Sample Problems for the 7th Quiz (May 3)

Corrections

e Slide 6-16: The equation at the bottom is perhaps better rewritten as
gs (t) * %eftlu%ble( ) GO(f)Grealizable<f) - Gd(f>Gideal<f) = gs (t) * gideal(ﬂ

e Slide 6-26: “Section 3.9” can be replaced by “Part 7.”

1. For an FM receiver below, we have s(t) = A, cos(27 f.t+¢(t)), where ¢(t) = 27k fot m(7)dr.
Denote the passband noise process as

n(t) = n(t) cos(2m fot) — ng(t) sin(2n fot) = r(t) cos(2m fot + V(t)),

where n;(t) = r(t) cos[U(t)] and ng(t) = r(t) sin[¥(¢)].

Baseband

x(t [
s Bandpass | Y1) | o Lo R ) ., Output
signal s(¢) filter filter signal

Noise w(1)

k4

k.

Due to the limiter, the amplitude of () is of no influence on its output but only the phase
remains. Hence, we can assume the amplitude is equal to 1 for simplicity. Then, from
Sample Problem 4 for the midterm, the output of the limiter xjyite,(t) is given by

Tlimiter (1) = cos[27 fot + 0(t)]

where

) L r()sml() — 6(2)]
ot) = olt) + tan <A0+r<t>cos[\v<t>—¢<t>1>‘ @

(a) Since 7(t) cos[U(t) — ¢(t)] and r(t) sin[¥U(t) — ¢(t)] have exactly the same joint distri-
bution as n(t) = r(t) cos[¥(t)] and ng(t) = r(t) sin[¥(t)], we rewrite (1) as

no(t) ) ’

0(t) = p(t) + tan™" (Ac )

The discriminator then outputs the derivative of the phase, i.e., v(t) = ¢'(t). Show

that )
o)~ o) + "2,

provided A, > n;(t) and Ac > ng(t) with high probability.

Hint:
L FOYY | F®e) — FBg )
(ta“ (g@))) RO
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(b) With

o)~ ) + "2

where 27 A.ng(t) = ng(t), show that the SNRo of the FM system is given by

= 2wkym(t) + 2mng4(t),

3A22P

SNRo = INGW3’

provided E[m?(t)] = P and the bandwidth W of the ideal baseband lowpass filter
satisfies W < Br.

Hint: The PSD of ny(t) is equal to

PSD,,(f) = || PSDn,(f) = pro for \f|<%

(c) Based on the the effective noise power of 2mng4(t) at the demodulator output in (b),
explain what the noise quieting effect of an FM system is.

(d) Recall from Slides 4-91 and 4-92 that for the discriminator to work properly, we require

ok,
—m(t)| < 1.
(o) <

Thus, we can derive 4k7m?(t) < B7, implying
Ak3E[m?*(t)] = 4k7P < B}.
Find the largest k; such that SNRg in (b) is maximized.

Solution.

N <TL'Q - ”Q t)n}(t))

Because A. > ny( ) and A, > ng(t) with high probability
s M) (ng(t) ny(t)
AR A A,

Ac>>nQ(t)
with high probability
ng(t)

~ ¢t EA

o)+

Note: A. > ng(t) does not imply A. > ng(t).



(b) We can ignore the 27 factor and compute the SNRo based on kym(t) + n4(t), from
which the average signal power is equal to

E[(kgm(t))?] = k3E[m*(t)] = k7P,
The average noise power is given by

w W 2 3

f 2NoW
= “_Nydf =
/_ PSD,,,(f)df /_ ? odf 542

This implies
k}%P 3A? kch

ANgW3 IN 3
e oW

SNRo =

(c) For fixed noise power level Ny and fixed message bandwidth W, increasing carrier
power A? will decrease the effective noise power at the demodulator output (by a
factor of 1/A?). This is called the noise quieting effect.

(d) Tt is obvious that taking k% = B2 /(4P) maximizes
SAZZP  3A2B2
2NoW3 — 8NoW3'

SNRo =

Note: This indicates the maximum SNRg is proportional to B% and hence can be
improved by increasing Br.

2. Continuing from Problem 1, we know that the exact relation of v(¢), input ¢'(¢) and noise
term n(t) = n;(t) cos(2m f.t) — ng(t) sin(27 f.t) should be:

Y o) (Ac +n4(t)) — no(t)n;(t)
U(t) - gb (t) + ( (Ac +n1(t))2 —0—7122(15) ) .

- i
v~

=2m-nq4(t)

(a) Let nr(t) = M. cos(¢(t)) and ng(t) = AA.sin(¢(t)). Show that

cos(Y(t)) + A

2rnall) = M oy con (@) + 32

(b) Find the value of n4(t) when ¥ (t) = m, and argue that there is a discontinuity at
A=1

(c¢) (Just for your reference. Not a part of quizzes and final exam.) The previous sub-
problem indicates that when
r2(t) = n3(t) + né(t) ~ A% and Y(t) ~m,
a noise spike will occur. Noting that E[n*(t)] = E[nj(t)] = E[ng(t)] = BrNo, we
know from Slide 3-46 that
i) the pdf of r(t) is Rayleigh-distributed:

2
=z
e 2BrNo for x > 0,

fr(t)(x) = BTNO
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i1) 1(t) is uniformly distributed over [0, 27), and
i7i) r(t) and 1(t) are independent.
For 0 < € < 1, show that

e (1

A2
(d) (Just for your reference. Not a part of quizzes and final exam.) A way to reduce the
threshold 20 in the requirement

—1'§eand

t __ Az A?
# - 1' < e} = 2ee 2BrNoginh (QBTCNO e) )

2
A S g
29BN,

for “near-elimination” of clicking-sound effect is to reduce the “effective noise power”
from BrNy down to (1 — ) BrNy by introducing a feedback as shown below:

Received . Bandpass | *(*) Liniiter v(t) P{::»:Il;::: i
EM wanea() Sl Discriminator filter
Assume noise-free. | Sy00(Z) Voltage-
vvvvvvv controlled
oscillator

Denote s(t) = cos(2m fot+¢(t)), and let syeo(f) = 2 c08(27 fycot +Pyeo(t)) With dyeo(t) =
a¢(t). Show that

2(t) = cos(2m(fe = fuco)t + (1 — )(1)),
provided that the transfer function H,,(f) of the ideal bandpass filter satisfies

1, ‘f_(fc_fvco)‘ <(1_&>%

0, otherwise

cho(f) = {

where By is the transmission bandwidth of s(t).
Solution.

(a) Noting that n}(t) = —ng(t)V'(t), ng(t) = nr(t)Y'(t) and nj(t) + ng(t) = N2AZ, we
have

ng(t)(Ac +ns(t)) — no(t)ni(t)

(Ae +ny(t)? +nd(t)
nr(t)y (1) (Ae + ns(t)) + nd ()Y (t)
(Ac+ng(t)? + né(t)

nr(t)A. + N2 A2 ,
= Tt on (A, 1 aAzY ®)
B Acos(w(t)) A% + N2 A2 ,
= At ocos(u()) Az oAzt W

B , cos(¥(t)) + A
= W) 14+ 2\ cos(¥(t)) + N2

2mng(t) =
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(b) When ¢(t) = ,

cos(¢(t)) + A B -1+ A A

14+ 2Xcos(ep(t)) + A2 AY(H) = P(t).

2mna(t) = A'(1) I—2A+A2 A—1

Since ) )
lgrllzﬁ:oo and k{%:ﬁ:—oo,

a discontinuity appears at A = 1.

Pr{@—l‘ < ¢ and Tig) —1' Se]
_ P [ @ - 1’ < e] Pr [ TZ? _ 1’ < e] (r(¢) and ¥(t) are independent.)

= Pr{(l—em <) < (1+6e)n]-Pr [Ac\/l —e<r(t) <A1 —i—e]

Acv/1+€ T 22
= €- / e 2BrNody
Aevi=e BrNo
22 Acv/1+e€
= ¢| —e 2BrNo
Acv/1—€
_A2(1-9 _A2(14e)
= €| e 2BrNo — ¢ 2BrNg

oA A?
= 2ee 2PrNosinh (ZBTCNO e) ( = 2ee Psinh (,06))

Note: This probability is therefor a function of carrier-to-noise power ratio p =
A%/(2BrNy). When p = 10 and € = 0.1, this probability is equal to

=

2 x 0.1 x e Psinh (10-0.1) ~ 107°.
When p = 20 and € = 0.1, it becomes
2 x 0.1 x e ®sinh (20-0.1) ~ 1.5 x 107°.

Experiments show that it requires p > 20 to guarantee that the clicking sound almost
disappears.

(d)
S(t)Syeo(t) = 2cos(2mfot 4+ ¢(t)) cos(27 foeol + Gueo(t))
= cos(27(fe = freo)t + (1 = @)9(t)) + cos(2m(fe + fueo)t + (1 + @)(1))

The frequency deviation of s(t)syeo(t) is given by

(1-a)

2

(Af)vco = m?X

¢'<t>] —(1-a)-Af,



where Af is the frequency deviation of s(t), given by
Af L)
= max — :
i 2T

As the frequency deviation of s(t)syeo(r) is (1 — @) of the frequency derivation of s(t),

the effective bandwidth is reduced to (1 — a) By, where By is the transmission band-
width of s(t). Consequently, the bandpass filter Hy.,(f) is adequate to pass the first
term of 5(t)Syco(r), Which is

(5(0)5s00) s = €2 = Fro)t + (1= )o(0)

Note: For your reference, we analyze the noise process due to feedback as follows.
Rewrite n(t) = n;(t) cos(2m f.t) —ng(t) sin(2x f.t), where the PSDs of n(t) and ng(t)
are equal to

N07 ’f‘ < %

0, otherwise

PSD,, (f) - PSDnQ (f) = {
Then,
1(t)Syeo(t) = 2n(t) cos(27 fet) cos(27 fyeol + Pyeo(t))
—2n¢(t) sin(27 fet) cos(27 fycol + Pyeo(t))

n[,vco(t) COS(27T(fc - fvco)t - ¢vco(t))
_nQ,vco(t> SiIl(27T(fc - fVCO)t - ¢VCO(t))

where the PSDs of 1 v (t) and ngveo(t) are given by

{N07 ’f‘ < OLQ)BT

0, otherwise

bandpass H (f
()

This reduces to the threshold to:

A? A?
c > 20 — > (1 —«)20.
2(1 — OZ)BTNQ o QBTNQ o ( Oé)

Accordingly, in principle, the feedback reduces the “noise-spike-free” threshold from
20 down to (1 — «)20.

Pre-emphasis T De-emphasis
filter Hy(f) X RX filter Hg(f)

m(t) —

Noise w(t)

The introduction of pre-emphasis and de-emphasis filters can also help reduce the threshold
considered in Problems 2(c) and 2(d). In order to un-distort the message m(t), we dictate

Hpo(f)Hae(f) = 1for [f| <W.
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Another condition that is not mentioned in our lectures is that we hope the message power
is not altered by the pre-emphasis filter, i.e.,

(a) Fix the PSDs of m(t) and n,(t) as Sy (f) and S, (f), respectively. Find the maximum
improvement factor in Slide 5-63, i.e.,
W
| sutnas

w

I'=—
/_ S Hal 1S

subject to the condition in (2).
Hint: Use Cauchy-Schwarz inequality, i.e.,

] [ 1w @ < ([1r@rac) ( [1ora)

with equality holding iff f(z) = C - ¢*(x).
(b) Suppose Sy (f) = My and S,,,(f) = Ny for |f| < W. Find the optimal improvement
factor.

(¢) Suppose Sy (f) = My and S,,, (f) = 43 f* for | f| < W. Find the optimal improvement
factor. )

Solution.

(a) We shall minimize
subject to

By Cauchy-Schwarz inequality,

(f VVVV 5.0 Ha P ) ( / VVVV SM(f)mdf)J

- ([, vsmmfo)(/ \é?\df)

’ /_W VS () Hael ) ([i#%))

v

Sno(f)Su(f)




with equality holding iff

B Su(f) ( : 2 SM(f))

vV S, () Haeopt =C— equivalently, |Hge opt =C- .
(f) de, (f) Hdeopt(f) quiv ty | d (f)| Sno(f)
Consequently,
W
Sn
L [ sutpas
w 2"
([ Vet
Note: W
P:/_WSM(f)‘[_[T / VS flaf

(4 ) £

w
(b) P = [1 Su(f)df = 2W My and Ty = SEE0EE — 1.

Note: In such case, no improvement can be obtained by pre- and de-emphasis filters
and
2W M,
‘Hde,OPt(f)‘Q = | —5 VMNo —0 .
P Ny
(c) P= ﬁ/l;v Sy (f)df = 2W M, and

w NO )
(QWMO)/_ f df (2W)(§W3) 4

=— (~1.25dB)
(i

w3

|f|df)

Note: In such case,

- [/ No Y 1w
| Hee,opt (f)* = <2WM0/ AQf df) N0f2 W/ ‘f’df) 7127

We can double-check:

. 1 21
/W SM(f)‘Hde 2 df = / My—=— df — 9W M, = P.



(a) For the linearization approximation of phase-locked loop below, show that

o) il
D1(f)  Jf +keH(f)

where H(f), ®.(f) and ®,(f) are Fourier transforms of h(t), ¢.(t) and ¢;(t), respec-
tively.

Linearization approximation model for PLL.
27K

$1(t) de(t)
O é + h(2)

(b) If H(f) =1 and

determine ¢.(t) and ¢o(t).
Hint:
TABLE A6.2 Summary of properties of the Fourier transform

Property Mathematical Description
8. Differentiation in the time domain 2¢(t) = j2r fG(f)

9. Integration in the time domain ffoo g(T)dr = jQ;fG(f) + 9951

TABLE A6.3 Fourier-transform pairs
Time Function Fourier Transform

exp(—at)u(t), a >0 a+j127rf

exp(—alt]), a >0 GQHQ%

Notes: w(t) = unit step function

(c) How long it takes to have |@.(t)] = |d1(t) — ¢2(t)] < €73 ~ 0.057 Will a larger ko
increase the time to reach |¢.(t)| < e™3?

(d) Continue from (b) and (c). In the system, we actually have ¢1(t) = ¢a(t) = ¢(t) =0
for t < 0 and ¢1(t) = 1 when ¢ > 0, and therefore ¢.(¢) can be larger than 0.5 at
some t. It is thus inaccurate to simplify sin(¢.(t)) as ¢.(t). Since 0 < sin(f) < 6
for 0 < 6 < 7, will the actual time to achieve |¢.(t)| = |p1(t) — ¢2(t)] < e ~ 0.05
longer than the time obtained from linearization approximation, or shorter than the
time obtained from linearization approximation? Justify your answer.



2nKop
¢'1(t) ¢e(t)
—O—1s0 é
{ ba(t)
[

k|

h(f)

&

Solution.

(a) See Slide 5-71.
(b)

B jgﬂf y ;
P = g e, ) = P BN e,
implies
d B 1
Gelt) = (g@ﬁl(f))*fl{m}
5(t)*€—27rkotu(t)
Hence,

a(t) = d1(t) — ge(t) = (1 — e ™ )u(t).

(c) e 2™kt < 73 implies ¢ > ﬁ; hence, a larger ky will reduce the time to achieve
6727‘(‘]{0t < 673.

() Since sin(@.(1)) < 6.(1),
(bg(t):/o 27k sin(¢e(s))ds

should be smaller than f(f 2mkode(s)ds. As a result, ¢.(t) = ¢1(t) — ¢o(t) shall take
longer time to achieve e (in comparison with the one obtained from the linearization
approximation).
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