
Sample Problems for the 9th Quiz

1. (PSD of Line Codes)

(a) Show that the time-averaged PSD of the line coded signal

s(t) =

∞∑
n=−∞

an · g(t− nTb)

is equal to

PSD(f) =
1

T b
|G(f)|2S̄a(f),

where

S̄a(f) =
∞∑

k=−∞
φ̄a(k)e

−j2πfkTb

and

φ̄a(k) = lim
N→∞

1

2N

N−1∑
k=−N

E[am+ka
∗
m]

are respectively the time-average PSD and time-average autocorrelation function of
{an}.
Hint: Use (cf. Slide 2-30) the formula:

PSD(f) = lim
T→∞

1

2T
E[S(f)S∗

2T (f)]

where s2T (t) = s(t) · 1{|t| ≤ T}.
(b) From (a), we can now derive the time-average PSD for a deterministic {an}. Show

that

S̄a(f) =
1

Tb

∞∑
k=−∞

δ

(
f − k

Tb

)
,

if all-one sequence {an} is transmitted.

Hint: Note that ∞∑
k=−∞

e−j2πfkT =
1

T

∞∑
k=−∞

δ

(
f − k

T

)
.

(c) Find the time-averaged PSDs of the unipolar NRZ line code and the polar NRZ line
code (See Slide 6-54), provided that all-one sequence {an} is transmitted. Do the two
line codes have the same time-average PSD for this particular input sequence?

Hint: For unipolar NRZ, |G(f)|2 = A2T 2
b sinc

2(fTb).

(d) Show that the time-averaged PSD of the Manchester line code is given by

PSDManchester(f) =
4A2

π2

∑
k odd

1

k2
δ

(
f − k

T

)

provided all-one sequence {an} is transmitted.

Hint: For Manchester line code, |G(f)|2 = A2T 2
b sinc

2(fTb

2
) sin2

(
πfTb

2

)
.

1

Solution.

(a) First, we derive

S(f) = F {s(t)} = F
{ ∞∑

n=−∞
an · g(t− nTb)

}

=
∞∑

n=−∞
an · F {g(t− nTb)} =

∞∑
n=−∞

an ·G(f)e−j2πfnTb

and with T = 2NTb, we further derive

S2T (f) = F {s(t)} = F
{

N−1∑
n=−N

an · g(t− nTb)

}

=
N−1∑
n=−N

an · F {g(t− nTb)} =
N−1∑
n=−N

an ·G(f)e−j2πfnTb.

Hence,

PSD(f) = lim
T→∞

1

2T
E[S(f)S∗

2T (f)]

= lim
N→∞

1

2NTb
E

[(∞∑
n=−∞

an ·G(f)e−j2πfnTb

)(
N−1∑

m=−N

am ·G(f)e−j2πfmTb

)∗]

=
1

Tb
|G(f)|2 lim

N→∞
1

2N

N−1∑
m=−N

∞∑
n=−∞

E [ana
∗
m] e

−j2πf(n−m)Tb (Let k = n−m)

=
1

Tb

|G(f)|2 lim
N→∞

1

2N

N−1∑
m=−N

∞∑
k=−∞

E [am+ka
∗
m] e

−j2πfkTb

=
1

Tb
|G(f)|2

∞∑
k=−∞

(
lim

N→∞
1

2N

N−1∑
m=−N

E [am+ka
∗
m]

)
e−j2πfkTb

=
1

Tb
|G(f)|2

∞∑
k=−∞

φ̄a(k)e
−j2πfkTb

(b) We have E[am+km
∗
m] = 1 for every m and k. Therefore,

S̄a(f) =
∞∑

k=−∞

(
lim

N→∞
1

2N

N−1∑
k=−N

E[am+ka
∗
m]

)
e−j2πfkTb

=

∞∑
k=−∞

(
lim

N→∞
1

2N

N−1∑
k=−N

1

)
e−j2πfkTb

=
∞∑

k=−∞
e−j2πfkTb =

1

Tb

∞∑
k=−∞

δ

(
f − k

Tb

)

Note: an = 1 for every n is an extreme case, in which the “strongest” DC term is
produced.

2

(c)

PSD(f) =
1

T b
|G(f)|2S̄a(f)

=
1

T b
A2T 2

b sinc
2(fTb) · 1

Tb

∞∑
k=−∞

δ

(
f − k

Tb

)

= A2sinc2(fTb)
∞∑

k=−∞
δ

(
f − k

Tb

)
= A2δ(f)

We can devise from the above formula that both line codings (i.e., unipolar and polar
NRZ) have the same time-average PSD.

Note: Polar NRZ hopes to remove the “DC” (of the time-average PSD) from Unipolar
NZR by assuming that the data sequence {an} has zero mean in addition to i.i.d.
However, when the data sequence does not fulfill this assumption, the DC remains.
Particularly in this extreme example, both line codings have the same time-average
PSD and no removal of “DC” can be achieved by adopting polar NRZ.

(d)

PSDManchester(f) =
1

T b
|G(f)|2S̄a(f)

= A2Tbsinc
2

(
fTb

2

)
sin2

(
πfTb

2

)
1

Tb

∞∑
k=−∞

δ

(
f − k

Tb

)

= A2
∞∑

k=−∞
sinc2

(
fTb

2

)
sin2

(
πfTb

2

)
δ

(
f − k

Tb

)

= A2

∞∑
k=−∞

sinc2
(
k

2

)
sin2

(
πk

2

)
δ

(
f − k

Tb

)

=
4A2

π2

∑
k odd

1

k2
δ

(
f − k

T

)

Note: Even when an all-one sequence is transmitted, Manchester code still has no DC
in its time-average PSD.

2. For an AT&T M12 multiplexer, 24 control bits are separated by sequences of 48 data bits
(12 from each DS1 input). The frame format is given below.

3

(a) Suppose only 287 data bits arrive from DS1#1 within a duration of a DS2 frame, but
DS1#2, DS1#3 and DS1#4 do have 288 data bits available in their input buffers.
Give the values of CI, CII, CIII and CIV.

(b) Suppose the nominal output bit rate is 6.312 Mbps. Determine the largest incoming
bit rate fin,max and the smallest incoming bit rate fin,min allowed for each DS1 in the
system.

Note: Give the values of fin,max and fin,min in the format of x.xxxxx Mbps, i.e,.
rounding off to the 5th decimal place.

(c) Find the allowable tolerance range for DS1 inputs in terms of ppm with respect to
fin,nominal = 1.544 Mbps.

(d) Suppose that over a particular cable, decreasing one degree on the Fahrenheit scale
will result in approximately 100 ppm variation. From the tolerance in (c), find the
range of temperature variation allowable for this cable.

Solution.

(a) CI = 1, CII = 0, CIII = 0 and CIV = 0.

(b) During the time period for the M12 multiplexer to send out 1176 bits, each DS1 input
must provide at least 287 bits and at most 288 bits; hence,

288

fin
≥ 1176

6.312
≥ 287

fin

which implies

fin,max = 1.54580 ≈ 288

1176
6.312 ≥ fin ≥ 287

1176
6.312 ≈ 1.54043 = fin,min.

(c) We shall have
106 − bppm
fin,min

=
106

fin,nominal
=

106 + appm
fin,max

.

Thus,

appm + bppm = 106
(

fin,max

fin,nominal

− 1

)
+ 106

(
1− fin,min

fin,nominal

)

= 106
(
fin,max − fin,min

fin,nominal

)

= 106
(6.312

1176

1.544

)
≈ 3476.26 ppm

(d)

appm + bppm
100

= 34.76 degrees on the Fahrenheit scale

3. The below problems demonstrate how delta modulation and delta-sigma modulation work
with intuitively chosen step sizes.

4

(a) Suppose in the DM modulation below,

{m[n] : 0 ≤ n ≤ 12}
= {0.00, 0.24, 0.26, 0.48, 0.66, 0.70, 0.59, 0.32, 0.21, 0.36, 0.46, 0.21, 0.11}.

Find eq[n] and mq[n] with ∆ = 0.8.

(b) With the same {m[n], 0 ≤ n ≤ 12} in (a) and the same ∆ = 0.8, find iq[n] and σq[n].
Explain why we need ∆ ≥ maxn m[n] to prevent the slope overload distortion.

(c) Show that if the one-bit quantizer in (a) is replaced by an ∞-bit quantizer such that
eq[n] = e[n], then mq[n] = m[n].

(d) Show that if the one-bit quantizer in (b) is replaced by an ∞-bit quantizer such that
σq[n] = σ[n], then σq[n] = m[n].

Solution.

(a) Following 

e[n] = m[n]−mq[n− 1];

eq[n] = ∆ · sgn(e[n]);
mq[n] = mq[n− 1] + eq[n],

we obtain

5

n 0 1 2 3 4 5 6 7 8 9 10 11 12
m[n] 0 0.24 0.26 0.48 0.66 0.70 0.59 0.32 0.21 0.36 0.46 0.21 0.11
mq[n] 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0
e[n] 0 0.24 −0.54 0.48 −0.14 0.7 −0.21 0.32 −0.59 0.36 −0.34 0.21 −0.69
eq[n] 0 0.8 −0.8 0.8 −0.8 0.8 −0.8 0.8 −0.8 0.8 −0.8 0.8 −0.8
code 1 0 1 0 1 0 1 0 1 0 1 0

(b) Following 

i[n] = i[n− 1] +m[n];

σ[n] = i[n]− iq[n− 1];

σq[n] = ∆ · sgn(σ[n]);
iq[n] = iq[n− 1] + σq[n],

we obtain

n 0 1 2 3 4 5 6 7 8 9 10 11 12
m[n] 0 0.24 0.26 0.48 0.66 0.70 0.59 0.32 0.21 0.36 0.46 0.21 0.11
i[n] 0 0.24 0.50 0.98 1.64 2.34 2.93 3.25 3.46 3.82 4.28 4.49 4.60
iq[n] 0 0.8 0 0.8 1.6 2.4 3.2 4.0 3.2 4.0 4.8 4.0 4.8
σ[n] 0 0.24 −0.3 0.98 0.84 0.74 0.53 0.05 −0.54 0.62 0.28 −0.31 0.6
σq[n] 0 0.8 −0.8 0.8 0.8 0.8 0.8 0.8 −0.8 0.8 0.8 −0.8 0.8
code 1 0 1 1 1 1 1 0 1 1 0 1

In order to prevent the slope overload distortion, we need

∆

Ts
≥ max

n

|i[n]− i[n− 1]|
Ts

= max
n

|m[n]|
Ts

=
0.7

Ts
.

Thus, ∆ = 0.8 satisfies the need.

Note: The circuit in (a) receives mq[n], while the circuit in (b) receives σq[n]. It is
clear from the two tables that mq[n] �= σq[n]. Hence, moving the accumulator from
the receiver to the transmitter does not yield an equivalent circuit.

(c) With 

e[n] = m[n]−mq[n− 1]; (1)

eq[n] = e[n]; (2)

mq[n] = mq[n− 1] + eq[n]; (3)

we obtain from (2) and (3) that mq[n] = mq[n − 1] + e[n]. Then, taking (1) into
mq[n] = mq[n− 1] + e[n], we obtain mq[n] = mq[n− 1] + (m[n]−mq[n− 1]) = m[n].

(d) Following 

i[n] = i[n− 1] +m[n]; (1)

σ[n] = i[n]− iq[n− 1]; (2)

σq[n] = σ[n]; (3)

iq[n] = iq[n− 1] + σq[n]; (4)

we obtain from (3) and (4) that iq[n] = iq[n−1]+σ[n], which together with (2) yields
iq[n] = i[n]. As a result, we can rewrite (2) as σ[n] = i[n]−i[n−1], and hence applying
(1) gives σ[n] = m[n].

Note: (c) and (d) indicates that the circuit in (a) is equivalent to the circuit in (b) when
the 1-bit quantizer is replaced by a “linear” operation, say the output is equal to the
input. Thus, if we use a finer quantizer such as 4-bit quantizer, the (near-)equivalence
of the two circuits will be better achieved.

6

4. The linear predictor in the figure below gives

x̂[n] =

p∑
k=1

wkx[n− k],

which uses a weighted sum of x[n − 1], x[n − 2], . . ., x[n − p] to produce a prediction for
x[n].

Let the prediction error be
e[n] � x[n]− x̂[n].

(a) Show that the optimal {wk}pk=1 that minimizes 〈e[n], e[n]〉 satisfies:

〈x[n− 1], x[n− 1]〉 〈x[n− 1], x[n− 2]〉 · · · 〈x[n− 1], x[n− p]〉
〈x[n− 2], x[n− 1]〉 〈x[n− 2], x[n− 2]〉 · · · 〈x[n− 2], x[n− p]〉

...
...

. . .
...

〈x[n− p], x[n− 1]〉 〈x[n− p], x[n− 2]〉 · · · 〈x[n− p], x[n− p]〉





w1

w2
...
wp


 =



〈x[n], x[n− 1]〉
〈x[n], x[n− 2]〉

...
〈x[n], x[n− p]〉




Hint: An inner product 〈x[n], y[n]〉 for real x[n] and y[n] should satisfy the following
properties:

(b) Show that the optimal solution satisfy 〈x[n − i], e[n]〉 = 0 for 1 ≤ i ≤ p. In other
words, the error e[n] is orthogonal to x[n− i] for every 1 ≤ i ≤ p.

(c) Verify that the inner product

〈x[n], y[n]〉 � E
[
x[n]y[n]

]
recovers the Winer-Hopf equations for linear prediction.

(d) Verify that the slope gi[n] established in Slide 7-48 can be recovered based on the
inner product:

〈x[n], y[n]〉 � x[n]y[n].

.

7

Solution.

(a) First we note from the properties of an inner product:

J � 〈e[n], e[n]〉

=

〈
x[n]−

p∑
k=1

wkx[n− k], x[n]−
p∑

k=1

wkx[n− k]

〉

= 〈x[n], x[n]〉 − 2

p∑
k=1

wk〈x[n], x[n − k]〉︸ ︷︷ ︸
Here, we apply 〈x[n],x[n−k]〉=〈x[n−k],x[n]〉.

+

p∑
k=1

p∑
j=1

wkwj〈x[n− k], x[n− j]〉

= 〈x[n], x[n]〉 − 2

p∑
k=1

wk〈x[n], x[n − k]〉

+

(
2

p∑
k=1

p∑
j=k+1

wkwj〈x[n− k], x[n− j]〉
︸ ︷︷ ︸
Use again 〈x[n−k],x[n−j]〉=〈x[n−j],x[n−k]〉

+

p∑
k=1

w2
k〈x[n− k], x[n− k]〉

)

Derive

∂

∂wi
J = −2〈x[n], x[n− i]〉+ 2

p∑
j=i+1

wiwj〈x[n− i], x[n− j]〉
︸ ︷︷ ︸

The case of k=i

+2

i−1∑
k=1

wkwi〈x[n− k], x[n− i]〉︸ ︷︷ ︸
The case of j=i

+2wi〈x[n− i], x[n− i]〉

= −2〈x[n], x[n− i]〉+ 2

p∑
j=1

wj〈x[n− i], x[n− j]〉

Thus, the optimal solution should satisfy

〈x[n− 1], x[n− 1]〉 〈x[n− 1], x[n− 2]〉 · · · 〈x[n− 1], x[n− p]〉
〈x[n− 2], x[n− 1]〉 〈x[n− 2], x[n− 2]〉 · · · 〈x[n− 2], x[n− p]〉

...
...

. . .
...

〈x[n− p], x[n− 1]〉 〈x[n− p], x[n− 2]〉 · · · 〈x[n− p], x[n− p]〉





w1

w2
...
wp


 =



〈x[n], x[n− 1]〉
〈x[n], x[n− 2]〉

...
〈x[n], x[n− p]〉




(b) We can rewrite ∂J/∂wi as

∂

∂wi
J = −2〈x[n− i], x[n]〉 + 2

p∑
j=1

wj〈x[n− i], x[n− j]〉

= 2

〈
x[n− i],−x[n] +

p∑
j=1

wjx[n− j]

〉

= −2 〈x[n− i], e[n]〉 .

8

Hence, with the optimal {wi}, the error e[n] is orthogonal to x[n−i] for every 1 ≤ i ≤ p.

Note: As a result, what the DPCM quantizes is the remaining message e[n] = m[n]−
m̂[n] that is orthogonal to m[n− i] for every 1 ≤ i ≤ p.

(c) It is straightforward. Hence, we omit the solution.

(d) From (b), we obtain

∂

∂wi
J = −2 〈x[n− i], e[n]〉 = −2x[n− i]e[n].

Note: If, subject to the inner product 〈x[n], y[n]〉 = x[n]y[n], we wish to find the
optimal {wi} that minimizes e2[n] based on {x[n − k]}pk=1, the solution in principle
must satisfy

x[n− 1]x[n− 1] x[n− 1]x[n− 2] · · · x[n− 1]x[n− p]
x[n− 2]x[n− 1] x[n− 2], x[n− 2] · · · x[n− 2]x[n− p]

...
...

. . .
...

x[n− p]x[n− 1] x[n− p]x[n− 2] · · · x[n− p]x[n− p]





w1

w2
...
wp


 =



x[n]x[n − 1]
x[n]x[n − 2]

...
x[n]x[n− p]




⇔



x[n− 1]x[n− 1] x[n− 1]x[n− 2] · · · x[n− 1]x[n− p]
x[n− 2]x[n− 1] x[n− 2]x[n− 2] · · · x[n− 2]x[n− p]

...
...

. . .
...

x[n− p]x[n− 1] x[n− p]x[n− 2] · · · x[n− p]x[n− p]





w1

w2
...
wp


 = x[n]



x[n− 1]
x[n− 2]

...
x[n− p]




⇔



x[n− 1]
x[n− 2]

...
x[n− p]


 [x[n− 1] x[n− 2] · · · x[n− p]

]


w1

w2
...
wp


 = x[n]



x[n− 1]
x[n− 2]

...
x[n− p]




⇔ [
x[n− 1] x[n− 2] · · · x[n− p]

]


w1

w2
...
wp


 = x[n] (provided x[n− i] �= 0 ∀i)

However, at the time we produce the prediction x̂[n] of x[n], we do not know x[n].
Thus, the above equation does not help us to derive {wk}. This is different from the
Wiener-Hopf equations, where we do know 〈x[n], x[n− k]〉 = RX [k] even if we do not
know x[n]. Therefore, a linear adaptive predictor that adjusts wi based on gi[n] is
used instead.

9

