Sample Problems for the 8th Quiz (May 10)

e Slides 6-46~58 will not be covered by quizzes or the final exam.

e Correction for Sample Problem 3(b): In the solution, a “2” is missing in the note.

Note: In such case, no improvement can be obtained by pre- and de-emphasis filters and
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e Correction for Sample Problem 4(b): The first equation in the solution should be
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1. (Sampling Theorem) When performing sampling on a signal g(t), we obtain the sampled

signal

gs(t) = 3 g(nT.)-8(t - nT.).

n=—oo

where T is the sampling period. Let the sampling rate be denoted as fs = Tis

(a) Show that the Fourier transform of gs(t) is

o0

Gs(f) =1t > G(f—nf.),

n=—oo

where G(f) = F{g(t)}.
(b) Suppose G(f) is bandlimited with bandwidth W. Then, Gs(f) can be depicted as:
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Show that we can reconstruct g(t) from its samples {g(nT)}2>__ via
g(t) =Y g(nTy)- BT,sinc(B(t — nT}))

for any B satisfying 2W < B < 2(fs — W).



(c¢) Continue from (b). Can we reconstruct g(t) from its samples {g(nT)}2_ via

—0o0

o0

g(t) = Z g(nTs) : h(t - TLTS),

n=—oo

where the Fourier transform of h(t) satisfies

L, fl<w;
H(f) = F{h(t)} = {0, fl = fs =W,
arbitrary, otherwise.

(d) Continue from (b). Show that g(¢) = gs(t) x h(t), where “x” denotes the convolution
operation, and h(t) = BT} sinc(Bt).

Solution.

(a) First, we note that
Gs(f) = Flos(t)}

= .7:{ i g(nTs)~(5(t—nTs)}

n=—oo
o0

= Y gl F {5 - nT))

n=—oo
o0

= 3 gnT) - T (1)

n=—oo

Second, it is clear that f,> 2 G (f —nfs) is a periodic function (in the frequency

n=—oo

domain) with period f;. By Fourier series expansions,

o0

oY G(f=nf)= Y 7, (2)

n=—o0o n=-—00
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=g (—fﬁ) = g(—nTy).

Consequently, equating (1) and (2) completes the proof.

(b)
olt) = / () f

B/2 '
= / G(f)e’*™'df (Because B > 2WW)

B/2 1 0 ' '
= [ {5 X atmemns ) e

(Because G(f) = fiG(;(f) for |f| <W <

and Gs(f) = Z g(nTS)e—janTsf)
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= Z g(nTy) - BT, sinc(B(t — nTy))
Note: In Slide 6-11, we simply take B(= Bp,) = 2W.
(c) Yes.



g(t) = i g(nTy) - BT, sinc(B(t — nTy))
3 gem)- / " 6(r — nT) BT, sinc(B(t — 7)) dr
n=eo o =h(t—)
_ /OO ( i g(nTy) - 6(r — nTS)> h(t — 7)dr
- /OO 6o (Pt — )dr
— g(t) < h(1).
2. The sample-and-hold (s/h) output can be expressed as
mn(t) = me(t) x h(t),
where .
mall) = 3 mT)A - KT.), Ao = { D

and Ty > T is the sampling period. Denote by H(f), M(f) and Ms(f) the Fourier trans-
forms of h(t), m(t) and ms(t), respectively.

(a) Show that the spectrum of mg,(t) is equal to
1 G k
Ms/h(f):TH(f)ZM f—? :

Hint: From Sampling theorem,

M(;(f):Ti i M(f—%)'

S k=—00

b) Suppose M (t) is band-limited to W, which satisfies &~ > 2W, and the receiver passes
Ts
Mg, (f) through an ideal lowpass filter of bandwidth W. We obtain

1

[Ms/h(f)]LowpaSS - iH(f>M(f)

Find the ratio of .
minys<w [H(f)|

max|si<w [H(f)|

and check the above ratio when T"= 0.17}.
Hint: H(f) = Tsinc(fT)e7™T




(¢) When T < 0.17y, the ratio in (b) is approximately one. Thus,

M ()] e ~ 7 HONeTTMF) = e 7M.

S

Find the inverse Fourier transform of the Ze /™71 M (f).

Solution.

(a) First, we have Mg (f) = M;(f)H(f). Hence,
M) = 2H() Y M (f— f) |

(b) T < T, < 5 implies 2W < 7. Thus,

max |H = max Tsinc(Tf) =T
mgw' ()l max (Tf)

and

win [H(f)| = |H(W)| = Tsine (TW) — 7. SRELW) _ sin(@TW)

lfl<w T T'W W
Therefore, the ratio is equal to
sin(7TW)
aTW
When T"'=0.17T, < 0.1 - ﬁ, we have TW < 0.05 and

sin(7TW) _ sin(m - 0.05)

T > 005 ~ 0.9959.
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Thus, the receiver recovers a delayed version of m(t).

Note: The equalizer ﬁ is non-causal due to the phase requirement ¢/™/7. From filter
design aspect, a non-causal filter is not feasible. However, we do not really need to
“implement” e/™7 to recover the signal but simply to accept m(t — %) as the output,

knowing that the received signal will begin at ¢ = % (or will have a delay of %)

3. Let the range of the message m be [—nmax, Mmax] = [—1,1). Define a uniform quantizer g(-)
as

A
g(m):—A+kA—§ for —A+(k—1)A<m<—-A+EkA

whereA:%andlngL.



(a) Under L even, is g(-) of midtread type, or of midrise type?

(b) Under L odd, is g(-) of midtread type, or of midrise type?

(c¢) Under the condition that m is uniformly distributed over [—1, 1), determine the output

(d)

SNR under A = 2.
Hint: g(M) = M — @, where the (imaginarily equivalent) quantization noise @ is still

uniformly distributed over [-A/2, A/2).

Under the condition that m is uniformly distributed over [—1, 1), determine the output
SNR under A = 0.5.

Solution.

(a)
(b)

(c)

g(+) is a midrise quantizer if there exists an integer k such that —A+kA = —A—l—k:% =
0, which implies k = % Thus, whenever L is even, the uniform ¢(-) is of midrise type.

Based on “g(+) is a midrise quantizer if there exists an integer k such that —A+ kA =
—A+ k% = 0,” we can similarly justify that the uniform g(-) is of midtread type if
L is odd.

With A = 2, we have A = 24 = 2'?}3‘“‘ = ZMmax where we set L' = L/2. Hence, we

can follow exactly the same derivation on Slide 6-37~38 to obtain

3P ., 3P ., 3P, 1,
()= L= T L = T

max max

SNRop =

where P = E[m?] = fil m*(3)dm = 3.
Note: With only 50% load (i.e., ™22 = 50%) in this example, we can still obtain 6 dB
gain whenever the resolution is increased by 1 bit. However, the output signal-to-noise

ratio of a 50%-load quantizer will be 6 dB worse than that of a full-load quantizer,
which is 3PL? = L? from Slide 6-37.

When A = 0.5, we have

MmodA - %5, |M|<i;
_ _ 1A 1
Q=M-gM)=qM-(3-3), M=3
M—(-3+3), M<—3
Hence,
=3 2): given |M| < 3;
@ is uniformly distributed over ¢ [£, 1 + 2), given 3 < M < 1;

2
A A :
[—3 —% — 5), given —1 <M < %

%, + %), given that |M| > 1). Thus, we

(i.e., |@| is uniformly distributed over | 5



(b)

derive

ElQ? = Pr [|M| <1

E {Q2

+ Pr [|M| > ﬂ E {QQ
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which implies
P 24PL?
SNRo = = < 24P =8=~9.03 dB |.
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Note: In comparison with a full-load uniform quantizer without saturation, where
SNRo = 3PL? with mup. = 1, quantizer saturation will seriously degrade the output
SNR and will also “saturate” (i.e., has an upper bound on) the SNR.

For given intervals {I;}F_,, show that the optimal representation levels {v;}£_, for
square error distortion measure d(m,v;) = (m — v;)? is given by

Sy, m - far(m)dm

Uk optimal =
k,optimal flk fM(m dm,

provided that fy/(-) is the pdf of the message M.
Hint: ming, o Sr flk d(m, vg) far(m)dm

In Slide 6-44, an exercise is given, asking “What is the best {m} and {v;} if M is
uniformly distributed over [—A, A).” Find the solution of it.

Solution.

(a)

;/ammm(mz

£ (5 ) -

S



implies
/ mfy(m)dm — / vj fa(m)dm =0
I I

& [ miutmdm =v; [ futmyin

B flj mfu(m)dm
a f]j fa(m)dm

= ’Uj
With m; = —A and my; = A, we define

1 MEg41 2
f(mg,...,my) = —Z (m—w) dm

For 2 < j < L, the optimal solutions should satisfy

8f(m2,--- ,mL) 1 1
= S_A(mj —myq)? - S—A(ijrl —m;)? =0,

8mj

which indicates m; — m;_; must be a constant for 2 < j < L. Accordingly, m; =
—A+(G-DHfor1<j<L+1



