
Sample Problems for the 10th Quiz

1. What are the two main limitations of AQF in comparison with AQB?

Solution. Although AQF is in principle a more accurate estimator, it has two main
limitations in comparison with AQB; i.e., it requires:

• an additional buffer to store unquantized samples for the learning period (hence a
processing delay due to buffering and other operations for AQF is necessary);

• an explicit transmission of level information ∆[n] to the receiver (because the receiver
only has the quantized samples).

The above limitations can be relaxed by using AQB.

2. For the one-shot or a single transmission illustrated below (hence, inter-symbol interference
is ignored), we have

x(t) = a · g(t) + w(t),

where a ∈ {±1} is the digital message to be transmitted (i.e., a is the digital message to
be carried by g(t)).

Note: The WSS w(t) is not necessarily a white noise but could be a colored WSS noise
with PSD Sw(f).

(a) Express the input y(t) of the sampler in term of a, g(t), w(t) and h(t).

(b) Express the output y(T ) of the sampler in term of a, G(f), n(T ) and H(f), where
G(f) and H(f) are the Fourier transforms of g(t) and h(t), respectively, and n(T ) =∫∞
−∞w(τ)h(T − τ)dτ .

(c) Find E[n2(T )], provided that w(t) is WSS with PSD SW (f).

Hint: The PSD of n(t) is Sn(f) = Sw(f)|H(f)|2.
(d) Find the optimal transfer function Hopt(f) such that the output signal-to-noise ratio

at the output of the sampler is maximized. In other words, find Hopt(f) such that

η =
| (a · g(t) � h(t)|t=T )|2
E[(w(t) � h(t)|t=T )

2]

is maximized.
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Note: Since w(t) is not necessarily white, you shall derive

η =
|a · ∫∞

−∞G(f)H(f)ej2πfTdf |2∫∞
−∞ Sw(f)|H(f)|2df

=
| ∫∞

−∞ G(f)H(f)ej2πfTdf |2∫∞
−∞ Sw(f)|H(f)|2df (a ∈ {±1})

=

∣∣∣∣∫∞
−∞

G(f)√
Sw(f)

·√Sw(f)H(f)ej2πfTdf

∣∣∣∣2∫∞
−∞ Sw(f)|H(f)|2df

= · · ·
and use the Cauchy-Schwarz inequality.

Solution.

(a)

y(t) = a · g(t) � h(t) + w(t) � h(t)

(b)

y(T ) = a ·
∫ ∞

−∞
H(f)G(f)ej2πfTdf + n(T )

(c) The PSD of n(t) is Sn(f) = Sw(f)|H(f)|2 and n(t) is WSS (because w(t) is WSS).
Then, for any t,

E[n2(t)] =

∫ ∞

−∞
Sn(f)df =

∫ ∞

−∞
Sw(f)|H(f)|2df.

(d)

η =

∣∣∣∣∫∞
−∞

G(f)√
Sw(f)

·√Sw(f)H(f)ej2πfTdf

∣∣∣∣2∫∞
−∞ Sw(f)|H(f)|2df

≤
(∫∞

−∞
|G(f)|2
Sw(f)

df
)
·
(∫∞

−∞ Sw(f)|H(f)ej2πfT |2df
)

∫∞
−∞ Sw(f)|H(f)|2df

=

∫ ∞

−∞

|G(f)|2
Sw(f)

df

The upper bound can be achieved by

G∗(f)√
Sw(f)

= k
√
Sw(f)Hopt(f)e

j2πfT for some constant k

which implies

Hopt(f) =
1

k

G∗(f)
Sw(f)

e−j2πfT .
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Note: When the noise is not white (and we take k = 1 for simplicity),

Hopt(f)Sw(f) = G∗(f)e−j2πfT ,

i.e., a larger noise power at a specific frequency shall make Hopt(f) smaller such that
their product equals G∗(f)e−j2πfT .

3. We now re-do what we did in our lecture by considering a general color noise.

The diagram above illustrates a one-shot transmission for message a, modeled as

x(t) = a · g(t) + w(t) with a ∈ {±1}.
From the diagram, we know

y(t) = a · g(t) � h(t) + w(t) � h(t).

When sampling at time instance t = T , we have

y(T )︸︷︷︸
received value y

= a · g(t) � h(t)|t=T︸ ︷︷ ︸
signal a·Eh

+ w(t) � h(t)|t=T︸ ︷︷ ︸
noise n

,

where Eh = g(t) � h(t)|t=T and σ2
h = E[n2].

(a) If w(t) is a zero-mean WSS Gaussian noise process with PSD Sw(f), find the mean
and variance of n.

(b) What is the probability density function (pdf) of y = y(T ) given a = 1, denoted as
f(y|a = 1)?

(c) What is the probability density function (pdf) of y = y(T ) given a = −1, denoted as
f(y|a = −1)?

(d) Show that the log-likelihood ratio, log
( f(y|a=1)
f(y|a=−1)

)
, is a linear function of y.

(e) Let Ψ be the set, where a decision favoring a = +1 is made. Suppose Pr[a = 1] = p
and Pr[a = −1] = 1− p. Then, the detection error can be expressed as

Pe = Pr[a = 1] ·
∫
Ψc

f(y|a = 1)dy + Pr[a = −1] ·
∫
Ψ

f(y|a = −1)dy

= p ·
∫
Ψc

f(y|a = 1)dy + (1− p) ·
∫
Ψ

f(y|a = −1)dy.

Reformulate the detection error and argue that the optimal Ψ∗ that minimizes the
detection error is a likelihood ratio test. Also, give the optimal Ψ∗.
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(f) Under equal prior probabilities (i.e., p = 1
2
), show that the optimal detection can be

achieved without the knowledge of the noise PSD Sw(f) and regardless of the design
of the receive filter h(t).

(g) Express the error probability in (f) in terms of Q-function.

(h) From (g), justify that the matched filter derived in the previous problem minimizes
the error probability.

Solution.

(a) Since w(t) is a zero-mean WSS Gaussian noise process with PSD Sw(f), n must be
Gaussian with mean

E[n] = E

[∫ ∞

−∞
h(τ)w(t− τ)dτ

]
=

∫ ∞

−∞
h(τ)E [w(t− τ)] dτ = 0

and variance

σ2
h = E[n2] =

∫ ∞

−∞
Sw(f)|H(f)|2df.

(b) f(y|a = 1) = Normal(Eh, σ2
h) =

1√
2πσ2

h

exp
{
− (y−Eh)2

2σ2
h

}
(c) f(y|a = −1) = Normal(−Eh, σ2

h) =
1√
2πσ2

h

exp
{
− (y+Eh)2

2σ2
h

}
(d) The derivation

log
f(y|a = 1)

f(y|a = −1)
= log

1√
2πσ2

h

exp
{
− (y−Eh)2

2σ2
h

}
1√
2πσ2

h

exp
{
− (y+Eh)2

2σ2
h

}
= log exp

{
2Eh
σ2
h

y

}
=

2Eh
σ2
h

y

immediately shows that log f(y|a=1)
f(y|a=−1)

is a linear function of y.

(e)

Pe = p ·
∫
Ψc

f(y|a = 1)dy + (1− p) ·
∫
Ψ

f(y|a = −1)dy

= p

(
1−

∫
Ψ

f(y|a = 1)dy

)
+ (1− p) ·

∫
Ψ

f(y|a = −1)dy

= p− p

∫
Ψ

f(y|a = 1)dy + (1− p) ·
∫
Ψ

f(y|a = −1)dy

= p+

∫
Ψ

((1− p)f(y|a = −1)− pf(y|a = 1)) dy.

Thus, in order to minimize Pe, the value of the integration should be made as small
as possible, which implies that a choice that can achieve this objective is

Ψ∗ = {y ∈ � : (1− p)f(y|a = −1)− pf(y|a = 1) < 0}
=

{
y ∈ � :

f(y|a = 1)

f(y|a = −1)︸ ︷︷ ︸
likelihood ratio

>
1− p

p

}
,
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which is apparently a likelihood ratio test.

(f) Under equal prior probabilities,

Ψ∗ =

{
y ∈ � :

f(y|a = 1)

f(y|a = −1)︸ ︷︷ ︸
likelihood ratio

> 1

}

=

{
y ∈ � : log

f(y|a = 1)

f(y|a = −1)︸ ︷︷ ︸
log-likelihood ratio

> 0

}

=

{
y ∈ � :

Eh
σ2
h

y > 0

}

=

{
y ∈ � : y > 0

}
;

Apparently, Ψ∗ has nothing to do with Sw(f) and the design of h(t).

Note: In order to know σ2
h, we may need to know the PSD of w(t), which is hard to

be accurately estimated in many applications.

(g)

Pe =
1

2
·
∫ 0

−∞
f(y|a = 1)dy +

1

2
·
∫ ∞

0

f(y|a = −1)dy

=
1

2
·
∫ 0

−∞
Normal(Eh, σ2

h)dy +
1

2
·
∫ ∞

0

Normal(−Eh, σ2
h)dy

=

∫ 0

−∞
Normal(Eh, σ2

h)dy

=

∫ 0

−∞

1√
2πσ2

h

exp

{
−(y − Eh)2

2σ2
h

}
dy (Let z =

y − Eh
σh

)

=

∫ −Eh
σh

−∞

1√
2π

exp

{
−z2

2

}
dz

= Q

(Eh
σh

)

(h) The matched filter maximizes the output SNR
E2
h

σ2
h
. SinceQ(·) function is monotonically

decreasing, to maximize E2
h/σ

2
h is equivalent to minimizing the error probability in (g).

Consequently, the filter design that maximizes the output SNR at the sampler output
indirectly minimizes the error probability.

4. This problem demonstrates a situation that the delta-sigma modulation recovers the mes-
sage signal perfectly. This example also demonstrates the importance of the design of the
lowpass filter at the receiver.

5



Delta-sigma modulator

Delta-sigma demodulator

The above delta-sigma modulation follows the below equations:

σq[n− 1] =

{
∆, σ[n− 1] ≥ 0

−∆, σ[n− 1] < 0

σ[n] = σ[n− 1] + (m[n]− σq[n− 1])

(a) Let m(t) = sin(2πt) and Ts =
1
4
. Find the sequence of {m[n] = m(nTs), n ≥ 0}.

(b) Initialize σ[0] = σq[0] = −∆ for 0 < ∆ < 1. Find the sequence of {σq[n], n ≥ 1}.
(c) Let the transmitting waveform s(t) corresponding to {σq[n], n ≥ 1} be

s(t) =

∞∑
n=−∞

σq[n + 1] · a(t− nTs),

where

a(t) =

{
1, 0 ≤ t < Ts

0, otherwise

Find the Fourier transform of s(t).

Note: Since {σq[n], n ≥ 1} is periodic, we set {σq[n], n ≤ 0} to be a periodic extension
of {σq[n], n ≥ 1} for analytical convenience.

Hint:
∑∞

k=−∞ e−j2πfk =
∑∞

k=−∞ δ(f − k)

(d) The ideal lowpass filter removes all frequencies of S(f) larger than or equal to 1.5 Hz
(and keeps all frequencies of S(f) below 1.5 Hz). Check whether the output of the
lowpass filter is proportional to m(t).

Solution.

(a) {m[n], n ≥ 0} = {0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, . . .}.
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(b) From

σq[n− 1] =

{
∆, σ[n− 1] ≥ 0

−∆, σ[n− 1] < 0

σ[n] = σ[n− 1] + (m[n]− σq[n− 1])

we build up the below table (Initial values are set at n = 0)

n 0 1 2 3 4 5 6 7 8 · · ·
m[n] 0 1 0 −1 0 1 0 −1 0 · · ·
σ[n] −∆ 1 1−∆ −2∆ −∆ 1 1−∆ −2∆ −∆ · · ·
σq[n] −∆ ∆ ∆ −∆ −∆ ∆ ∆ −∆ −∆ · · ·

m[n]− σq[n] 0 1 + ∆ −∆ −1 −∆ ∆ 1 +∆ −∆ −1−∆ ∆ · · ·
We therefore have

{σq[n], n ≥ 1} = {∆,∆,−∆,−∆,∆,∆,−∆,−∆, . . .}
(c) The waveform corresponds to this {σq[n]} can be re-formulated as

s(t) =
∞∑

k=−∞
g(t− k)

where

g(t) =

{
∆, 0 ≤ t < 0.5

−∆, −0.5 ≤ t < 0

Derive

G(f) = ∆ · F{
1{|t| ≤ 0.25}}(ej2πf(−0.25) − ej2πf(0.25)

)
= ∆ · 0.5 sinc(0.5f) (− j2 sin(0.5πf)

)
= −j∆sinc(0.5f) sin(0.5πf)

The Fourier transform of s(t) is given by

S(f) = F{s(t)} =
∞∑

k=−∞
F{g(t− k)}

=

∞∑
k=−∞

G(f)ej2πf(−k)

= G(f)

∞∑
k=−∞

e−j2πfk

= G(f)
∞∑

k=−∞
δ(f − k)

= (−j∆sinc(0.5f) sin(0.5πf))

∞∑
k=−∞

δ(f − k)

= −j
2∆

π

∑
k odd

1

k
δ(f − k).
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(d) The lowpass filter removes the high frequency components and produces

−j
2∆

π

∑
k=±1

1

k
δ(f − k) = −j

2∆

π
[−δ(f + 1) + δ(f − 1)] =

4∆

π

[δ(f − 1)− δ(f + 1)]

2j
,

which is exactly the Fourier transform of 4∆
π
sin(2πt).

Note: In this example, you may notice that s(t) and m(t) have the same zero-crossings at
t = . . . ,−1,−0.5, 0, 0.5, 1, . . .. Thus, the delta-sigma modulation keeps the zero-crossings
of m(t) but may not retain its amplitude variations. Hence, a signal

mnew(t) =

{
A sin(2πt), k ≤ t < k + 1

2
;

1
A
sin(2πt), k + 1

2
≤ t < k + 1

may produce the same {σq[n]} as m(t) = sin(2πt) but the recovered waveform will be
different from mnew(t).
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