Part 6 Fundamental Limits 1n
Information Theory



Introduction

Information Theory 1s the fundamental theory behind
information manipulation, including data compression and
data transmission.
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Introduction

For years, researchers wish to seek answers to some
fundamental questions on information manipulation:

B What 1s the irreducible complexity below which an
informational signal cannot be compressed? Entropy.

B What 1s the ultimate transmission rate for reliable
communication over a noisy channel? Capacity.

B A more striking result

If the entropy of the source 1s less than the capacity
of the channel, then (asymptotic) error-free (or
arbitrarily small error) communication over the
channel can be achieved.
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Uncertainty, Information, and Entropy

Uncertainty = Information

B When one gains “information”, he/she shall lose
“uncertainty”.

B Example. Suppose a discrete random variable § takes
value from S = {5, sq, ..., sx_; } With probability

PT(SZSk):pk, k:O,l,...,K—l

How much information we gain if we observe the
outcome of § (provided that we already know the
statistics of §)?
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Uncertainty, Information, and Entropy

B Casel:py=1.

Since we know that s, will be observed before we
observe 1t, no uncertainty loses (namely, no
information gains) for this observation.

B Case 2: p, <1 for every k.

Can we quantitatively measure the “information”
amount we gain after observing S?
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Uncertainty, Information, and Entropy

Axioms for information (uncertainty) measure

B Monotonicity in event probability

If an event 1s less likely to happen, 1t 1s more
uncertain that the event would happen. Therefore, its
degree of uncertainty should be higher.

B Additivity
If S and T are two independent random variables,

then the uncertainty loss due to the observations of

both S and 7 should be equal to the sum of the
uncertainty loss due to the observation of S and the
uncertainty loss due to the observation of 7.
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Uncertainty, Information, and Entropy

B Continuity

A small adjustment 1n event probability should
induce a small change in event uncertainty.
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Uncertainty, Information, and Entropy

Mathematically, the three axioms are transformed to:

e /(p) is monotonically decreasing in event probability p.

o [(p1 X p2)=1(p1)+ I(p2).

e /(p) is a continuous function of event probability p
for 0 < p < 1.

It can be proved that the only function that satisfies the
above three conditions 1s:

1
I(p)=C"-log (—) . where C' is a positive constant.
p
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Uncertainty, Information, and Entropy

Hence, for random variable S, each outcome, when 1t does
happen, will respectively give the observer “information™

I(po) = C -log(1/po)
[(p1) = C -log(1/p1)

[(pr-1) = C -log(1/px-1)
In expectation value, the random variable § will give the

observer information amount
K—1

H(S)=C- ) pplog(1/ps)

k=0
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Uncertainty, Information, and Entropy

When p, = 4, s, 1s either observed or not observed with
equal probable. Hence, intuitively, one should learn one bit
of information after this observation.

I(po) = C' -log(1/po) = C -log(2) =1

As aresult, take C = 1/log(2).

K-1

H(S) = Zpk 10g2<1/pk> bits

k=0

This 1s named entropy of S.
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Uncertainty, Information, and Entropy

Relation of entropy and data compression

B For asingle random variable with K possible outcomes,
a straightforward representation 1s to use

'log, (K)| bits.
For example, K = 8. Then, use 3 bits to represent each

outcome.
B For a sequence of observations on independent and
identically distributed (1.1.d.) Sy, S5, S5, ..., we will use
'log,(K)| bits per observation

to represent the sequence. Can we reduce this number?
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Uncertainty, Information, and Entropy

(Source-Coding Theorem) In 1948, Shannon proved that

B (Converse) the minimum average number of bits per
observation to losslessly and uniquely-decodably represent
an 1.1.d. sequence S, S,, S3, ..., 1s lower-bounded by the

entropy H(S).
B (Achievability) the minimum average number of bits per

observation to losslessly and uniquely-decodably represent
an 1.1.d. sequence S, S,, 53, ..., can be made arbitrarily close

to H(S).

Thus, the information quantitative measure finds its
theoretical footing!
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Unique decodability is an essential premise for Shannon’s
source coding theorem

B Unique decodability = Concatenation of codewords
(without punctuation mechanism) can be uniquely

decodable.
codeword of A = 0
codeword of B =
codeword of C' = 00
codeword of D = 01
codeword of £ = 10
codeword of /' = 11

For uniform distribution, H(S) = log,(6) ~ 2.58,

but, average codeword length 10/6 = 1.67 < H(S)

= O0l=either AB or D
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A uniquely decodable code must satisty the Kraft-McMillan

inequality (or Kraft’s inequality).

K-1

9k < 1, where £, = length of the kth codeword

k=0

codeword of A
codeword of B
codeword of C
codeword of D
codeword of F
codeword of F

0
1
W27t x 2422 x4=2>1
01
10
11

A violation to
the Kraft-McMillan inequality !
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Arbitrarily close to entropy of average codeword length
for a sequence of i.i.d. random variables

probability of A = 0.8
probability of B = 0.1
probability of C' = 0.1

Best code for single letter

codewordof A = 0
codeword of B = 10
codeword of ' = 11

Average codeword length
0.8x1+02x2=12> H(S)=0.92
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Best code for double letters
codeword of AA = 0

codeword of AB = 100
codeword of AC' = 101
codeword of BA = 110
codeword of BB = 111100
codeword of BC' = 111101
codeword of CA = 1110

codeword of CB = 111110 Codeword length
codeword of CC = 111111

Number of codewords

Average codeword length /
0.64(1 x 1)+ 0.08(3 x34+4x1)4+0.01(6 x4
( )+ ( 2+ )+ ( ):O.96>H(S):O.92
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Uncertainty, Information, and Entropy

Some properties regarding entropy

e H(S) > 0 with equality holding if, and only if (iff), S is

deterministic.

e H(S) <log,(K) with equality holding iff S is uniformly
distributed.

The first item can be proved by
that “0 < pr < 17 implies “log(1/px) > 07.
Equality holds if, and only if, “pglog(1/px) = 0 for every k.
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log(K) — H(S) = log(K) x (Z Pk) - z_:pk log(1/pr)

K-1 K-1
= ) pi xlog(K)+ > pilog(pk)
k=0 k=0

_ Vy > 0) log(y) > 1—(1/y)
log| K X (Vy
Z pr log| P with equality holding iff y =1

[V
M7
'B —
x~
VRN
[—

|

=

X | =
i~
x>~
N

= 1-1=

Equality holds if, and only if, (V0 <k < K — 1), K x pp = 1,
which means S is uniformly distributed.
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Uncertainty, Information, and Entropy

Definition of discrete memoryless source (DMS) S, S5,
Ss, ...

B Discrete = The alphabet of each S, is discrete.
B Memoryless = Independent among S; (from the text)

Memoryless = “Identically distributed” 1n addition to
“independent” (otherwise we need to check the time
instance i 1n order to 1dentify the statistics)
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Data Compaction

Data compaction or lossless data compression

B To remove the redundancy with no loss of information

A sample uniquely decodable code — Prefix code

B Prefix condition: No codeword 1s the prefix of other
codeword.

B A prefix code satisfies the prefix condition.
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Data Compaction

A prefix code 1s uniquely decodable, thereby satisfying the
Kraft-McMillan inequality.

Converse 1s not necessary true.

B A uniquely decodable code 1s not necessarily a prefix
code. For example,

a uniquely decodable non-prefix code

Codeword of A=0
Codeword of B =01
Codeword of C =011
Codeword of D =0111
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The codewords of this
prefix code are 00, 01, 10,

Data Compaction 110, 1110 and 1111.

00

The codewords of a prefix code,
when the code 1s represented by
a code tree, are always located
at the leaves.

Conversely, a prefix code can be
formed by selecting the binary
sequences corresponding to
leaves on a code tree.

1110

1111
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Data Compaction

Enforced by the prefix condition (or more specifically,
enforced by the fact that the codewords are all residing at
the leaves of a code tree), the prefix codeword can be
instantaneously decoded upon the reception of the last bit.

For this reason, 1t 1s also named the instantaneous code.
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Data Compaction

Due to the tree-leave graphical representation of prefix
codes, 1t can be shown that:

For any positive integers £y, /1, --- , L_1 that satisty
the Kratt-MaMillan inequality, there exists a prefix
code that takes these numbers as its codeword lengths.

With this property, we can prove that there exists a prefix

code whose average codeword length satisfies
K—1

H(S)< L=Y puly, < H(S)+1

k=0
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Take £, = [logy(1/px)| + 1 2 logy(1/pk).
Then, 2=% < p;.

K—1 K—1
= 22_“ < Zpk = 1.
k=0 k=0

— There exists such a prefix code with ¢y, 41, , £rx_1
as 1ts codeword lengths.

= Uniquely decodable = L > H(S)

On the other hand, ¢;, < log,(1/pi) + 1.

K-1 K-1
_ 1
k=0 k=0

Pk 1

© Po-Ning Chen@ece.nctu IDC6-25



With this property, 1f we compress two symbols at a time, then
H(S*) <L, <H(S*)+1
With this property, 1if we compress three symbols at a time, then

H(S3) < L3 < H(S*)+1

With this property, 1if we compress n symbols at a time, then
H(S")Y < L,<H(S")+1

As a result, we can make the average codeword length per
observation arbitrarily close to the source entropy.

H(S) = TH(S") < L, < TH(S") + - = H(S) + -

n n n n
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Data Compaction

The optimal code for lossless compression — Huffman code

Give a source with probability {po,....px_1}.

Let /;. be the binary codeword length of the Ath symbol.
Then there exists an optimal uniquely decodable
variable-length code satisfying:

1. p; > p; implies £; < (.
2. The two longest codewords have the same length.

3. The two longest codewords differ only in the last bit
and correspond to the two least frequent symbols.
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The 1dea behind the proof 1s to show that any code that violates
any of the three conditions cannot be the one with the smallest
average codeword length.

Huffman encoding algorithm:

1. Combine the two least probable source symbols into a new single symbol, whose
probability is equal to the sum of the probabilities of the original two.

e Thus we have to encode a new source alphabet of one less symbol.

Repeat this step until we get down to the problem of encoding just two symbols
in a source alphabet, which can be encoded merely using 0 and 1.

Go backward by splitting one of the two (combined) symbols into two original
symbols, and the codewords of the two split symbols are formed by appending 0
for one of them and 1 for the other from the codeword of their combined symbol.
Repeat this step until all the original symbols have been recovered. and obtain
a codeword.

)
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Example. Consider a source with alphabet {1, 2, 3,4, 5, 6} with
probability 0.25, 0.25, 0.25, 0.1, 0.1, 0.05, respectively.

Step 1:  0.25 0.25 0.25 025 ——— 0.5 —1—
0.25 0.25 0.25 0.25 —
0.25 0.25 0.25 — 0.5 0.5 —
0.1 0.1 ——— 0.25 —
0.1 — 0.15 —
0.05 ——
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Step 2:

00
0.25 —

01

— 0.5 —

0.25 —

— 0.5

(00) 00 00
0.25 0.25 0.25

(01) 01 01
0.25 0.25 0.25

(10) 10 10
0.25 0.25 0.25 —

(110) 110 11
0.1 0.1 —— 0.25 —

(1110) 111
0.1 —— 0.15 —

(1111
0.05 ——

0.0 —

1.0
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Data Compaction

Variance of average codeword length of Huffman code

K—-1 -
O'2 = Zpk(gk — L)2
k=0

B When the probability of a newly combined symbol 1s
found to be equal to another probability 1n the list, the
selection of any one of them as the next symbol to be
combined will yield the same average codeword length

but different variance.

B A trick 1s to avoid using the newly combined symbol in
order to minimize the variance. (See the example in the

text.)
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Data Compaction

Lempel-Z1v code — An asymptotically optimal (1.e.,
achieving source entropy) universal code

B Huffman coding requires the knowledge of probability

of occurrence for each symbol; so, it 1s not “universally”
g00d.

B Can we design a coding scheme that 1s universally good

(achieving source entropy) for a class of sources, such
as, for all 1.1.d. sources?
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Lempel-Ziv coding scheme

. Parse the input sequence into strings that have never appeared
before.

D

. Let L be the number of distinct strings of the parsed source. Then
we need [logy (L) |bits to index these strings (starting from one). The
codeword of each string is the index of its prefix concatenated with
the last bit in its source string.

e Example. The input sequence is 1011010100010;

Step 1:

— With default strings 0 and 1 in the buffer, the algorithm first eats the first
letter 1 and finds that it is one of the default strings. So, it eats another
letter 0, and yields a new string 10. So 10 is the first string.

— Then the algorithm eats the third letter 1, and finds that it has appeared
before. Hence, it keeps eating the next letter until a new string is formed.

— By repeating these procedures, the source sequence is parsed into strings
as

0.1,10,11,01, 010,00, 10.
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e Step 2:
— L = 8. So the indices will be:

parsed source : () 1 10 11 01 010 00 10
indexr : 001 010 011 100 101 110 111 — °

— E.g.. the codeword of source string 010 will be the index of 01, i.e. 101,
concatenated with the last bit of the source string, i.e., 0.

e The resultant codeword string of 10,11, 01,010, 00, 10 is:
(010,0)(010, 1)(001,1)(101,0)(001,0)(010,0)

or equivalently,
010001010011101000100100.
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Discrete Memoryless Channels

Discrete memoryless channels (DMCs)

B Discrete input and output alphabets

B Current output only depends on current input, where the
“dependence” 1s time 1nvariant.

X —Y

—_— =
—_—— 7 \,/ > \
- ~

¥\ - r
ey X3, Xp, X T Ul Px’la’f(yﬁlffl\/,—> s V3, V2, V1

\\\\\
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Discrete Memoryless Channels

Example. (Memoryless) Binary symmetric channel

B The simplest discrete memoryless channel

l-p
00O >
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Mutual Information

Assumptions 1n transceiving operation

B The recelver

Does not know the channel input x

Does not know the channel noise as well as how the
channel noise affects x

Do know the channel output y

Do know the distribution of input x

Do know the transition probability of output y given
input x
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Mutual Information

B The recelver

Do know

Assumptions 1n transceiving operation

the information content of channel input to

be transmitted, 1.€., the input entropy H(X).

After observing y, 1.e., after transmission, the

remaining uncertainty for receiver about the input 1s

H(X]Y).

The information that successfully conveys
from input to output is H(X) — H(X|Y).
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Mutual Information

Conditional entropy H(X]Y)

Self-information log, <m)

1
Average self-information E [lo ( )]
5 2 \ p(X]Y)

=) Zp(xay)logz( 1 )

S5 p(z|y)
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Mutual Information

Mutual information

[(X:Y) = H(X)— H(X|Y)
= H(Y) - H(Y|X)
— H(X)+ H(Y) — HX.Y)

H(X)

H(X.,Y)
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Mutual Information

Properties of mutual information

o I(X;Y)=I(Y;X)

e /(X;Y) > 0 with equality holding iff X 1L Y

No information (H(X) — H(X|Y)) can be conveyed from
input to output 1f Y is independent of X.

© Po-Ning Chen@ece.nctu IDC6-41



I(X;Y)

H(X) — H(X|Y)

N

measured in unit of nats)

;p@ e (z% ) ) 2 y%p(m’ v)log (p(;y))
;y;p(% y) log (]ﬁ) — ; y;p(% y) log p(;y))
> S nvs (555

S Srte0 i (1500 ) e i B
= Sen(o-25280

1—1=

Equality holds if, and only if, for x € X and y € Y, p(z,y) = p(x)p(y).
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Channel Capacity

[0 Channel capacity

B A new terminology introduced by Shannon

p(y|z)
= > _plx)p(ylz)log, ooy 2 p(]7)

rxeX ye)y

p(ylx) 1s fixed and 1s given by the channel.
I(X;Y) is the information that can be conveyed through the channel.

p(x) is the way we use the channel.

How about we choose the right p(x) to maximize the information
conveyed through the channel!
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Channel Capacity

So, Shannon calculated

C' = max[(X;Y)
p()

maXZZp p(y|z) log, p(gf\:c) -

veX yey p(2)p(yl|T)

Then, he asked himself “What 1s the operational meaning of
this quantity?”
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Channel Coding Theorem

Shannon found that

e if R (bits/channel usage) > C' = P. (word error rate)
cannot be made arbitrarily small:
e if R (bits/channel usage) < C = P. (word error rate)

can be made arbitrarily small;

Word error rate (WER)= Codeword error rate
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Channel Coding Theorem

Code rate 1n data transmission

B Binary symmetric channel

1l —¢
a a
\$< e =20.1
b _— b
1l —¢

B WER for one information bit per channel usage (1.e., for
an uncoded system) 1s ¢&.
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a 4}
0 — aaa L
., >< " encoder { Y decoder = majority law

1l —¢
abb
: . bab
Error occurs when, e.g., transmit aaa but receive bba
bbb
B WER for 1/3 information bit per channel usage 1s given

by:
P. = (1—e)+e(1—¢e)+e(1l—¢)+¢&°
= 3(0.1)*(0.9) +0.1° = 0.028 < 0.1

B WER is reduced at the price of code rate reduction (i.e.,
transmission speed reduction).
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B How about comparing the WERSs of all codes with the
same code rate (1.e., the same transmission speed)? For
example, R = 1/3.

B Shannon proved that undere = 0.1, if

R<C=1-H(e)=1-0.468996 = 0.531004

P, can be made arbitrarily close to zero,
where H(e) = elog, £ + (1 —¢) log, .

B |n terminology, “reliable” in data transmission means
that WER can be made arbitrarily small.

B Thus R = 1/3 1s a reliable code rate (1.e., a reliable data
transmission rate).
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Channel Coding Theorem

L
Note that the left-hand-side (code rate) and the right-hand-
side (channel capacity) should be measured (or calculated)
in the same unit.

R (information bits generated per unit time 7)
C' (information bits per channel usage period 7T,.)

We can compare R < C only when T, = T..

Otherwise, we should compare

R _C

7 S T information bits per second
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Differential Entropy and Mutual Information
for Continuous Ensembles

Entropy of a continuous source

B Suppose a continuous source X has continuous density f.

B Transform the continuous source X into a dlscrete one
X by quantization with step size D. :

(i+1)A
and Pr[ X2 =] = / f(x)de = f(z:)A
iA '

v

for some 1A S €T, < (Z -+ 1)A (Mean-value theorem)
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The entropy of X* is therefore given by:

= 1
A — .
= 1 1
= i;)of(xi)ﬁlogz gt 2 Alog,

|
>
/‘\
§
c’T
03
(\W)
—
/-\'_\
N~
+
2}
03
(\W)
> —
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Two observations can be made on the entropy of a
continuous source.

B [ts entropy is infinite (due to the second term log,(1/A));
S0, a continuous source contains infinite number of
information bits (amount).

lim | 1 !

im | log, — | =

A0 52 A >

B The first term may be viewed as the quantization
efficiency for the source, and 1s named the differential

entropy A(X).
To uniformly quantize X up to n-bit accuracy requires

A=27",
However, to losslessly express the quantization result
(so that the accuracy remains) requires (approximately)

h(X) + n bits
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Differential Entropy and Mutual Information
for Continuous Ensembles

Richness 1n information content in Gaussian source

B Example:

Let X be a Gaussian random variable with mean u
and variance o°.

Let Y be a random variable with mean 4 and
variance o°.

Then,

h(Y) < h(X) = %logQ(Zweaz)
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hX) = [ Ix(a)log do
= | 1x@ % log, (2152) + log, (€) - (5’”2‘05)2: dz
= | (@ :%log2(27rc72)—|—log2(e) (5”2_0“)2 da
S h(X)=h(Y) = [ fx(o)log, fxl( L fyl( dy
= J oo g = [ o os
> logy(e) [ rlo) 1= 20—
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b
h(X) = / fx(x)log, L dr We can similarly prove that
“ fx() among all distributions with
_ oo 1b — ald support in [a, b), the
a fx(w)log, b~ alde uniform distribution has the
b fy() log, |b — ald largest differential entropy.
= v(x) log, |0 — alax
Cl,b 1
= | d
a frlr)log; fx(z) '
b ! d b 1 ! d
hMX)—h(Y) = log, ——dr — -
S hX) =) = [ pe(o)ogy e = [ () log, sy
’ 1 b 1
= ) fy(CE') 10g2 fX—(x)diU —L fy(ﬂ?) 10g2 fY—(x)diU
b
_ fy (@)
— ) fy(,fE’) 10g2 fX(gj)dx
b
_ Jx(®)
> logy(e) [ vt 1= 290 e
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Differential Entropy and Mutual Information
for Continuous Ensembles

Mutual information for continuous ensembles

(X2 Y2) = H(X®)— H(X2|YH

1 1
~ (h(‘\') + log, S) - ( X[Y) +log, A)

h(X)— h(X]Y)

Therefore,

I(X; Y)—RE%I(XA Y2) = h(X) - h(X]Y)
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Information Transmission over Gaussian Channels

Band-limited, power-limited (also, time-limited) Gaussian channels

k=0
Xt_/ | - ;/_I._\ R 1 - 1 *;/ { k :k:O
Sampling at rate ZBE \ 7| v Sampling at rate 28
samples per second, ‘, —5 B ‘. . samples per second,
starting from¢=0 | ! 2 Bsinc(2BT) ' starting from =0
tot=T v N, 1 tot=T
| I
_____ AWGN_ L
2BT—1 : : 2BT—1 I
Xpo(t—k/2B Noise-free output X} - 2Bsinc | 2B |t — —
; kO /2B) p ; k ( [ 23] >

= Y. = X, + N, where N;, zero-mean 1.1.d. Gaussian with variance NyB3
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Information Transmission over Gaussian Channels

What is the channel capacity (information bit per channel
usage) for band-limited, power-limited (time-limited)
Gaussian channels?

Answer:

C = max [(Xk, Yk)
{Px:E[X?]<P}

Optimization of mutual information

I( X Y) = h(Ye) — h(Ye|Xy)
= h(Y.) — h(Ng) (See the next slide.)
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WY |X) = /ﬁx V(Y |X =
1

=[xt ([ ol 7o) a
- /%fX </fN 7 logzm 1—x>dy>dx
= /%fx (/ fn(n 10g2 )

= h(N) = 210g2 (2mec?)
S I(XYs) = Mﬁ%#ﬂ%ﬁﬂ@@—%b&@mﬁ)

1 1
< 5 log, (2weVar(Y})) — 5 log, (2mec?) .
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The upper bound can be achieved by making Y, Gaussian (1.e., by
taking X, Gaussian with variance P)

Note that E[X}] < P.

= max (X Y5
{Xi:E[X}]<P}
1 . 1 .
= > log, (271'(:’ [P + 0“]) —- 35 log, (2m—<03)

-

—

-~

e
J2
o

P .
1 + — ] bits per channel usage
2 ,

X I
channel usage = seconds

R bits 1 channel usage
1+ —
o 2B

[
oo

o =D =t
—_—
C
Jc<
|" W)

1 + r
i 'r(_)B

) bits per second
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Information Transmission over Gaussian Channels
]

Sphere packing argument
Y, =X + N, k=1,2,--- 'n
where { X} and { Ny} are zero-mean i.i.d.
respectively with variances P and o°.
With high probability
YWY+ + Y =n(P + 07
Although the receiver does not know the transmitted X, it
knows that with high probability, the transmitted one will be
in the sphere
Vi = X))+ (Yo — Xo)* +---+ (Y, — X,,)? =® no?

IDC6-61
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Information Transmission over Gaussian Channels

Hence, 1f the spheres centered at each (possibly) transmitted
X with radius (no%)"? do not overlap with each other, the
decoding error will be small.

(
Y4+ 4+ Y2z n(P+0?) @ Q
( ()
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Information Transmission over Gaussian Channels

Question: What the maximum number of spheres we can
place 1nside the Y-space 1s ?

Y2 +Y5 + -+ Y7 mn(P + 0%
= volumn = A, ([n(P + 02)]/?)"

(Yl—X1)2+(Y2—X2)2—|-°°°+(Yn—Xn)2%WTZ
= volume = A, ([no?]/?)"

= The maximum number of codewords approximately equals

An[n(P—I—Oz)]"/Z e p n/2
An[naz]”/z _ =

o
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Information Transmission over Gaussian Channels

Hence, the code rate 1s given by

1 2 n/2
— log, (1 + —2> bits per channel usage
n o
1 Py ..
=3 log, | 1+ = bits per channel usage

= (' channel capacity
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Implications of the Information Capacity
for Gaussian Channels

In order to have arbitrarily small error, it requires:

R < Blog, (1 + ) bits per second

Ny B
With P = E, R, the above requirement 1s equivalent to:

R Ey, R .
B < log, (1 + Fo E) bits per second per Hertz

We can then plot the relation between R/B (bits per second
per Hertz) and £,/N,.
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-1.6 dB
Shannon limit

100 3 ! :
[ : . . R _ E, R
i : Region for which R > C B = log (1 * N B)
| ! Reliable transmission is not feasible! j
10 | i
1 : Region for which R > C
% | ! Reliable transmission is feasible!
N
0.1 : 1 ] 1 ] 1 ] 1 ]
-10 0 10 20 30 40 50 60 70 80
Ey
N dB
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Implication 1:

E, 2F/B _1 2R/B _ q
—b d i — log(2) = —1.6 dB
N, ~ rjp TR T lee?)

implies E,/Nymust exceed —1.6 dB 1n order to make possible the
arbitrarily small error transmission.

—1.6 dB 1s named the Shannon limit for an AWGN channel.

Implication 2:

The lower the E,/N, (even 1f 1t exceeds —1.6 dB), the lower the
bandwidth efficiency R/B for reliable transmission.
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Implication 3:

P P
Coo élglo Blog, (1 + NOB> A log, e

implies that when bandwidth B is very large, the capacity is
proportional to P/N,,.
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Implications of the Information Capacity
for Gaussian Channels

Example: M-ary PCM
B Examination of the relation between transmission rate,
bandwidth and power.

In order for M-ary PCM to have a small error, the sep-
aration of amplitude levels are chosen to be +(1/2)ko.
+(3/2)ko, -+, £[(M —1)/2]ko, where 6° = NyB, and k

18 some chosen constant.

" (M; 1)1 (ko) = 120> (M;_ 1)

IDC6-69
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12P\ /2 12P \ Y2
( +k202> ( +k2NOB>

The transmission rate of n M-ary symbols (for n interleaving
PCM users) with sampling rate 2W is given by

_ log,(M™) bits

1

T seconds

R

12P
= 2Wnlog, (M) = Wnlog, (1 + kzNOB>

For n interleaving PCM users, B = knW, where often 1 < r <
2. In an ideal case, we take Kk = 1.

T [ T .m0

T s
S

~
N
=<
\\
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ﬂ
t




~

p X
NOB> bps, where P = 12P/k*.

R = B log, <1—|—

This implies exactly the same relation between transmission
rate, power and bandwidth as Shannon’s capacity formula!

© Po-Ning Chen@ece.nctu IDC6-71



Implications of the Information Capacity
for Gaussian Channels

Comparison of bandwidth efficiency

B Example: M-ary PSK and M-ary FSK

From Slide IDC1-65, the bandwidth efficiency of M-
ary PSK satisty:

R log, (M)

B 2

From Slides IDC2-64, the bandwidth efficiency and
error rate of M-ary FSK satisfy:

R 2logy(M)

B M
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-1.6 dB
Shannon limit

100 3 RS
I | R _ Ey R
- : B — 10g2 (1 + No B)
10 | i
- | | % MaryPSK
B | :
LE i
f i R/B versus E,/N, _
[ | required for BER = 10>
| | 64® M-ary FSK
0.1 : i i - i i i - i
-10 0 10 20 30 40 50 60 70 80
Ey
N dB
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Implications of the Information Capacity
for Gaussian Channels

Remark

B By increasing M, M-ary FSK approaches Shannon limit,
while M-ary PSK deviates from Shannon limit.
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Implications of the Information Capacity
for Gaussian Channels

Example: Capacity of binary-input AWGN channel

Y=X4+N

where X € {£1} and N zero-mean Gaussian with variance o

C = max [(X;Y), where Pr[X = —1]

0<p<1 b

| 1 > 1 /1

o’ _\/27T — oo

eV’ log,
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Ey 1 (Joule/channel usage) n (channel usages) /k (bits)

NO NO
11 1
Ny (%)  NyR 202R

. N,
= g2 =
T 9E.R
E, 1 <, E, E,
R < C =2Rlog,(e)— — —— ey/zlo IR 4 V2R~ d
g2( )NO \/ﬁ B g2 NO y NO y

We then plot the minimum £,/N, that 1s required to validate the
above 1nequality for a given code rate R.
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y A

¢ 0.186 dB

-05_ | _____ :‘+0.496:‘dB‘

1/32 1/16 1/8 1/5 1/4 1/3 1/2 2/3 4/5
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Information Capacity of Colored Noise Channel

Band-limited, power-limited color Gaussian channels

/

1 2BT—1 | o
SBT Z zp < P
k=0 1
| : 2BT 1

Sampling at rate ZBE f Sampling at rate 2B
samples per second,i . samples per second,
starting from =0 H(f) . starting from =0
tot="T | N/ . tot=T

' Color Gaussian

with PSD Sy (f)
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Sni(f) | Treated white 1n this sub-H(f)

Assume that there are N sub-intervals.
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Information Capacity of Colored Noise Channel

Band-limited, power-limited Gaussian channels

/

Via Z 1, < P Sx(fo)Af !
k=0 '
: ZBT 1
Xy 5 1 | {Y }
4/ — =q-_\ > Y : 4/
Sampling at rate 2B: f| v Sampling at rate 2B
samples per second, ‘| —5 : B ‘. . samples per second,
starting from =0 | ! 2Bsinc(2Br) |1 starting from ¢ =0
tot=T 1V, B=Af/2 1 tot=T
| I
o AWGN X
2BT—1 : : 2BT—1 I
Xpo(t—k/2B Noise-free output X} - 2Bsinc | 2B [t — —
; k0 /2B) b ; k ( [ 9 B] )

= Y, = X, + N, where N;, zero-mean i.1.d. Gaussian with variance NoB
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P,
C; ~ Blog, (1 + —5) bits per second
O¢

A P
= (7f>log2 <1+—§> for 1 << N

where S, P, = P.

Question: How to maximize C' subject to >, P, = P?
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Lagrange multipliers technique

N 1N P N
J = C,==3 Afl 1+ 40 P=N"P
;g 2; ngz(%g)* ( ;e>

Deriving 9.J/9F; yields:

1
( 3
L_Af_ )<, Pr=0— ;
21og(2) 1+ 2 — Tl >
o7 0 Iy
s
1 oy . . *
LE
O'2 P
21 Pr - —
\ 1+o§
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* A *
{ Py +0} > gobs = KAf, P =0

v

* A *
Pf+ 07 = gz = KAf, Pr >0

1
where K = TR @N

{ SY(JOAf + Sni(fo)Af > KAS, Sx(f)Af =0

Sx(JO)AS +Sni(f)Af = KAf, Sx(f)Af >0

Equivalently,
{ 0> K — Syi(fe), Sx(fe) =0
Sx(fe) = K = Sni(fe), Sx(fe) >0

= S(/) = max{K — Sx.(/),0}

© Po-Ning Chen@ece.nctu IDC6-83



Information Capacity of Colored Noise Channel

Water-filling interpretation of information-capacity theorem
for a colored noise channel

SN (f) ” Noise PSD

Sx(f)
The shaded area
contributes to P.
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Q

3 fo (122 B )

_ %/}—max{logQ <%(f)) ,O}df

where K is chosen to satisty P = ff max{ K — Sy:(f),0}df,
and JF is the signal band.
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Information Capacity of Colored Noise Channel

[0 This makes “Band-limited, power-limited Gaussian channels” a special

casc. :---------------——----------------__________,:
/ Y pBr-t
Xt (T : 1 /' { }E_()
5 <‘> B3 B /|
2 Bsinc(2BT)
Ny
AWGN

= S%(f) = max{K — No/2,0},|f| < B

B
where P — fB St (£)df = 2B(K — Ny/2).
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PN
K=—+-—2
2B 2

I (
C = —/ max 1 log,
2J-pB

|
e ()
( P
>

1 [P (
= 5/ max < log,
~B

= DBlog, <1 +

Just a reminder. My Sxy(f) is exactly Sy (f)/|H(f)|* in text.
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— P— 1 v Hidiso™

5 B
H(f)
1 Nt, \\ !
I \ I
. Color Gaussian____________ channel
with PSD Sy (f) \

\
\
\

. \ . .
In the previous derivation, we assume that H(f) is an\l\deal lowpass filter with
bandwidth B. \

\
\

What if H(f) does not assume the shape of an ideal lowp\ass filter?
Will channel capacity be affected?
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X /7 1 /' {Yk zig_l
—P— @l [T ’
| -B B
H(f) 5
N g
' Color Gaussian channel

with PSD Sy (f)

Answer: Since we assume that H(f) is known to the system, we can add an
equalizer 1/H(f) at the receiver to compensate it.

Accordingly, under such perfectly known H(f) assumption, the non-ideal-
shape of H(f) will not affect the channel capacity, namely, channel capacity is
completely determined by the power spectrum of the color Gaussian.

As a final remark, my Sy (f) is exactly Sy(f)/|H(f)|* in the textbook, in which the noise N is
placed after the filter. Hence, equivalent Sy/(f) will be affected by H(f) after it is equivalently
modeled to be placed before the filter. My comment above indicates that once Sy (f) is fixed, H(f)
becomes irrelevant to the capacity.
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Rate Distortion Function

Output with
Source unmanageable
with entropy H > C ‘ Channel error ‘
| with capacity C
Source Compressed output with
with entropy H > C reduced entropy H, < C Output with
Lossy data arbitrarily small
Channel error

compression that

introduces distortion D with capacity C
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Rate Distortion Function

Lossy data compression with a fidelity criterion
. / N
L2 Y2

T Ys . . : '
| 3 / . Fidelity criterion d(z;,y;)
T Ya

Non-reversible function mapping f

I

Average distortion = Zp(a?i)d(afi, f(CCz))

1=1
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]-3 yj — f(:I:'i)

), otherwise

Define p(y;|z;) = {

I J
Average distortion = Z Zp(xi)p(yj\ﬂfi)d(ﬂfu Z/j)

i=1 j=1

Question: What 1s the smallest data compression rate (number
of output bits per input symbol) such that the average
distortion 1s less than D?

Answer:

R(D) = min [(X;Y)
{p(ylz) + iy Xy p(zi)p(yjlei)d(ziy;) <D}
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R(D) = min [(X:Y)

{p(yle) « Sioy 37—y plai)p(y;le:)d(zs,y;) <D}

Example. Derive the rate-distortion function for binary mem-
oryless source X7, Xs, -+ with

Prl X =0=1-Pr[X =1=pe€(0,1/2)
Reproduction alphabet ) = {0,1}

o _ L z#y
Hamming distortion d(x,y) = { 0. z=y
Solution.
R(D) = min [(X;Y)
{p(y|z) : E[d(X,Y)]<D}

{p(ylz) : Eld(X,Y)]=D}
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R(D) = min I(X:;Y)

{p(ylz) : Pr[X#Y]=D}

— min H(X)— H(X|Y)]
{r(ylz) : PrlX#Y]|=D}

= min HX)-HXaY|Y)]
{p(y|z) : Pr[X#Y]=D}

> min HX)—HXaY)]

{p(ylz) : Pr[X#£Y|=D}"

— Hb(p) — Hb<D)

where .
Hy(2) = 2log, = + (1 — ) log,

Z 1 — 2z
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Hb(p) — Hb(D>, 0<D<p

R(D) = min [(X;Y):{ 0, D >p

{p(ylz) : E[d(X,Y)]<D}

For 0 < D < p, R(D) = H(X) — Hy,(D) can be achieved with
H(X|Y) = Hy(D), which can be satisfied by letting:

px|y (1]0) = pxy(0[]1) = D.

For D > p, R(D) = 0 can be achieved with H(X|Y') = Hy(p) =
H(X),ie.,Y 1l X with marginal distribution satisfying

E[d(X.Y)] = Pr[X = 0] Pr]Y = 1] + Pr[X = 1] Pt[Y = 0]

=p-Pr[Y =1]+ (1 —p)-Pr[Y =0] < D.
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Remarks
B R(D)reduces to H(X) when D = 0.

B As D (the acceptable distortion level) increases, the data
compression rate can be reduced to nearly zero.
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