
Sample Problems for the 7th Quiz (May 3)

Corrections

• Slide 6-16: The equation at the bottom is perhaps better rewritten as

gδ(t) � grealizable(t) � Gδ(f)Grealizable(f) = Gδ(f)Gideal(f) � gδ(t) � gideal(t)

• Slide 6-26: “Section 3.9” can be replaced by “Part 7.”

1. For an FM receiver below, we have s(t) = Ac cos(2πfct+φ(t)), where φ(t) = 2πkf
∫ t

0
m(τ)dτ .

Denote the passband noise process as

n(t) = nI(t) cos(2πfct)− nQ(t) sin(2πfct) = r(t) cos(2πfct+Ψ(t)),

where nI(t) = r(t) cos[Ψ(t)] and nQ(t) = r(t) sin[Ψ(t)].

Due to the limiter, the amplitude of x(t) is of no influence on its output but only the phase
remains. Hence, we can assume the amplitude is equal to 1 for simplicity. Then, from
Sample Problem 4 for the midterm, the output of the limiter xlimiter(t) is given by

xlimiter(t) = cos[2πfct + θ(t)]

where

θ(t) = φ(t) + tan−1

(
r(t) sin[Ψ(t)− φ(t)]

Ac + r(t) cos[Ψ(t)− φ(t)]

)
. (1)

(a) Since r(t) cos[Ψ(t)− φ(t)] and r(t) sin[Ψ(t)− φ(t)] have exactly the same joint distri-
bution as nI(t) = r(t) cos[Ψ(t)] and nQ(t) = r(t) sin[Ψ(t)], we rewrite (1) as

θ(t) = φ(t) + tan−1

(
nQ(t)

Ac + nI(t)

)
.

The discriminator then outputs the derivative of the phase, i.e., v(t) = θ′(t). Show
that

v(t) ≈ φ′(t) +
n′
Q(t)

Ac
,

provided Ac � nI(t) and AC � nQ(t) with high probability.

Hint: (
tan−1

(
f(t)

g(t)

))′
=
f ′(t)g(t)− f(t)g′(t)

f 2(t) + g2(t)
.
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(b) With

v(t) ≈ φ′(t) +
n′
Q(t)

Ac
= 2πkfm(t) + 2πnd(t),

where 2πAcnd(t) = n′
Q(t), show that the SNRO of the FM system is given by

SNRO =
3A2

ck
2
fP

2N0W 3
,

provided E[m2(t)] = P and the bandwidth W of the ideal baseband lowpass filter
satisfies W < BT .

Hint: The PSD of nd(t) is equal to

PSDnd
(f) =

∣∣∣∣ fAc

∣∣∣∣2 PSDnQ
(f) =

f 2

A2
c

N0 for |f | < BT

2
.

(c) Based on the the effective noise power of 2πnd(t) at the demodulator output in (b),
explain what the noise quieting effect of an FM system is.

(d) Recall from Slides 4-91 and 4-92 that for the discriminator to work properly, we require∣∣∣∣2kfBT
m(t)

∣∣∣∣ ≤ 1.

Thus, we can derive 4k2fm
2(t) ≤ B2

T , implying

4k2fE[m
2(t)] = 4k2fP ≤ B2

T .

Find the largest kf such that SNRO in (b) is maximized.

Solution.

(a)

v(t) = φ′(t) +

(
n′
Q(t)(Ac + nI(t))− nQ(t)n

′
I(t)

(Ac + nI(t))2 + n2
Q(t)

)

≈ φ′(t) +
(
n′
Q(t)Ac − nQ(t)n

′
I(t)

A2
c

)
Because Ac � nI(t) and Ac � nQ(t) with high probability

= φ′(t) +
n′
Q(t)

Ac
−

(
nQ(t)

Ac

)
︸ ︷︷ ︸
Ac�nQ(t)

with high probability

(
n′
I(t)

Ac

)

≈ φ′(t) +
n′
Q(t)

Ac
.

Note: Ac � nQ(t) does not imply Ac � n′
Q(t).
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(b) We can ignore the 2π factor and compute the SNRO based on kfm(t) + nd(t), from
which the average signal power is equal to

E[(kfm(t))2] = k2fE[m
2(t)] = k2fP.

The average noise power is given by∫ W

−W

PSDnd
(f)df =

∫ W

−W

f 2

A2
c

N0df =
2N0W

3

3A2
c

.

This implies

SNRO =
k2fP
2N0W 3

3A2
c

=
3A2

ck
2
fP

2N0W 3
.

(c) For fixed noise power level N0 and fixed message bandwidth W , increasing carrier
power A2

c will decrease the effective noise power at the demodulator output (by a
factor of 1/A2

c). This is called the noise quieting effect.

(d) It is obvious that taking k2f = B2
T/(4P ) maximizes

SNRO =
3A2

ck
2
fP

2N0W 3
=

3A2
cB

2
T

8N0W 3
.

Note: This indicates the maximum SNRO is proportional to B2
T and hence can be

improved by increasing BT .

2. Continuing from Problem 1, we know that the exact relation of v(t), input φ′(t) and noise
term n(t) = nI(t) cos(2πfct)− nQ(t) sin(2πfct) should be:

v(t) = φ′(t) +

(
n′
Q(t)(Ac + nI(t))− nQ(t)n

′
I(t)

(Ac + nI(t))2 + n2
Q(t)

)
︸ ︷︷ ︸

=2π·nd(t)

.

(a) Let nI(t) = λAc cos(ψ(t)) and nQ(t) = λAc sin(ψ(t)). Show that

2πnd(t) = λψ′(t)
cos(ψ(t)) + λ

1 + 2λ cos(ψ(t)) + λ2

(b) Find the value of nd(t) when ψ(t) = π, and argue that there is a discontinuity at
λ = 1.

(c) (Just for your reference. Not a part of quizzes and final exam.) The previous sub-
problem indicates that when

r2(t) = n2
I(t) + n2

Q(t) ≈ A2
c and ψ(t) ≈ π,

a noise spike will occur. Noting that E[n2(t)] = E[n2
I(t)] = E[n2

Q(t)] = BTN0, we
know from Slide 3-46 that

i) the pdf of r(t) is Rayleigh-distributed:

fr(t)(x) =
x

BTN0

e
− x2

2BT N0 for x ≥ 0,
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ii) ψ(t) is uniformly distributed over [0, 2π), and

iii) r(t) and ψ(t) are independent.

For 0 < ε < 1, show that

Pr

[∣∣∣∣r2(t)A2
c

− 1

∣∣∣∣ ≤ ε and

∣∣∣∣ψ(t)π − 1

∣∣∣∣ ≤ ε

]
= 2εe

− A2
c

2BT N0 sinh

(
A2

c

2BTN0
ε

)
.

(d) (Just for your reference. Not a part of quizzes and final exam.) A way to reduce the
threshold 20 in the requirement

A2
c

2BTN0
≥ 20

for “near-elimination” of clicking-sound effect is to reduce the “effective noise power”
from BTN0 down to (1− α)BTN0 by introducing a feedback as shown below:

Denote s(t) = cos(2πfct+φ(t)), and let svco(f) = 2 cos(2πfvcot+φvco(t)) with φvco(t) =
αφ(t). Show that

x(t) = cos(2π(fc − fvco)t+ (1− α)φ(t)),

provided that the transfer function Hvco(f) of the ideal bandpass filter satisfies

Hvco(f) =

{
1, |f − (fc − fvco)| < (1− α)BT

2

0, otherwise

where BT is the transmission bandwidth of s(t).

Solution.

(a) Noting that n′
I(t) = −nQ(t)ψ

′(t), n′
Q(t) = nI(t)ψ

′(t) and n2
I(t) + n2

Q(t) = λ2A2
c , we

have

2πnd(t) =
n′
Q(t)(Ac + nI(t))− nQ(t)n

′
I(t)

(Ac + nI(t))2 + n2
Q(t)

=
nI(t)ψ

′(t)(Ac + nI(t)) + n2
Q(t)ψ

′(t)

(Ac + nI(t))2 + n2
Q(t)

=
nI(t)Ac + λ2A2

c

A2
c + 2nI(t)Ac + λ2A2

c

ψ′(t)

=
λ cos(ψ(t))A2

c + λ2A2
c

A2
c + 2λ cos(ψ(t))A2

c + λ2A2
c

ψ′(t)

= λψ′(t)
cos(ψ(t)) + λ

1 + 2λ cos(ψ(t)) + λ2
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(b) When ψ(t) = π,

2πnd(t) = λψ′(t)
cos(ψ(t)) + λ

1 + 2λ cos(ψ(t)) + λ2
= λψ′(t)

−1 + λ

1− 2λ+ λ2
=

λ

λ− 1
ψ′(t).

Since

lim
λ↓1

=
λ

λ− 1
= ∞ and lim

λ↑1
=

λ

λ− 1
= −∞,

a discontinuity appears at λ = 1.

(c)

Pr

[∣∣∣∣ψ(t)π − 1

∣∣∣∣ ≤ ε and

∣∣∣∣r2(t)A2
c

− 1

∣∣∣∣ ≤ ε

]

= Pr

[∣∣∣∣ψ(t)π − 1

∣∣∣∣ ≤ ε

]
· Pr

[∣∣∣∣r2(t)A2
c

− 1

∣∣∣∣ ≤ ε

]
(r(t) and ψ(t) are independent.)

= Pr [(1− ε)π ≤ ψ(t) ≤ (1 + ε)π] · Pr
[
Ac

√
1− ε ≤ r(t) ≤ Ac

√
1 + ε

]
= ε ·

(∫ Ac
√
1+ε

Ac
√
1−ε

x

BTN0

e
− x2

2BT N0 dx

)

= ε

(
−e− x2

2BT N0

∣∣∣∣Ac
√
1+ε

Ac
√
1−ε

)

= ε

(
e
−A2

c(1−ε)

2BT N0 − e
−A2

c(1+ε)

2BT N0

)

= 2εe
− A2

c
2BT N0 sinh

(
A2

c

2BTN0

ε

) (
= 2εe−ρsinh (ρε)

)

Note: This probability is therefor a function of carrier-to-noise power ratio ρ =
A2

c/(2BTN0). When ρ = 10 and ε = 0.1, this probability is equal to

2× 0.1× e−10sinh (10 · 0.1) ≈ 10−5.

When ρ = 20 and ε = 0.1, it becomes

2× 0.1× e−20sinh (20 · 0.1) ≈ 1.5× 10−9.

Experiments show that it requires ρ ≥ 20 to guarantee that the clicking sound almost
disappears.

(d)

s(t)svco(t) = 2 cos(2πfct+ φ(t)) cos(2πfvcot+ φvco(t))

= cos(2π(fc − fvco)t+ (1− α)φ(t)) + cos(2π(fc + fvco)t+ (1 + α)φ(t))

The frequency deviation of s(t)svco(t) is given by

(∆f)vco = max
t

∣∣∣∣(1− α)

2π
φ′(t)

∣∣∣∣ = (1− α) ·∆f,
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where ∆f is the frequency deviation of s(t), given by

∆f = max
t

1

2π
|φ′(t)|.

As the frequency deviation of s(t)svco(t) is (1− α) of the frequency derivation of s(t),

the effective bandwidth is reduced to (1− α)BT , where BT is the transmission band-
width of s(t). Consequently, the bandpass filter Hvco(f) is adequate to pass the first
term of s(t)svco(t), which is(

s(t)svco(t)
)
bandpass

= cos(2π(fc − fvco)t+ (1− α)φ(t))

Note: For your reference, we analyze the noise process due to feedback as follows.

Rewrite n(t) = nI(t) cos(2πfct)−nQ(t) sin(2πfct), where the PSDs of nI(t) and nQ(t)
are equal to

PSDnI
(f) = PSDnQ

(f) =

{
N0, |f | < BT

2

0, otherwise

Then,

n(t)svco(t) = 2nI(t) cos(2πfct) cos(2πfvcot + φvco(t))

−2nQ(t) sin(2πfct) cos(2πfvcot+ φvco(t))
bandpass H(f)−→ nI,vco(t) cos(2π(fc − fvco)t− φvco(t))

−nQ,vco(t) sin(2π(fc − fvco)t− φvco(t))

where the PSDs of nI,vco(t) and nQ,vco(t) are given by{
N0, |f | < (1−α)BT

2

0, otherwise

This reduces to the threshold to:

A2
c

2(1− α)BTN0
≥ 20 ⇔ A2

c

2BTN0
≥ (1− α)20.

Accordingly, in principle, the feedback reduces the “noise-spike-free” threshold from
20 down to (1− α)20.

3.

The introduction of pre-emphasis and de-emphasis filters can also help reduce the threshold
considered in Problems 2(c) and 2(d). In order to un-distort the message m(t), we dictate

Hpe(f)Hde(f) = 1 for |f | < W.

6



Another condition that is not mentioned in our lectures is that we hope the message power
is not altered by the pre-emphasis filter, i.e.,

P =

∫ W

−W

SM(f)df =

∫ W

−W

SM(f)|Hpe(f)|2df =

∫ W

−W

SM(f)
1

|Hde(f)|2df. (2)

(a) Fix the PSDs ofm(t) and no(t) as SM(f) and Sno(f), respectively. Find the maximum
improvement factor in Slide 5-63, i.e.,

I =

∫ W

−W

Sno(f)df∫ W

−W

Sno(f)|Hde(f)|2df

subject to the condition in (2).

Hint: Use Cauchy-Schwarz inequality, i.e.,∣∣∣∣
∫
f(x)g∗(x)dx

∣∣∣∣2 ≤
(∫

|f(x)|2dx
)(∫

|g(x)|2dx
)

with equality holding iff f(x) = C · g∗(x).
(b) Suppose SM(f) = M0 and Sno(f) = N0 for |f | < W . Find the optimal improvement

factor.

(c) Suppose SM(f) =M0 and Sno(f) =
N0

A2
c
f 2 for |f | < W . Find the optimal improvement

factor.

Solution.

(a) We shall minimize ∫ W

−W

Sno(f)|Hde(f)|2df

subject to

P =

∫ W

−W

SM(f)
1

|Hde(f)|2df.

By Cauchy-Schwarz inequality,(∫ W

−W

Sno(f)|Hde(f)|2df
)(∫ W

−W

SM(f)
1

|Hde(f)|2df
)

︸ ︷︷ ︸
=P

=

(∫ W

−W

∣∣∣√Sno(f)Hde(f)
∣∣∣2df)(∫ W

−W

∣∣∣∣
√
SM(f)

H∗
de(f)

∣∣∣∣2df
)

≥
∣∣∣∣
∫ W

−W

√
Sno(f)Hde(f)

(√
SM(f)

H∗
de(f)

)∗

df

∣∣∣∣2

=

∣∣∣∣
∫ W

−W

√
Sno(f)SM(f)df

∣∣∣∣2
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with equality holding iff

√
Sno(f)Hde,opt(f) = C ·

√
SM(f)

H∗
de,opt(f)

(
equivalently, |Hde,opt(f)|2 = C ·

√
SM(f)

Sno(f)

)
.

Consequently,

Imax =

P

∫ W

−W

Sno(f)df(∫ W

−W

√
Sno(f)SM(f)df

)2 .

Note:

P =

∫ W

−W

SM(f)
1

|Hde(f)|2df =
1

C

∫ W

−W

√
SM(f)Sno(f)df

⇒ C =
1

P

∫ W

−W

√
SM(f)Sno(f)df

⇒ |Hde(f)|2 =
(
1

P

∫ W

−W

√
SM(f)Sno(f)df

)√
SM(f)

Sno(f)

(b) P =
∫ W

−W
SM(f)df = 2WM0 and Imax =

(2WM0)(2WN0)

(2W
√
M0N0)2

= 1.

Note: In such case, no improvement can be obtained by pre- and de-emphasis filters
and

|Hde,opt(f)|2 =
(
2W

P

√
M0N0

)√
M0

N0
= 1.

(c) P =
∫ W

−W
SM(f)df = 2WM0 and

Imax =

(2WM0)

∫ W

−W

N0

A2
c

f 2df(√
M0N0

Ac

∫ W

−W

|f |df
)2 =

(2W )(2
3
W 3)(

W 2
)2 =

4

3

( ≈ 1.25 dB
)

Note: In such case,

|Hde,opt(f)|2 =
(

1

2WM0

∫ W

−W

√
M0

N0

A2
c

f 2df

)√
M0

N0

A2
c
f 2

=

(
1

2W

∫ W

−W

|f |df
)

1

|f | =
W

2|f | .

We can double-check:∫ W

−W

SM(f)
1

|Hde(f)|2df =

∫ W

−W

M0
2|f |
W

df = 2WM0 = P.
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4. (a) For the linearization approximation of phase-locked loop below, show that

Φe(f)

Φ1(f)
=

jf

jf + k0H(f)

where H(f), Φe(f) and Φ1(f) are Fourier transforms of h(t), φe(t) and φ1(t), respec-
tively.

(b) If H(f) = 1 and

φ1(t) = u(t) =

{
0, t < 0

1, t > 0

determine φe(t) and φ2(t).

Hint:

TABLE A6.2 Summary of properties of the Fourier transform
Property Mathematical Description
8. Differentiation in the time domain d

dt
g(t) � j2πfG(f)

9. Integration in the time domain
∫ t

−∞ g(τ)dτ � 1
j2πf

G(f) + G(0)
2
δ(f)

TABLE A6.3 Fourier-transform pairs
Time Function Fourier Transform
exp(−at)u(t), a > 0 1

a+j2πf

exp(−a|t|), a > 0 2a
a2+(2πf)2

Notes: u(t) = unit step function

(c) How long it takes to have |φe(t)| = |φ1(t) − φ2(t)| ≤ e−3 ≈ 0.05? Will a larger k0
increase the time to reach |φe(t)| ≤ e−3?

(d) Continue from (b) and (c). In the system, we actually have φ1(t) = φ2(t) = φe(t) = 0
for t < 0 and φ1(t) = 1 when t > 0, and therefore φe(t) can be larger than 0.5 at
some t. It is thus inaccurate to simplify sin(φe(t)) as φe(t). Since 0 < sin(θ) < θ
for 0 < θ < π, will the actual time to achieve |φe(t)| = |φ1(t) − φ2(t)| ≤ e−3 ≈ 0.05
longer than the time obtained from linearization approximation, or shorter than the
time obtained from linearization approximation? Justify your answer.
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Solution.

(a) See Slide 5-71.

(b)

Φe(f) =
j2πf

j2πf + 2πk0
Φ1(f) = (j2πf Φ1(f)) · 1

j2πf + 2πk0

implies

φe(t) =

(
d

dt
φ1(t)

)
� F−1

{
1

j2πf + 2πk0

}
= δ(t) � e−2πk0tu(t)

= e−2πk0tu(t)

Hence,

φ2(t) = φ1(t)− φe(t) = (1− e−2πk0t)u(t).

(c) e−2πk0t ≤ e−3 implies t ≥ 3
2πk0

; hence, a larger k0 will reduce the time to achieve

e−2πk0t ≤ e−3.

(d) Since sin(φe(t)) < φe(t),

φ2(t) =

∫ t

0

2πk0 sin(φe(s))ds

should be smaller than
∫ t

0
2πk0φe(s)ds. As a result, φe(t) = φ1(t) − φ2(t) shall take

longer time to achieve e−3 (in comparison with the one obtained from the linearization
approximation).
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