uncertainty, Information, and Entropy

o Hence, for random variable S, each outcome, when it does 
happen, will respectively give the observer “information”

o In expectation value, the random variable S will give the 
observer information amount 
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Uncertainty, Information, and Entropy

o When p0 = ½, s0 is either observed or not observed with 
equal probable. Hence, intuitively, one should learn one bit
of information after this observation.

o As a result, take C = 1/log(2).

o This is named entropy of S.
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Uncertainty, Information, and Entropy

o Relation of entropy and data compression
n For a single random variable with K possible outcomes, 

a straightforward representation is to use 

For example, K = 8. Then, use 3 bits to represent each 
outcome.

n For a sequence of observations on independent and 
identically distributed (i.i.d.) S1, S2, S3, …, we will use

to represent the sequence. Can we reduce this number?
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Uncertainty, Information, and Entropy

o (Source-Coding Theorem) In 1948, Shannon proved that 
n (Converse) the minimum average number of bits per 

observation to losslessly and uniquely-decodably represent 
an i.i.d. sequence S1, S2, S3, …, is lower-bounded by the 
entropy H(S).

n (Achievability) the minimum average number of bits per 
observation to losslessly and uniquely-decodably represent 
an i.i.d. sequence S1, S2, S3, …, can be made arbitrarily close 
to H(S).

o Thus, the information quantitative measure finds its 
theoretical footing!



o Unique decodability is an essential premise for Shannon’s 
source coding theorem
n Unique decodability = Concatenation of codewords

(without punctuation mechanism) can be uniquely 
decodable.
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o A uniquely decodable code must satisfy the Kraft-McMillan 
inequality (or Kraft’s inequality).
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A violation to 
the Kraft-McMillan inequality !



o Arbitrarily close to entropy of average codeword length 
for a sequence of i.i.d. random variables
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Number of codewords

Codeword length

By increasing the number 
of letters encoded at a time 
(at the price of memory 
consumption), one can 
make the average 
codeword length 
approaching the source 
entropy. 
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Uncertainty, Information, and Entropy

o Some properties regarding entropy
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Uncertainty, Information, and Entropy

o Definition of discrete memoryless source (DMS) S1, S2, 
S3, …
n Discrete = The alphabet of each Si is discrete.
n Memoryless = Independent among Si (from the text)

o Memoryless = “Identically distributed” in addition to 
“independent” (otherwise we need to check the time 
instance i in order to identify the statistics)
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Data Compaction

o Data compaction or lossless data compression
n To remove the redundancy with no loss of information

o A sample uniquely decodable code – Prefix code
n Prefix condition: No codeword is the prefix of other 

codeword.
n A prefix code satisfies the prefix condition.
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Data Compaction

o A prefix code is uniquely decodable, thereby satisfying the 
Kraft-McMillan inequality.

o Converse is not necessary true.
n A uniquely decodable code is not necessarily a prefix 

code. For example,

Codeword of A = 0
Codeword of B = 01
Codeword of C = 011
Codeword of D = 0111

a uniquely decodable non-prefix code
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Data Compaction

o The codewords of a prefix code, 
when the code is represented by 
a code tree, are always located 
at the leaves.

o Conversely, a prefix code can be 
formed by selecting the binary 
sequences corresponding to 
leaves on a code tree.

The codewords of this 
prefix code are 00, 01, 10, 
110, 1110 and 1111.
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Data Compaction

o Enforced by the prefix condition (or more specifically, 
enforced by the fact that the codewords are all residing at 
the leaves of a code tree), the prefix codeword can be 
instantaneously decoded upon the reception of the last bit.

o For this reason, it is also named the instantaneous code.
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Data Compaction

o Due to the tree-leave graphical representation of prefix 
codes, it can be shown that:

o With this property, we can prove that there exists a prefix 
code whose average codeword length satisfies
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With this property, if we compress two symbols at a time, then

With this property, if we compress three symbols at a time, then

With this property, if we compress n symbols at a time, then

As a result, we can make the average codeword length per 
observation arbitrarily close to the source entropy.
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Data Compaction

o The optimal code for lossless compression – Huffman code
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The idea behind the proof is to show that any code that violates 
any of the three conditions cannot be the one with the smallest 
average codeword length.
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Example. Consider a source with alphabet {1, 2, 3, 4, 5, 6} with 
probability 0.25, 0.25, 0.25, 0.1, 0.1, 0.05, respectively.

Step 1:
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Step 2:
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Data Compaction

o Variance of average codeword length of Huffman code

n When the probability of a newly combined symbol is 
found to be equal to another probability in the list, the 
selection of any one of them as the next symbol to be 
combined will yield the same average codeword length
but different variance.

n A trick is to avoid using the newly combined symbol in 
order to minimize the variance. (See the example in the 
text.)
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Data Compaction

o Lempel-Ziv code – An asymptotically optimal (i.e., 
achieving source entropy) universal code
n Huffman coding requires the knowledge of probability 

of occurrence for each symbol; so, it is not “universally” 
good.

n Can we design a coding scheme that is universally good 
(achieving source entropy) for a class of sources, such 
as, for all i.i.d. sources?



Lempel-Ziv coding scheme
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Discrete Memoryless Channels

o Discrete memoryless channels (DMCs)
n Discrete input and output alphabets
n Current output only depends on current input, where the 

“dependence” is time invariant.

PY|XX Y

…, x3, x2, x1 …, y3, y2, y1
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Discrete Memoryless Channels

o Example. (Memoryless) Binary symmetric channel
n The simplest discrete memoryless channel

1 - p

1 - p

p

p

0 0

11
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Mutual Information

o Assumptions in transceiving operation
n The receiver

o Does not know the channel input x
o Does not know the channel noise as well as how the 

channel noise affects x
o Do know the channel output y
o Do know the distribution of input x
o Do know the transition probability of output y given 

input x
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Mutual Information

o Assumptions in transceiving operation
n The receiver

o Do know the information content of channel input to 
be transmitted, i.e., the input entropy H(X).

o After observing y, i.e., after transmission, the 
remaining uncertainty for receiver about the input is 
H(X|Y).
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Mutual Information

o Conditional entropy H(X|Y)



© Po-Ning Chen@ece.nctu IDC6-40

Mutual Information

o Mutual information 
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Mutual Information

o Properties of mutual information

No information (H(X) – H(X|Y)) can be conveyed from 
input to output if Y is independent of X.
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Channel Capacity

o Channel capacity
n A new terminology introduced by Shannon

n p(y|x) is fixed and is given by the channel.
n I(X;Y) is the information that can be conveyed through the channel.
n p(x) is the way we use the channel.
n How about we choose the right p(x) to maximize the information 

conveyed through the channel!
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Channel Capacity

o So, Shannon calculated

o Then, he asked himself “What is the operational meaning of 
this quantity?”
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Channel Coding Theorem

o Shannon found that 

Word error rate (WER)= Codeword error rate
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Channel Coding Theorem

o Code rate in data transmission
n Binary symmetric channel

n WER for one information bit per channel usage (i.e., for 
an uncoded system) is e.

a

b

a

b



n WER for 1/3 information bit per channel usage is given 
by:

n WER is reduced at the price of code rate reduction (i.e., 
transmission speed reduction).

a

b

a

b
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n How about comparing the WERs of all codes with the 
same code rate (i.e., the same transmission speed)? For 
example, R = 1/3.

n Shannon proved that under             , if 

Pe can be made arbitrarily close to zero,

n In terminology, “reliable” in data transmission means 
that WER can be made arbitrarily small.

n Thus R = 1/3 is a reliable code rate (i.e., a reliable data 
transmission rate).
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Channel Coding Theorem

o Note that the left-hand-side (code rate) and the right-hand-
side (channel capacity) should be measured (or calculated) 
in the same unit.
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Differential Entropy and Mutual Information 
for Continuous Ensembles

o Entropy of a continuous source
n Suppose a continuous source X has continuous density f.
n Transform the continuous source X into a discrete one 
XD by quantization with step size D.

(Mean-value theorem)
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The entropy of XD is therefore given by:
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o Two observations can be made on the entropy of a 
continuous source.
n Its entropy is infinite (due to the second term                 ); 

so, a continuous source contains infinite number of 
information bits (amount).

n The first term may be viewed as the quantization 
efficiency for the source, and is named the differential 
entropy h(X).
o To uniformly quantize X up to n-bit accuracy requires 

D = 2-n.
o However, to losslessly express the quantization result 

(so that the accuracy remains) requires (approximately)
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Differential Entropy and Mutual Information 
for Continuous Ensembles

o Richness in information content in Gaussian source
n Example: 

o Let X be a Gaussian random variable with mean µ
and variance s2.

o Let Y be a random variable with mean µ and 
variance s2.

o Then,
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We can similarly prove that 
among all distributions with 
support in [a, b), the 
uniform distribution has the 
largest differential entropy.
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Differential Entropy and Mutual Information 
for Continuous Ensembles

o Mutual information for continuous ensembles

Therefore, 
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Information Transmission over Gaussian Channels

-B B f

1

AWGN

Sampling at rate 2B
samples per second, 
starting from t = 0 
to t = T

Sampling at rate 2B
samples per second, 
starting from t = 0 
to t = T

o Band-limited, power-limited (also, time-limited) Gaussian channels
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Information Transmission over Gaussian Channels

o What is the channel capacity (information bit per channel 
usage) for band-limited, power-limited (time-limited) 
Gaussian channels? 
Answer:

o Optimization of mutual information
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The upper bound can be achieved by making Yk Gaussian (i.e., by 
taking Xk Gaussian with variance P)

Note that 
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Information Transmission over Gaussian Channels

o Sphere packing argument

Although the receiver does not know the transmitted X, it 
knows that with high probability, the transmitted one will be 
in the sphere

With high probability
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Information Transmission over Gaussian Channels

o Hence, if the spheres centered at each (possibly) transmitted 
X with radius (ns2)1/2 do not overlap with each other, the 
decoding error will be small.



© Po-Ning Chen@ece.nctu IDC6-63

Information Transmission over Gaussian Channels

o Question: What the maximum number of spheres we can 
place inside the Y-space is ?



© Po-Ning Chen@ece.nctu IDC6-64

Information Transmission over Gaussian Channels

o Hence, the code rate is given by
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Implications of the Information Capacity 
for Gaussian Channels

o In order to have arbitrarily small error, it requires:

o With P = Eb R, the above requirement is equivalent to:

o We can then plot the relation between R/B (bits per second 
per Hertz) and Eb/N0.
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Region for which R > C
Reliable transmission is feasible!

Reliable transmission is not feasible!

-1.6 dB
Shannon limit

Region for which R > C
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Implication 1:

implies Eb/N0 must exceed -1.6 dB in order to make possible the 
arbitrarily small error transmission. 

-1.6 dB is named the Shannon limit for an AWGN channel.

Implication 2:

The lower the Eb/N0 (even if it exceeds -1.6 dB), the lower the 
bandwidth efficiency R/B for reliable transmission.
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Implication 3:

implies that when bandwidth B is very large, the capacity is 
proportional to P/N0.
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Implications of the Information Capacity 
for Gaussian Channels

o Example: M-ary PCM
n Examination of the relation between transmission rate, 

bandwidth and power.
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s(t)

m(t)

Ts
T
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This implies exactly the same relation between transmission 
rate, power and bandwidth as Shannon’s capacity formula!
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Implications of the Information Capacity 
for Gaussian Channels

o Comparison of bandwidth efficiency
n Example: M-ary PSK and M-ary FSK

o From Slide IDC1-65, the bandwidth efficiency of M-
ary PSK satisfy:

o From Slides IDC2-64, the bandwidth efficiency and 
error rate of M-ary FSK satisfy:



-1.6 dB
Shannon limit
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M-ary PSK

M-ary FSK

2

4
8

16
32 64

R/B versus Eb/N0

required for BER = 10-5

2

64

32

16
8 4
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Implications of the Information Capacity 
for Gaussian Channels

o Remark
n By increasing M, M-ary FSK approaches Shannon limit, 

while M-ary PSK deviates from Shannon limit.
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Implications of the Information Capacity 
for Gaussian Channels

o Example: Capacity of binary-input AWGN channel
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We then plot the minimum Eb/N0 that is required to validate the 
above inequality for a given code rate R.
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-1.6 dB

R

0.186 dB

-0.496 dB
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Information Capacity of Colored Noise Channel

f

Color Gaussian

Sampling at rate 2B
samples per second, 
starting from t = 0 
to t = T

Sampling at rate 2B
samples per second, 
starting from t = 0 
to t = T

o Band-limited, power-limited color Gaussian channels

f

1
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Treated white in this sub-H(f)

Assume that there are N sub-intervals.
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Information Capacity of Colored Noise Channel

-B B f

1

AWGN

Sampling at rate 2B
samples per second, 
starting from t = 0 
to t = T

Sampling at rate 2B
samples per second, 
starting from t = 0 
to t = T

o Band-limited, power-limited Gaussian channels
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Lagrange multipliers technique

0
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Equivalently,
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Information Capacity of Colored Noise Channel

o Water-filling interpretation of information-capacity theorem 
for a colored noise channel

The shaded area 
contributes to P.

Noise PSD
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Information Capacity of Colored Noise Channel

-B B f

1

AWGN

o This makes “Band-limited, power-limited Gaussian channels” a special 
case.
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Color Gaussian channel

-B B
f

1

In the previous derivation, we assume that H(f) is an ideal lowpass filter with 
bandwidth B.

What if H(f) does not assume the shape of an ideal lowpass filter?
Will channel capacity be affected?
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Color Gaussian channel

-B B
f

1

Answer: Since we assume that H(f) is known to the system, we can add an 
equalizer 1/H(f) at the receiver to compensate it. 

Accordingly, under such perfectly known H(f) assumption, the non-ideal-
shape of H(f) will not affect the channel capacity, namely, channel capacity is 
completely determined by the power spectrum of the color Gaussian.
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Rate Distortion Function

Channel 
with capacity C

Source 
with entropy H > C

Output with 
unmanageable 
error

Source 
with entropy H > C

Channel 
with capacity C

Output with 
arbitrarily small 
errorLossy data 

compression that 
introduces distortion D

Compressed output with 
reduced entropy Hr < C
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Rate Distortion Function

o Lossy data compression with a fidelity criterion

Non-reversible function mapping f
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Question: What is the smallest data compression rate (number 
of output bits per input symbol) such that the average 
distortion is less than D?

Answer:
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o Remarks
n R(D) reduces to H(X) when D = 0.
n As D (the acceptable distortion level) increases, the data 

compression rate can be reduced to nearly zero.


